

Towards an Architecture for Audio/Video Conferencing
in Distributed Brokering Systems

Ahmet Uyar
Electrical Engineering
and Computer Science

Syracuse University
Syracuse, NY, USA

Shrideep Pallickara
Community Grids Lab

Indiana University
Bloomington, IN, USA

Geoffrey Fox
Community Grids Lab

Indiana University
Bloomington, IN, USA

Abstract

In this paper, we explore the deployment of
distributed brokering systems in the context of
audio/video conferencing. We expand upon our earlier
work in this area, and eliminate certain drawbacks that
were present in that approach. Our new work provides
substantial performance improvements. Also, we outline
our support for managing legacy applications within the
system. We based our investigations on the
NaradaBrokering system, which provides support for
peer-to-peer (P2P), centralized and distributed
interactions. We include experimental results, from our
performance tests, which substantiate our claim that
systems such as NaradaBrokering can be deployed in
the context of real-time audio/video conferencing, while
supporting large heterogeneous client configurations.
Keywords: audio/video conferencing, distributed
messaging, publish/subscribe systems, multimedia
systems.

1. Introduction

Systems supporting multimedia conferencing and
those based on the generalized publish/subscribe
paradigm have both been around for quite some time. At
its very core, both these systems tend to solve the same
problem viz. the delivery of the content from the
producers to the interested consumers. Performance is
easily perceived in multimedia systems, and as the scale
of the system increases the performance issue becomes a
pivotal one. To mitigate these problems, multimedia
systems have concentrated efforts on tightly integrating
the content distribution problem with specific transport
protocols, such as RTP [1], Multicast [2] and UDP.
Efforts have also tended to focus on optimally
encapsulating media content in a variety of codec
formats.

In publish/subscribe systems, though timing
constraints have been considered an important one

(especially in systems deployed for synchronous
collaboration), the emphasis has generally been on
facilitating richer interactions between communicating
entities. This difference in approach vis-à-vis
multimedia systems, are exemplified in the sizes of the
messages that encapsulate content. These messages
generally tend to have several headers pertaining to
content description, reliable delivery, priority, ordering,
and distribution traces among others. These headers play
a crucial role in implementing various Qualities of
Service (QoS) strategies. As alluded to earlier, codecs
used to encapsulate multimedia content tend to be far
more compact.

Inevitably, these competing approaches to the content
distribution problem will draw closer together to provide
an interaction rich efficient content distribution solution.
As opposed to relying on multicast for communications,
publish/subscribe systems rely on software multicast.
This allows routing solutions to work across realms and
network boundaries where MBONE, necessary for
multicast, is disabled or does not exist.

In this paper we suggest that the deployment of
systems based on the publish/subscribe paradigm in the
context of audio/video conferencing is a very good one.
We base our investigations in the context of the
NaradaBrokering [3-8] system, which provides support
for peer-to-peer (P2P), distributed and centralized
interactions. In the approach outlined in this paper, we
encapsulate multimedia content in specialized events
that facilitate fast intelligent routing while incorporating
headers relevant only to problem of content distribution.
This approach attempts to draw upon features that
enhance performance while seeking to avoid features
that result in performance degradation.

Besides our earlier work [9], which explored
multimedia conferencing in the context of
NaradaBrokering’s JMS solution [8], the other work in
the area of event based multimedia distribution can be
found in [10] where a CORBA broker is used to route
events encapsulating audio/video content.

Our current work eliminates certain drawbacks from
our earlier approach, while making three distinct
contributions. First we have eliminated the dependency
on the large set of headers that are inherent in JMS
messages, and the accompanying network/CPU cycles
expended in the processing of the same. Our first
improvement has been in the context of a compact
representation of content that facilitates fast efficient
routing and processing. Second, we have incorporated a
strategy that allows us to deal with legacy multimedia
applications. This is an important contribution since in
this case the two systems/applications are completely
decoupled from each other – obviating the need for
specialized initialization, registration and any pre-
processing that might be necessary. In our previous
work we needed to write a specialized client, resulting
in interactions only between these specialized clients.
 Finally we include comprehensive benchmarks and
our observations from a real time audio/video
conferencing that was performed on our prototype
system. Our benchmarks are based on the newly
incorporated modifications in the calculation of
destinations associated with the specialized events, the
event’s representation and support for legacy systems.
Our observations from the real-time test combined with
our benchmarks, enable us to explore deployability of
systems such as NaradaBrokering in the context of real-
time multimedia systems.

