
Towards Flexible Messaging for SOAP Based Services
Geoffrey Fox Shrideep Pallickara Savas Parastatidis
Community Grids Lab Community Grids Lab School of Computing Science
Indiana University Indiana University University of Newcastle
Suite 224, 501 N Morton St, Suite 224, 501 N Morton St, Newcastle upon Tyne
IN-47404, USA IN-47404, USA NE1 7RU, UK
+1-812-856-7977 +1-812-856-1311 +44-191-241-3347
gcf@indiana.edu spallick@indiana.edu Savas.Parastatidis@newcastle.ac.uk

ABSTRACT
NaradaBrokering provides a messaging abstraction that allows it
to provide message-related capabilities in a transparent fashion.
These capabilities include message-based security, time and
causal ordering, compression, virtualization of transport protocol
and addressing, and fault tolerance related functionalities.
NaradaBrokering – combined with further extensions to its
existing capabilities – can also take advantage of the maturing of
Web Service specifications to build very powerful general
mechanisms to deploy and integrate it with general Web services.
In this paper we describe our strategy to interface
NaradaBrokering with Web services. The strategy described in
this paper will allow new, and existing, applications built around
the Web Services Framework to leverage capabilities offered by
the NaradaBrokering substrate without changes to the service
implementations.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems – Design studies, Performance attributes.

General Terms
Performance, Design, Reliability

Keywords
Distributed middleware, Grid computing, Web Services, service
oriented architectures

1. INTRODUCTION
NaradaBrokering has been developed as the messaging
infrastructure for collaboration, peer-to-peer and Grid
applications. It has undergone extensive functional testing in
collaborative sessions and extensive performance measurements
have been made in a variety of configurations including cross-
continental applications. The value of NaradaBrokering in the
context of Grid and Web services has been clear for some time.
NaradaBrokering provides a messaging abstraction that allows the

system to provide message-related capabilities in a transparent
fashion. These capabilities include message-based security and
associated encryption, time and causal ordering, compression,
virtualization of transport protocols and addressing, and fault
tolerance related functionalities. NaradaBrokering – combined
with further extensions to, and testing of, its existing capabilities –
can also take advantage of the maturing of Web Service
specifications to build very powerful general mechanisms to
deploy and integrate it with general Web services. This paper
outlines our strategy to achieve this.

Traditionally Web Services have been deployed in client-server
like settings. Services are generally hosted within specialized
containers and service requestors directly access these services.
When a distributed middleware substrate, such as
NaradaBrokering, and Web Services leverage each other’s
capabilities the resultant system can facilitate the development of
powerful applications. This paper outlines a strategy that spans
the areas of distributed middleware, fault tolerance, Web Services
and Grid computing. This work was motivated by the following –
(a) The flexibility, and inherently loosely-coupled nature of Web

Services.
(b) The alignment of Grid computing frameworks with the

consensus emerging within the Web Services computing.
(c) An increased sophistication in the capabilities provided

within the NaradaBrokering substrate.
The strategy described in this paper will allow new, and existing,
applications built around the Web Services Framework to
leverage capabilities offered by the NaradaBrokering substrate.
This will entail no changes (code rewrites, recompilation etc) to
the service implementations while at the same time allowing these
services to leverage capabilities and functionalities provided by
the NaradaBrokering substrate. It is entirely possible that these
applications can also leverage NaradaBrokering’s standards based
capabilities such as the Java Message Service (JMS) and peer-to-
peer style communications (via Sun’s JXTA).

In particular we exploit WS-Addressing and the SOAP processing
stack to interface NaradaBrokering with Web services. This
involves incorporating the SOAP processing stack into the
substrate. This facilitates Web Services to interact directly with
the substrate and also allows the substrate to function as a SOAP
intermediary. We also propose the development of an endpoint
NaradaBrokering “plug-in” that can be used by a Web Service to
provide direct connectivity to the NaradaBrokering network.
Since the plug-in resides as a handler within the handler-chain
associated with the SOAP processing stack at a service endpoint,
no changes are needed to either the service implementations or the
service requestors. This involves a one-time effort of writing

0-7695-2153-3/04 $20.00 (c)2004 IEEE

mailto:gcf@indiana.edu
mailto:spallick@indiana.edu
mailto:Savas.Parastatidis@newcastle.ac.uk

NaradaBrokering handlers for SOAP implementations in different
languages such as Java (Apache Axis and Sun’s JAX-RPC), C++
(gSOAP) and Perl (Soap::Lite).