This paper is organized as follows. In section 2 we
present an overview of the related work in this area.
Section 3 provides a brief overview of NaradaBrokering
and its applicability in the context of multimedia
systems. Section 4 provides a discussion of the
improvements, and changes these improvements
entailed, while routing multimedia content. Section 5
outlines our experimental setups and incorporates results
under various setting. We then include a discussion of
the work that would augment the work outlined in this
paper and set of conclusions derived from this work.

2. Related work

Currently RTP is the most commonly used transport
protocol to transfer audio/video traffic over the Internet
and is the most favored approach to implementing
conferencing solutions. RTP is designed to be used by
those applications that require real-time end-to-end
delivery services and is usually implemented on top of
UDP or multicast. Sometimes it is also implemented on
top of TCP or HTTP, particularly when traversing
through firewalls. RTP achieves its best performance
when implemented over either UDP or multicast, which
do not incur delays pertaining to ordering, error
correction and reliable delivery overheads that exist in
TCP.

RTP provides a host of services such as payload type
identification, sequence numbering, timestamping,

source identification and monitoring for audio/video
communications. RTP provides these services through a
12 byte header which is added to each audio or video
package. RTP uses RTCP (RTP Control Protocol) to
monitor the timely delivery of real-time data. It provides
control and identification functionality. RTCP packages
are very similar to RTP packages but they do not
contain any media information, rather they contain
information about the identity of the sender and the
quality of media transfer.

UDP based RTP conferencing servers are either
implemented in hardware or software and their meeting
management concepts are based on a session
management protocol such as H.323 [11] and SIP [12].
Currently, most of them are based on H.323. Recently
there have been efforts in the SIP community pertaining
to the development of conferencing servers [13].
Although these systems provide a good quality audio
and video, they are very complex, expensive and hard to
maintain. Development and maintenance of distributed
conferencing servers can be very time consuming and
challenging.

Multicast provides a very powerful, elegant and
flexible framework for implementing audio/video
conferencing solutions. The biggest obstacle for using
Multicast in videoconferencing applications is the lack
of widespread support. Private corporations usually
choose not to support it, with some universities denying
this support too. Cable modem companies providing
broadband connections to homes and small offices do
not support it either. For dial-up users there is no hope
of getting a multicast service in the near future. It is thus
rather difficult to deploy multicast for applications that
are expected to serve all Internet users. Furthermore, for
low bandwidth entities, difficulties in participations
stems from the volume of audio and video streams. Such
sessions are of course vulnerable to denial of service
attacks from a malicious user. We believe that,
currently, multicast is not a solution to be widely used
by entities with varying bandwidth constraints.

Brokering systems can provide a unified framework
for a wide gamut of applications, from media
communications to application sharing. The Garnet [14]
collaboration environment based on JMS is an example
of such a system, which provides application-sharing,
whiteboard, and shared-display support.

3. NaradaBrokering and the rational for
multimedia support

NaradaBrokering is a distributed brokering system,
which provides support for centralized, P2P and
distributed interactions. The smallest unit of the
messaging infrastructure, which can run on a network of
cooperating nodes, is the broker. Each broker is
responsible for processing events (specialized messages

with additional headers), computing destinations and
making decisions to facilitate efficient routing.

In NaradaBrokering the broker nodes are organized
in a cluster-based architecture. The cluster based
architecture allows the system, to scale, to support
clients of arbitrary size, while allowing individual
broker nodes to compute alternate routes in response to
node failures. NaradaBrokering provides intelligent
routing of events within the system by selectively
deploying brokers and communication links to aid
disseminations.

We may enumerate reasons in support of deploying
NaradaBrokering to route multimedia content –

1. Availability – Since it is based on a distributed
architecture, there is no single point of failure within the
system. Additional broker nodes may be added to
support large heterogeneous multimedia client
configurations.

2. Scaling – NaradaBrokering’s cluster based
architecture allows the system to scale. The number of
broker nodes may increase geometrically, but the
communication pathlengths between nodes increase
logarithmically.