This paper is organized as follows. In section 2 we provide an
overview of the NaradaBrokering substrate. In section 3 we
introduce the concept of the substrate managing services. In
sections 4 and 5 we include details of the ongoing effort to
incorporate SOAP support into NaradaBrokering. In section 6 we
investigate how the scheme outlined here can be deployed to
augment Grid applications. In section 7 we provide an overview
of related work in the area of distributed publish/subscribe and
peer-to-peer systems. Finally, in section 8 we outline our
conclusions.

2. NARADABROKERING SUBSTRATE
NaradaBrokering [1-9] is a distributed messaging infrastructure
and provides two closely related capabilities. First, it provides a
message oriented middleware (MoM) which facilitates
communications between entities (i.e. clients, resources, services
and proxies thereto) through the exchange of messages. Second, it
provides a notification framework by efficiently routing messages
from the originators to only the registered consumers of the
message in question. The smallest unit of this substrate should be
able to intelligently process and route messages, while working
with multiple underlying communication protocols. We refer to
this unit as a broker, where we avoid the use of the term servers to
distinguish it clearly from the application servers.

Communication within NaradaBrokering is asynchronous and the
system can be used to support different interactions by
encapsulating them in specialized messages, which we call events.
Events can encapsulate information pertaining to transactions,
data interchange, method invocations, system conditions and
finally the search, discovery and subsequent sharing of resources.
NaradaBrokering places no constraints either on the size, rate and
scope of the interactions encapsulated within these events or the
number of entities present in the system. Events encapsulate
expressive power at multiple levels. Where, when and how these
events reveal their expressive power is what constitutes
information flow. NaradaBrokering manages this information
flow. Please note that events are essentially messages with
additional headers. These terms are often used interchangeably.

2.1 Dissemination of events
An event comprises of headers, content descriptors and the
payload encapsulating the content. An event’s headers provide
information pertaining to the type, unique identification,
timestamps, dissemination traces and other quality of service
(QoS) related information pertaining to the event. The content
descriptors and the values these content descriptors take
collectively comprise the event’s content synopsis. Entities within
the system can register their interests by specifying constraints on
the event’s synopsis. The destinations associated with an event are
computed based on the registered interests and the event’s
synopsis. In NaradaBrokering this synopsis could be based on
tag-value pairs, Integers and Strings. Entities can also specify
SQL queries on properties contained in a specialized message.
The synopses could also be XML documents, in which case
XPath constraints can be specified. More recently support for

regular expression queries on an event’s content synopsis has
been added.

Every event has an implicit or explicit destination list, comprising
entities, associated with it. The brokering system as a whole is
responsible for computing broker destinations (targets) and
ensuring efficient delivery to these targeted brokers en route to the
intended entity(s). Events as they traverse through the broker
network are updated to snapshot its dissemination within the
broker network which eliminates continuous echoing. The broker
network maps (BNM) at individual brokers is used to compute
best broker hops to reach target brokers. The routing is very
efficient [4] since for every event, the associated targeted brokers
are usually the only ones involved in disseminations.
Furthermore, every broker, either targeted or en route to one,
computes the shortest path to reach target destinations while
eschewing links and brokers that have failed or have been failure-
suspected.

2.2 Services within NaradaBrokering
In NaradaBrokering entities can also specify constraints on the
QoS related to the delivery of events. The QoS pertain to the
reliable delivery, order, duplicate elimination, security and size of
the published events and their encapsulated payloads.
NaradaBrokering provides reliable delivery [5] of events to
authorized/registered entities. The delivery guarantee is satisfied
in the presence of both link and node failures. Entities are also
able to retrieve events that were missed during failures or
prolonged disconnects. The scheme also facilitates exactly-once
ordered delivery of events.

2.2.1 Reliable Delivery Service
The NaradaBrokering substrate’s reliable delivery guarantee holds
true in the presence of four conditions.
1. Broker and Link Failures: The delivery guarantees are

satisfied in the presence of individual or multiple broker and
link failures. The entire broker network may fail. Guarantees
are met once the broker network (possibly a single broker
node) recovers.

2. Prolonged Entity disconnects: After disconnects an entity can
retrieve events missed in the interim.

3. Stable Storage Failures: The delivery guarantees must be
satisfied once the storage recovers.

4. Unpredictable Links: Events can be lost, duplicated or re-
ordered in transit over individual links.

To ensure the reliable delivery of events (conforming to a specific
template) to registered entities three distinct issues need to be
addressed. First, there should be exactly one Reliable Delivery
Service (RDS) node that is responsible for providing reliable
delivery for a specific event template. Second, entities need to
make sure that their subscriptions are registered with RDS.
Finally, a publisher needs to ensure that any given event that it
issues is archived at the relevant RDS. In our scheme we make
use of both positive (ACK) and negative (NAK)
acknowledgements. We may enumerate the objectives of our
scheme below.
• Storage type: Underlying storages could be based on flat

files or relational/XML databases.
• RDS instances: There could be multiple RDS instances. A

given RDS instance can manage reliable delivery for one or
more templates.

• Autonomy: Individual entities can manage their own event
templates. This would involve provisioning of stable storage
and authorization of entity constraints.

• Location independence: A RDS node can be present
anywhere within the system.

• Fast Recovery schemes: The recovery scheme needs to
efficiently route missed events to entities.

2.2.1.1 Experimental Results
We performed two sets of experiments involving a single broker
and three brokers. In each set we compared the performance of
NaradaBrokering’s reliable delivery algorithms with the best
effort approach in NaradaBrokering. Furthermore, for best effort
all entities/brokers within the system communicate using TCP,
while in the reliable delivery approach we had all entities/brokers
within the system communicate using UDP.

B

Entity Pub/Sub

Broker

B

RDS

B

RDS

B B

Figure 1: Experimental Setups

The experimental setups are depicted in Figure 1. The lines
connecting entities signify the communication paths that exist
between those entities; this could be a connection oriented
protocol such as TCP or a connectionless one such as UDP. The
publishing/subscribing entities are hosted on the same machine to
account for clock synchronizations and drifts, while brokers and
RDS are all hosted on separate machines (1GHz, 256MB RAM)
with each process running in a JRE-1.4 Sun VM. The machines
involved in the experimental setups reside on a 100 Mbps LAN.
Currently, in the Reliable Delivery Service (RDS) node we
support flat-file and SQL based archival. The results reported here
are for scheme where the RDS utilizes MySQL 4.0 for storage
operations. We found that the archival overheads were between
4-6 milliseconds for payloads varying from 100 bytes to 10 KB.

Figure 2: Results from the single broker setting

We computed the delays associated with the delivery of best-
effort and reliable delivery schemes. The results reported here for

the reliable delivery case correspond to the strongest case where
the event is not delivered unless the corresponding archival
notification is received. Figure 2 depicts the transit delay and
standard deviation associated with a single broker network, while
Figure 3 depicts the same for the 3 broker network.