3. Efficient routing and bandwidth utilizations –
NaradaBrokering computes destinations associated with
an event efficiently. The accompanying routing solution
deploys links efficiently to reach these computed
destinations. The routing solution conserves bandwidth
by not overload links with data that should not be routed
on them. Under conditions of high loads the benefits
accrued from this strategy can be substantial.

4. Software multicast – Since it relies on software
multicast, entities interested in conferencing with each
other need not set up a dedicated multicast group for
communications. Problems associated with setting of
multiple unique multicast groups are exacerbated in
settings with large number of clients.

5. Communication over multiple transports – In
distributed settings, events may traverse over multiple
broker hops. Communication between two nodes may
be constrained by the number and type of protocols
supported between them. NaradaBrokering incorporates
support for TCP, UDP, Multicast and SSL. HTTP
support will be available soon. Multi-protocol support
increases possibility of communications between two
nodes. Furthermore, depending on the state of the
network specific transports can be deployed to achieve
better performance under changing network conditions.

6. Communication over firewalls and proxy
boundaries – A lot of times two nodes/entities may be in
realms separated by firewall and proxy boundaries.
Irrespective of how elegant the application channels are,
communications would be stopped dead in their tracks.
NaradaBrokering incorporates strategies to tunnel
through firewalls and authenticating proxies such as
Microsoft’s ISA and iPlanet’s proxy.

7. Ability to handle clients with varying bandwidth
constraints – Specialized links can deployed to filter,
and possibly process, the volume of information
funneled over links with slow, low-bandwidth
connections.

There are other advantages that become more
obvious when considered in the context of other features
in NaradaBrokering. NaradaBrokering incorporates a
security infrastructure [15] that also incorporates
schemes to foil certain denial of service attacks.
Similarly its archiving support and performance
monitoring could be used to record sessions and deploy
better transports for dissemination respectively.
Multimedia content routed using this solution can
harness these features to provide a better solution.

4. Incorporating support for audio/video
conferencing

There were two drawbacks associated with our
earlier approach, discussed in [9], which stemmed from
the use of JMS messages to encapsulate multimedia
content. First, each of the different JMS message [16]
types has at least 10 different headers (all of which are
redundant in the context of multimedia content) that can
add up to 200 bytes of data in their serialized transfer
over the network. When this is viewed in the context of
the size of audio/video packets encapsulated the costs
seem substantial. For example, a ULAW audio package
for 20 ms has a size of 172 bytes including the RTP
header and entails a 64kbps network bandwidth.
Padding an extra 200 bytes of header to each audio
package results in the bandwidth requirement of up to
148kbps. Then, there is the cost associated with
serializing and de-serializing the multimedia content.
Second, we did not support for legacy clients. This
meant that the system could be used only by those
applications that had been ported to incorporate specific
initialization and registration schemes.

4.1 Designing the RTPEvent

We designed a special event, the RTPEvent, to
encapsulate media content that comprises of 4 elements.
There is a header (1 byte) identifying event type,
followed by a topic name encapsulating information
about the meeting that this content was generated in. To
eliminate echo problems arising from the system routing
content back to the originator of the content, information
pertaining to the source is also included. This
information can be represented in an integer, which
amounts to 4 bytes. Finally, there is the media content
itself as the payload in the event.

Depending on the type of the topic name, associated
with the RTPEvent the number of extra bytes padded
onto the RTP payload varies. If as in most
publish/subscribe systems we choose to have String

topic names, the number of extra bytes padded to the
RTP payload is – five bytes for the header and source
plus one byte for each character in the topic name. To
avoid incorrect routing decisions caused by collisions in
topic name space, we require that the topic names,
corresponding to meetings, be unique. The cost of this
choice could end up being substantial considering that
each character adds one additional byte. Furthermore,
since the topic names are of variable length one would
also need to include information pertaining to the length
of the topic name.

Event
Header Topic Name Source Info RTP Payload

RTP Payload

RTP Header
(12 bytes) Audio or Video Data

Used to route messages
intelligenty in system Eliminates echo problem

Identifies Event as
RTPEvent and aids in

subsequent processing

Figure 1: Anatomy of the RTPEvent

To obviate problems inherent in String based topic
names, we decided to use integer topic names. This
eliminates two different problems. First, the topic length
does not vary and it will be represented in 4 bytes. This
representation results in a total of 9 bytes being padded
to the RTP payloads which is acceptable for almost all
codecs. Second, using 32-bit integers allows us to
uniquely distinguish between 232=4,294,967,296
different concurrent meetings. Also, when we compared
the performance of serialization/de-serialization times
for RTPEvents with String and integer based topics,
the latter one was twice as fast.