Figure 3: Results from the 3 broker setting

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

Ti
m

e
(M

ill
is

ec
on

ds
)

Content Payload Size in Bytes

 Transit delays/Standard deviations in a 3 broker network.
NB-BestEffort(BE)(TCP) Vs NB-ReliableDelivery(RD)(UDP)

 Mean delay (NBRD-UDP)
 Mean delay (NBBE-TCP)

 Std Dev (NBRD-UDP)
 Std Dev (NBBE-TCP)

In the reliable delivery case there is an overhead of 4-6
milliseconds (depending on payload size) associated with the
archival of the event, with an additional variable delay of 0-2
milliseconds due to wait()-notify() statements in the thread which
triggers archival. These factors, in addition to retransmissions
(NAKs) triggered by the subscribing entity due to lost packets,
contributed to higher delays and higher standard deviations in the
reliable delivery case. It should be noted that we can easily have
an optimistic delivery scheme which does not wait for archival
notifications prior to delivery. Since we do not wait for archival
notifications in this case, and release events as they arrive, the
latency overheads in such a scenario reduce to that of the best
effort case.

2.2.2 Dealing with large payload sizes:

Compression/Fragmentation
To deal with events with large payloads, NaradaBrokering
provides services for compressing and decompressing these
payloads. Additionally there is also a fragmentation service which
fragments large file-based payloads into smaller ones. A
coalescing service then merges these fragments into the large file
at the receiver side. This capability in tandem with the reliable
delivery service was used to augment GridFTP to provide reliable
delivery of large files across failures and prolonged disconnects.
The recoveries and retransmissions involved in this application
are very precise. Additional details can be found in Ref [6]. Here,
we had a proxy collocated with the GridFTP client and the
GridFTP server. This proxy, a NaradaBrokering entity, utilizes
NaradaBrokering’s fragmentation service to fragment large
payloads (> 1 GB) into smaller fragments and publish fragmented
events. Upon reliable delivery at the server-proxy,
NaradaBrokering reconstructs original payload from the
fragments and delivers it to the GridFTP server.

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

Ti
m

e
(M

ill
is

ec
on

ds
)

 Transit delays/Standard deviations in a single broker network.
NB-Best Effort(TCP) Versus NB-Reliable Delivery(UDP)

 Mean delay (NBRD-UDP)
 Mean delay (NB-BETCP)

 Std Dev (NBRD-UDP)
 Std Dev (NBBE-TCP)

2.2.3 Time and Buffering Services
The substrate also includes an implementation of the Network
Time Protocol (NTP). The NaradaBrokering TimeService [7]
allows NaradaBrokering processes (brokers and entities alike) to
synchronize their timestamps using the NTO algorithm with

multiple time sources (usually having access to atomic time
clocks) provided by various organizations, like NIST and USNO.
The NaradaBrokering time service plays an important role in
collaborative environments and can be used to time order events
from disparate sources. The substrate includes a buffering service
which can be used to buffer replays from multiple sources, time
order these events and then proceed to release them.

2.2.4 Security Service

The NaradaBrokering security framework [8] provides a
scheme for end-to-end secure delivery of messages between
entities within the system. . The scheme protects an event in its
traversal over multiple, possibly insecure, transport hops. Entities
can verify the integrity and source of these events, before
proceeding to process the encrypted payload.

2.2.5 Performance Monitoring Services
Connections originating from a broker are tracked by a
monitoring service. The factors measured on individual links
include loss rates, standard deviations and jitters. This can then be
used to augment the weights associated with edges in the BNMs
to facilitate real-time responses, by the routing algorithms, to
changing network conditions.

2.3 The transport framework
NaradaBrokering incorporates an extensible transport framework
and virtualizes the channels over which entities interact with each
other. Entities are thus free to communicate across firewalls,
proxies and NAT boundaries which can prevent interactions from
taking place. Furthermore, NaradaBrokering provides support for
multiple transport protocols such as TCP, UDP, Multicast, SSL,
HTTP and RTP. The typical delays involved with
NaradaBrokering’s transport framework in LAN settings is
around 1 ms. Additional information regarding measurements
within the transport framework can be found in Ref [9].

Figure 4: Transit delay for message samples

(UCL, Cardiff and IU)
In an experiment involving performance of the NaradaBrokering
transport framework over trans-Atlantic links we had machines
from the University College London (UCL), Cardiff University
and Indiana University involved in the set up. A broker network
comprising two brokers, one each at UCL and Cardiff was set up.
The machine at UCL was a SPARC Ultra-5 running SunOS 5.9,
while the one at Cardiff was a 1 GHz Pentium-III with a 256MB
RAM running Linux. The machine at Indiana hosting the

publishing/receiving clients was a 1.5 GHz AMD with 256 MB
RAM running Linux. The JVM for all processes was 1.4.1.

Figure 5: Standard deviation for message samples

 (UCL, Cardiff and IU)

0
10
20
30
40
50
60
70
80

100 1000 10000S
ta

nd
ar

d
D

ev
ia

tio
n

 (M
ill

is
ec

on
ds

)

Content Payload Size in Bytes

 Standard deviation for Content Payloads.
Brokers at Cardiff and UCL, Clients at Indiana

 Standard Deviation

Figure 4 and Figure 5 depict the mean transit delay and standard
deviation associated with message samples involved in individual
test cases (each comprising 50 messages). The results varied from
122 milliseconds for 100 bytes to 371 milliseconds for 10 KB
messages. The delays increased with increase in payload sizes.
The standard deviation was also higher at higher payload sizes.

3. NARADABROKERING AND SOA
The emerging Web Services stack comprising XML – the lingua
franca of the various standards, SOAP [10] and WSDL [11] have
facilitated sophisticated interactions between services. WSDL
describes message formats and message exchange patterns for
services using XML. Interactions are facilitated through the
exchange of SOAP messages. The use of XML throughout the
Web Services stack of specifications allow interactions between
services running on different platforms, containers, implemented
in different languages, and over multiple transports.

100

150

200

250

300

350

400

100 1000 10000M
ea

n
tra

ns
it

de
la

y
 (M

ill
is

ec
on

ds
)

Content Payload Size in Bytes

 Transit delays for Content Payloads.
Brokers at Cardiff and UCL, Clients at Indiana

 Delay

Existing or emerging Web Services specifications deal with the
issues of service discovery, all aspects of message-based security,
transactions, notification, reliability, etc. These specifications can
be composed together to facilitate the incremental addition of
features and capabilities when building distributed applications. In
some cases there are competing specifications, e.g. in the reliable
messaging area. These competing specifications tend to rely on
the same subset of specifications in the web services stack to
achieve its objectives (i.e., SOAP and WSDL). Forcing the user to
choose one specification over another can be quite complicated
and error-prone. The overarching goal is the automation of the
negotiation of specifications used for interactions. Automated
negotiations eliminate human intervention and concomitant errors
resulting from this. Furthermore, these automated negotiations
would be adaptive, where the negotiations could interoperate
between (or deploy the best available specification from a set of)
possibly competing specifications. These automated negotiations
thus make these interactions easier, simpler and more reliable.

These negotiations are facilitated by the substrate, which
permeates the hosted services. By hosted services, we mean those
services, which have been registered with the substrate. The
substrate will enable services to interact, discover, compose and
utilize other hosted services. It should be noted that these services

could continue to exist in a stand alone mode and be accessed in
ways similar to traditional Web Services. In fact because of the
nature of the Web Service bindings, a service could continue to be
bound to other transports and not have access to certain features.

The scheme that is proposed is intended to enable Web Services
to interact directly with the NaradaBrokering substrate. Here the
substrate maintains information regarding the services that can be
accessed and it uses this information to locate services. Since the
clients/services interact directly with the substrate they have
access to all the services provided by it. We enumerate some of
the features of such a system:
a) Guaranteed delivery mechanisms within the substrate can

facilitate disconnected operations where a client/service can
access services even if they are not currently online.

b) Using a combination of usage-metrics and the latency in
communications a requestor can identify which replicated
resource/service to utilize.

c) End-to-end secure interactions. The approach within the
substrate [8] is consistent with that deployed in WS-Security,
which relies on message-level security.

d) Inevitably the realms across which entities communicate
involve firewalls, proxies and NAT boundaries. The
substrate facilitates communications over such boundaries.

e) In the event of large payloads/attachments the substrate
provides services such as compression, fragmentation of
payload and NaradaBrokering-enhanced GridFTP.