Entities would thus subscribe to integer topics. This
calls for an integer based matching engine which
computes destinations from topics contained in the
RTPEvent. This matching engine would also be
efficient since the memory requirements for integer
topics are lower than those required for String based
topics.

4.2 Support for legacy applications

The other drawback of our previous effort was the
issue of support, or the lack thereof, for legacy RTP
clients such as VIC, RAT and JMStudio. To circumvent
this problem we incorporated a specialized
implementation of the NaradaBrokering transport
framework [17]. This process entailed an
implementation of the Link interface which abstracts
the communication link between two entities. The
RTPLink, which we implemented can receive raw RTP

packages over UDP from legacy system, wrap these
packages in RTPEvents and propagate these events to
the protocol layers in the broker node. Once it reaches
the protocol layers at broker node, the event is routed
within the distributed broker network.

The RTPLink deals with the initialization,
registration and data processing on the communication
link. For initialization purposes when a RTPLink is
created, one should provide the port-number on which
the RTPLlink should listen to RTP packages, and
finally the IP-address/port-number pair at which the
legacy system is listening to data. For registration
purposes, the RTPLink is assigned a NaradaBrokering-
ID and the RTPLink also subscribes to topic
corresponding to its meeting. In the data processing part,
the RTPLink when it receives media packages it
constructs the RTPEvent for processing within the
broker network. When an RTPEvent is ready to be sent
to the legacy application the RTPLink retrieves the RTP
payload from the RTPEvent and routes it to the legacy
application based on the parameters specified during
initializations.

For every legacy RTP audio or vide client, one
corresponding RTPLink needs to be set up at a broker,
within broker network. In our current implementation
we are initializing these RTPLinks statically from a
configuration file, but future work will involve a
Conference Manager responsible for dynamically
creating and destroying these links.

4.3 Some implementation details

There is a unique meeting-ID associated with each
media type (audio/video) in a multimedia meeting, thus
if there is both audio and video conferencing (depicted
in figure 2), there would be unique meeting-ID for the
audio conferencing and one for the video conferencing.
Furthermore, since we use RTP for individual
audio/video streams, we need two unique topics for each
meeting –– one for RTP packages and the other for
RTCP packages (discussed in section 2). To this effect,
individual meetings have unique even-numbered
integers assigned as topics. We then used this even-
numbered integer as the topic for RTP packets and the
odd-numbered integer, immediately following that even-
number, as the topic for RTCP packets. This is very
similar to the RTP protocol in which RTP packets are
exchanged on an even number port and RTCP packets
are exchanged on the odd-numbered (RTP port + 1)
port.

We have also developed a NaradaBrokering
audio/video client using JMF. To summarize briefly,
this client is capable of sending (and receiving)
audio/video streams as RTPEvent to (and from) the
broker network. The client subscribes to relevant topics

and is then capable of exchanging audio/video streams
with other clients (and even legacy clients subscribed to
the same topic). We use the JMF RTP library to
packetize and depacketize media streams. JMF has a
RTP connector architecture, which allows us to provide
our own transport module. Through this module, while
sending the RTP packages, we encapsulate them in
RTPEvents while assigning relevant topics to them.
Upon receipt of the RTPEvents we extract the RTP
payload from the RTPEvent. The raw RTP package is
then fed to the JMF RTP library, which then constructs
the audio and video streams. We also use JMF libraries
to read a media file and play the received audio/video
stream.

Figure 2: Conferencing in NaradaBrokering

5. Performance measurements

Since NaradaBrokering is a Java-based messaging
system, we contrast the performance of the
NaradaBrokering broker with a conferencing server
written in Java using JMF [18] libraries. This server
creates an audio or video session and delivers the audio
or video streams it receives to all participants except the
sender itself.

In our measurements we create 1 audio or 1 video
conference at a time. In each case, we test the results for
different number of participants. One participant sends
an audio or video stream to the server, and the server
delivers it to all the other participants. In each test we
have send 2000 audio or video packages. To compute
transit delays for each delivered package, we assign a
package-id to every package and track the send/receive
times for each package. For NaradaBrokering we used
the RTP sequence number as package id, but for JMF
we could not use this since JMF conferencing server
modifies the sequence number and timestamp. We
instead compute a unique package-id from the
audio/video data that is sent out.