3.1 Grid Services and Web Services
It should be noted that more recently there has been an effort to
factor the OGSI [12] functionality to comprise a set of
independent Web Service specifications. These specifications
align OGSI with the consensus emerging from the Web Services
Architecture working group of the World Wide Web Consortium.
The specifications that comprise the new proposed framework –
the WS-Resource Framework (WSRF) [13] – can co-exist with
other specifications in the Web Services area such as
authentication, transactions, reliable messaging and addressing.
The WSRF specification also includes WS-Notification [14]
which models notifications using a topic based publish/subscribe
mechanism.

Similarly, the WS-GAF [15] effort in the United Kingdom
provides a framework for building Grid applications using
existing Web Services specifications while adhering to the
principles of service-oriented architectures. The proposed solution
demonstrates how issues like stateful interactions, logical resource
naming, metadata, and lifetime management can be easily
addressed using existing Web Services technologies.

Throughout our discussions when we refer to services as Web
Services the term refers to services that are parts of the Service
Oriented Architecture (SOA). The strategies that we discuss
through this paper are thus applicable to both the domains –
traditional business oriented Web Services and the
science/traditionally-academia oriented Grid Services
architecture. Thus the discussion on load balancing service
instances (in a section 5) would be valid for managing stateful
resources exposed using the WS-Resource Framework
specification.

4. APPROACHES TO INTERACTING
WITH WEB SERVICES

In this section we describe approaches to incorporating support
for Web Services within the NaradaBrokering substrate. A simple
approach involves using a NaradaBrokering-proxy that acts as an
interface between services and the messaging substrate. A
sophisticated and far more powerful approach involves
incorporating the SOAP processing stack into the substrate. This
allows the substrate to function as a SOAP intermediary. Finally,
we also discuss an endpoint NaradaBrokering “plug-in” that can
be used by a Web Service to provide direct connectivity to the
NaradaBrokering network. Since the plug-in resides as a handler
within the handler-chain associated with the SOAP processing
stack at a service endpoint, no changes are needed to either the
service implementations or the service requestors. This involves a
one-time effort of writing NaradaBrokering handlers for SOAP
implementations such as Apache Axis (such a handler can be used
with Sun’s JAX-RPC with no changes), gSOAP, Soap::Lite, and
ASP.NET. Please note that different systems refer to these
handlers by different names for e.g. in gSOAP they are referred to
as plug-ins while in .NET they are referred to as SOAP
extensions. It should be noted that the schemes outlined in the
earlier section, using either the proxy approach or processing
based on SOAP messaging, should be able to interoperate with
each other.

4.1 Proxy Approach
This approach is based on SOAP and involves using the proxy
architecture to deploy Web Services within the system. Here a
service invocation using a SOAP message is intercepted by the
proxy. This SOAP message is then encapsulated in a native
NaradaBrokering event and the substrate routes it to the proxy
associated with the service instance. This proxy then recreates the
SOAP message from the native NaradaBrokering event and
forwards the SOAP message to the Web Service. Faults and
responses generated by the Web Service are routed back using the
same principles which govern the invocation scheme.

This approach is a simple one and the costs (specifically network
cycles) associated with the additional proxy redirect can be
alleviated by collocating the proxy on the same machine as the
client and server. This approach has two clear advantages –
1. It requires no change to either the original service or the

container hosting that service
2. It can be used to facilitate interactions between generic

services (perhaps a non WS approach such as IIOP or native
Java) and services based on Web Service standards.

This solution however is application dependent and the proxy
needs to be rewritten or tweaked for different applications. Also,
since only the proxies are interacting with the substrate all the
guarantees/services provided by the substrate are accessible only
to these proxies and not to the web service client/service.

4.2 Incorporating SOAP processing into the

substrate
Incorporating SOAP processing into the substrate eliminates the
need to interact with the substrate via a proxy. This is a very
useful feature which will eventually allow Web Services to
interact directly with the substrate. To achieve this interaction
with SOAP services we need to address two issues. First, pertains

to the ability to use NaradaBrokering as a transport mechanism
for SOAP messages. Second, to interact directly with Web
Services the substrate should be able to function as a SOAP
intermediary. This would allow messages to be redirected into the
substrate for specialized processing.

4.2.1 A transport mechanism for SOAP messages
Here we use NaradaBrokering as a transport (depicted in Figure
6) for SOAP messages, which have traditionally been sent over
HTTP. There are examples of different protocols that have been
used. The Apache AXIS project for example has HTTP,
SMTP/POP3, Java-RMI and JMS as registered transports. The
substrate facilitates communications over a variety of transports,
each with different properties. Depending on the SOAP message
being issued (large attachments etc) appropriate lower-level
transport would be used for routing the SOAP messages. The
SOAP messaging would either be based on request/response
semantics inherent in RPC-style service invocations or they could
be based on asynchronous one-way messaging.

Figure 6: Incorporating support for SOAP in the transport
layer

In the asynchronous style of messaging, a lookup service locates
the appropriate providers that had previously registered with a
naming service. This is the precursor to sending SOAP messages.
A related issue is that of binding it to a protocol stack so that
clients can communicate with the service endpoint using the
specified port and address.

4.2.1.1 Using WSIF
The Web Services Invocation Framework (WSIF) [16] considers
WSDL to be the standardized representation of a Web Service.
The fundamental tenet here is that while SOAP is great for
interoperability between disparate systems, it is not necessarily
the best approach if you are dealing with say a pure Java
environment. The approach is meant to have developers deal with
WSDL service descriptions instead of dealing directly with
SOAP. There might be multiple bindings of a WSDL service
description, WSIF provides an API so that a given client code can
access any of these available bindings (whether it is SOAP or
IIOP). Of course you need to have a registered provider for any
binding that you may choose to use (Java, EJB, SOAP etc).

Microsoft’s Indigo approach has been designed and implemented
using the same principle.

4.2.2 Interacting directly with Web Services
The approach that is outlined here (depicted in Figure 7) is
intended to enable Web Services to interact directly with
NaradaBrokering. Unlike the proxy based approach where the
SOAP messages were not inspected, in this scheme the SOAP
message is inspected, targeted to specific broker nodes within the
substrate, and in some cases the substrate functioning as an
intermediary can add/remove header elements in the SOAP
message.

Broker

SOAP
processing

stack Construct & process SOAP
message
Generate Fault Responses
Function as Intermediary
Possibly add/Remove SOAP
headers

Web
Service

Web
Service

NaradaBrokering Broker
Cloud

Web
Service

Web
Servic

e

Figure 7: Web Services interacting with the substrate

4.2.2.1 Incorporating SOAP processing stack into
individual brokers

To achieve this we first need to include the SOAP processing
layer in individual broker nodes. To do this we would have an
interface which would allow us to plug in different SOAP
implementations into the system. We are ultimately interested in
the availability of, and the capability to process, SOAP messages
within the substrate.

4.2.2.2 Functioning as a SOAP intermediary
SOAP Headers are important since this is where information
pertaining to functionality-specific elements is encoded. For
example, this is the place where we will place all information
pertaining to sequences, acknowledgements and retransmissions
of a reliable messaging protocol. A SOAP message may pass
through one or more intermediate systems prior to delivery at its

ultimate destination (assuming that faults have not been issued en
route). Such an intermediate system can examine these SOAP
messages and initiate actions – issue faults, reroute to another
node/final destination, and finally even update certain headers in
the SOAP message.

To facilitate the use of the broker as an intermediary we use the
actor attribute within the SOAP message’s header element. The
attribute identifies the system (substrate) that is intended to
process the SOAP header (element in question). Once the SOAP
message is received at the intermediary (a node within the
substrate) as indicated in the actor attribute, the node is allowed
to add additional headers some of which could include another
actor attribute possibly re-routing processing to another special
node and so forth. Such a scheme could be used to compress
messages at a special node and archive it for subsequent retrieval
or audit trails. The actor attribute defines the actor responsible for
processing the message in the chain of SOAP actors. These actors
can in turn be configured for special processing on received
messages.