Although we have hundreds of audio/video receiver
clients in a conference, we gathered results only from 12
video and 30 audio clients. These clients and the sender

client ran in the same machine and rest of the receiver
clients ran in another machine. This way we avoid the
clock synchronization/drift issues that arise when we
incorporate results from receivers running on different
machines. On the other hand, having all receivers
running on the same machine as the sender, would
introduce application overhead that would cloud the
metrics we wish to measure. Having only 12 video or 30
audio receivers ensures that the overhead alluded to
earlier are minimum. In addition, to make sure that the
results which we gather reflect the true performance of
the server, we gather video results from first 4, middle 4
and the last 4 clients that were added to the conference.
In the audio case results are retrieved from the first 10,
middle 10 and last 10 clients. Finally, when we
performed one of our benchmarks on 4 machines by
hosting one-half of the non-measuring receivers on the
fourth machine, the results were similar to the ones we
report in this paper.

5.1 Video test

We have created a video conference on the server
machine – 1.2GHz Intel Pentium III dual CPU, 1GB
MEM, RedHat Linux 7.3. One of the participants sends
a H.263 video stream to the server, which delivers it to
all the other participants in the session. The sender client
and the 12 receiver clients, from whom we gather
results, were running on a 2.4GHz Intel Pentium 4 CPU,
512GB MEM, RedHat Linux 7.3. The video stream had
an average bandwidth of more than 600 kbps. We
calculated the transit delay and jitter values for each
video package. The sender application sends 2000
packages in each test. We used the same video stream
for each test. The 3 machines involved in this test reside
on a gigabit subnet. For every package we calculated the
transit delay, (receivedTime – sentTime), for all 12
clients. We then get the average of these 12 delay values
for that package in milliseconds. We also calculate jitter
for each package based on the formula explained in RTP
RFC [1]. We then get the average jitter for the 12
clients.

Table 1 summarizes the video tests which were
conducted. It shows the average transit delays and
average jitter values for the NaradaBrokering broker and
JMF conferencing server. It also shows the total
bandwidth used to transfer the test video stream to
participants involved in the tests. The tests clearly
demonstrate that the NaradaBrokering broker out
performs the JMF conferencing server in every aspect,
and is capable of delivering a video stream to more than
400 participants.

It should be noted that the bandwidth requirement of
our test video stream is quite high and most real-time
videoconferencing result in streams, whose bandwidth
utilizations, fall in the 100-200kbps range. A single
NaradaBrokering broker can thus deliver up to 1200

real-time video clients. It should be noted that the
natural setting for NaradaBrokering is a distributed
broker network, with at least one broker in every
domain. Typical broker settings will thus handle
significantly larger client concentrations and streams.

N
um

be
r o

f c
lie

nt
s

N
ar

ad
aB

ro
ke

rin
g

A

vg
 D

el
ay

 (m
s)

JM
F

A
vg

 D
el

ay
 (m

s)

N
ar

ad
aB

ro
ke

rin
g

A

vg
 J

itt
er

JM
F

A

vg
 Ji

tte
r

To
ta

l
ba

nd
w

id
th

 (M
bp

s)

50 2.23 3.08 0.95 1.10 30

100 7.20 10.72 2.57 3.34 60

200 20.38 27.69 6.18 7.56 120

300 42.61 60.86 9.93 11.84 180

400 80.76 229.2 13.38 15.55 240

Table 1. Video streaming performance results

Figures 3 and 4 show the average transit delays and
jitter values, of the 12 measuring clients for 1950
packages, respectively. We ignore the first 50 packages,
where delays correspond to application start ups. From
the graphs it is clear that NaradaBrokering delivers
significantly better performance and is stable over time.
The transit delay values are all in the acceptable range
for video.

0
50

100
150

200

250
300

350
400

450

0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
el

ay
 (M

illi
se

co
nd

s)

Packet Number

Average delays/packet for 12 (of the 400 total) video-clients.
 NaradaBrokering Avg=80.76 ms, JMF Avg=229.23 ms

 NaradaBrokering-RTP
 JMF-RTP

Figure 3. Delays for 400 video clients

In the JMF conference server the first client that joins
the session consistently gets the best performance with
decreasing performance until the last client gets the
worst performance. In the NaradaBrokering broker, we
provide equal performance to all clients by rotating the
delivery privilege among receivers for alternate
packages. As a result, over time, all NaradaBrokering
clients get equal performance.

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ji
tte

r
(M

illi
se

co
nd

s)

Packet Number

Average jitter/packet for 12 (of the 400 total) video clients.
 NaradaBrokering Avg=13.38 ms, JMF Avg=15.55 ms

 NaradaBrokering-RTP
 JMF-RTP

Figure 4. Jitter for 400 video clients

5.2 Audio Test

We have created an audio conference on the server
machine, 1.2GHz Intel Pentium III dual CPU, 1GB
MEM, RedHat linux 7.3. One participant sent a ULAW
audio stream to the server, which delivers it to all
participants in the session. The sender client and 30
receiver clients, from whom we gather results, were
running on 2.2GHz Intel Xeon dual CPU, 1GB MEM,
RedHat Linux 7.3. The audio stream has the bandwidth
of 64kbps. Every 60ms, a 480 bytes audio package is
sent. We calculate the latency and jitter values for each
audio package. The sender client sends 2000 packages
in each test. The three machines used in this test reside
on a 100Mbps subnet.

N
um

be
r o

f c
lie

nt
s

N
ar

ad
aB

ro
ke

rin
g

A

vg
 la

te
nc

y
(m

s)

JM
F

A

vg
 la

te
nc

y
(m

s)

N
ar

ad
aB

ro
ke

rin
g

A

vg
 Ji

tte
r

JM
F

A

vg
 Ji

tte
r

To
ta

l b
an

dw
id

th

(M
bp

s)

100 2.89 2.77 0.56 0.61 6.4

500 12.02 11.80 0.59 0.56 32

1000 23.44 23.01 0.79 0.47 64

Table 2: Audio streaming performance results

Table 2 shows that the NaradaBrokering broker is

capable of sending an audio stream to 1000 clients by
providing a very good quality. The 23 ms delay
introduced by the broker is well with the real-time
constraints imposed on audio communications. Since we
run this test in a 100 Mbps network, when we increase
the number of clients we hit the network bottleneck. We

are therefore providing results only for up to 1000
clients.

5.3 Real-time videoconferencing test

We had an online meeting in our 100Mbps network
with a group of 30 participants for almost 2 hours. We
used one NaradaBrokering broker to deliver the audio
and video streams to all clients. Participants used
VIC/RAT as the audio/video clients respectively. One
person was speaking throughout the meeting and the rest
were listening. His audio was delivered as 64kbps
ULAW. Most of the participants had cameras and sent
video streams to the meeting. At any given time there
were 15-20 different video streams in the meeting. All
video was in H.261 format and most of them had their
bandwidth changing from 50-200kbps. The broker was
running in a 1.2GHz Pentium III dual CPU, 1GB MEM,
RedHat Linux 7.3 machine. We had excellent quality
video and audio throughout the meeting.

6. Future work & conclusions

We plan to investigate the dynamic management of
conferencing sessions within the broker network.
Similarly the affects of incorporating audio-mixing
capabilities as an extension to the broker needs to be
researched further. Integration of the NaradaBrokering
into the XGSP A/V Web-Services framework outlined
in [19] is an ongoing effort.

More significantly, we plan to investigate the
performance boosts that a migration to the JDK-1.4 New
IO library would provide. This would be from an
engineering stand point, where we would utilizing the
buffering and thread management capabilities provided
by this high performance library. We expect the ability
of individual brokers, to manage large client
configurations, to improve substantially by deploying
this solution.

In this paper we have shown that distributed
brokering systems are suitable for transferring
audio/video streams on the Internet. It is also very
convenient to implement videoconferencing in these
settings. Our tests have shown that this approach works
and that our NaradaBrokering broker can handle real
time sessions very well.

7. References
[1] RTP: A Transport Protocol for Real-Time Applications

(IETF RFC 1889) http://www.ietf.org/rfc/rfc1889.txt.
[2] Almeroth, Kevin C., “The Evolution of Multicast: From

the Mbone to Interdomain Multicast to Internet2
Deployment.”, IEEE Network, 2000.

[3] The NaradaBrokering System
http://www.naradabrokering.org

[4] Shrideep Pallickara and Geoffrey Fox, A Middleware
Framework and Architecture for Peer-to-Peer Grids. (To

appear) Proceedings of ACM/IFIP/USENIX International
Middleware Conference Middleware-2003.

[5] Geoffrey Fox and Shrideep Pallickara, NaradaBrokering:
An Event Based Infrastructure for Building Scaleable
Durable Peer-to-Peer Grids. Chapter 22 of "Grid
Computing: Making the Global Infrastructure a Reality".
John Wiley April’03.

[6] Geoffrey Fox and Shrideep Pallickara, The Narada Event
Brokering System: Overview and Extensions.
Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications,
June 2002. pp 353-359.

[7] Geoffrey Fox, Shrideep Pallickara and Xi Rao, A
Scaleable Event Infrastructure for Peer to Peer Grids.
Proceedings of ACM Java Grande ISCOPE Conference
2002. Seattle, Washington. November 2002.

[8] Geoffrey Fox and Shrideep Pallickara, “JMS Compliance
in the Narada Event Brokering System.” Proceedings of
the International Conference on Internet Computing (IC-
02). June 2002. pp 391-402.

[9] Hasan Bulut, Geoffrey Fox, Shrideep Pallickara, Ahmet
Uyar and Wenjun Wu, Integration of NaradaBrokering
and Audio/Video Conferencing as a Web Service.
Proceedings of IASTED International Conference on
Communications, Internet, and Information Technology,
2002.

[10] D. Chambers, G. Lyons, J. Duggan, “Stream
Enhancements for the CORBA Event Service”,
Proceedings of the ninth ACM international conference
on Multimedia, 2001, Ottawa, Canada.

[11] International Telecommunication Union, “Packet based
multimedia communication systems”, Recommendation
H.323, Geneva, Switzerland, Feb. 1998.

[12] J. Rosenberg et al., “SIP: Session Initiation Protocol”,
RFC 3261, Internet Engineering Task Force, June 2002,
http://www.ietf.org/rfc/rfc3261.txt,

[13] K. Singh, G. Nair, and H. Schulzrinne. Centralized
conferencing using SIP. In Internet Telephony Workshop
2001, New York, Apr. 2001.

[14] Geoffrey Fox et al. Grid Services For Earthquake
Science. Concurrency & Computation: Practice and
Experience. Special Issue on Grid Computing
Environments. Volume 14:371-393.

[15] Pallickara et. Al, A Security Framework for Distributed
Brokering Systems. Available from
http://www.naradabrokering.org

[16] Mark Happner, Rich Burridge and Rahul Sharma. Sun
Microsystems. Java Message Service Specification. 2000.
http://java.sun.com/products/jms

[17] Systems. Pallickara et. al. A Transport Framework for
Distributed Brokering Systems. (To appear) Proceedings
of the proceedings of the International Conference on
Parallel and Distributed Processing Techniques and
Applications. (PDPTA'03).

[18] Sun Microsystems, Java Media Framework 2.1,
http://java.sun.com/products/java-
media/jmf/2.1.1/index.html, 2001

[19] Fox et. al. A Web Services Framework for Collaboration
and Audio/Videoconferencing, Internet
Computing(IC’02), June 2002, Las Vegas.

http://www.ietf.org/rfc/rfc1889.txt
http://www.naradabrokering.org/
http://www.ietf.org/rfc/rfc3261.txt
http://www.naradabrokering.org/
http://java.sun.com/products/jms
http://java.sun.com/products/java-media/jmf/2.1.1/index.html
http://java.sun.com/products/java-media/jmf/2.1.1/index.html

	Towards an Architecture for Audio/Video Conferencing
	in Distributed Brokering Systems
	Electrical Engineering

	Abstract
	1. Introduction
	2. Related work
	3. NaradaBrokering and the rational for multimedia support
	4. Incorporating support for audio/video conferencing
	4.1 Designing the RTPEvent
	4.2 Support for legacy applications
	4.3 Some implementation details

	5. Performance measurements
	5.1 Video test
	5.2 Audio Test
	5.3 Real-time videoconferencing test

	6. Future work & conclusions
	7. References