The mustUnderstand attribute in the SOAP message is used to
control the optional and mandatory elements within the SOAP
message headers. This is also useful in the generation of faults.
Depending on the header element targeted to the intermediary and
the value of the mustUnderstand attribute; a substrate node may
either generate a fault (mustUnderstand set to 1) or ignore
(mustUnderstand not set to 1) the targeted header that it does
not understand. This attribute can be used to impose constraints
on the processing of certain header elements. Finally, it must be
noted that the substrate can interact with SOAP intermediaries
that are not native NaradaBrokering services or for that matter
even services that are directly hosted on the substrate.

4.2.3 The role of WS-Addressing
WS-Addressing [17] is a way to abstract from the underlying
transport infrastructures the addressing needs of an application.
WS-Addressing incorporates support for end point references
(EPRs) and message information (MI) headers. EPRs standardize
the format for referencing (and passing around references to) both
a Web service and Web service instances as well. The MI headers
standardize information pertaining to message processing related
to replies, faults, actions and the relationship to prior messages.
This is especially useful in cases where there would be multiple
dedicated entities dealing with these different cases. In fact it has
been argued [18] that WS-Addressing facilitates implicit
asynchronous communications through the correct use of these
MI headers irrespective of whether this service was defined
asynchronously or not.

The substrate sitting at an organization's boundary could use WS-
Addressing for making runtime decisions on where a message
arriving from the outside world should be delivered within the
infrastructure. Finally we could use WS-Addressing for endpoint
references to deal with dynamic usage patterns involving WSDL
Service descriptions. WS-Addressing is used in this scenario to
facilitate the identification and specification of service instances
for services that would be generated dynamically.

4.3 The Handler approach
Special handlers will be associated with service endpoints so that
the substrate can interact with these services. These handlers can
then be grouped into a handler chain, and can be inserted in the
processing path of either the service requestor, service
implementation or both. Depending on the configuration of the
handler, these handlers will process control messages initiated by
the substrate such as heart-beats, latency measurements and
utilization counters among others to facilitate efficient utilization
of the resource. It must be noted that these messages need not
propagate the entire handler chain. In the case of clients/services
invoking other services the handler chain would add headers to
enable easier processing within the substrate.

Figure 8: SOAP handler chains and the substrate

In the absence of the handler approach headers pertaining to the
value added services would need to be processed within the
application logic. This would entail serious rewrites to the
application logic and in some cases the complexity of rewrites
would ensure that the feature is rejected as a tradeoff. This would
also imply that every application would need to be rewritten for
every feature. Furthermore, the application would need to be
rewritten, retested and redeployed every time there is a change to
the value added service.

There are several advantages to using the handler approach. First,
it facilitates incremental addition of value added functionality to
an existing service. This functionality can easily be reused by
other services, tested independently of the application logic.
Second, it can be used to ensure that enhanced services continue
to interoperate with existing services. Handlers within a handler
chain can add, remove, process or ignore headers pertaining to
incremental functionality. A handler can then choose not to
generate faults for messages that arrive without functionality-
specific information, thus enabling interaction with services that
do not have the requisite handler to generate that information. The
handler can in the same vein be used to impose constraints on
services that communicate with it. For example in the face of a
coordinate distributed denial-of-service attack a handler (or
handlers) – which performs packet inspection, checks
authentication information and checks from messages from
malicious hosts – can be set up to impose new policy and
constraints in an easy incremental fashion.

The scheme thus allows Web Services to interact directly with the
substrate (depicted in Figure 8). Hosted services can utilize
substrate properties such as resilience, load balancing etc through

the incorporation of the appropriate handlers in the handler chain.
It should be noted that the service implementations will not
change. We can write these handlers, a one time effort, for
gSOAP, SOAP::Lite, and JAX-RPC (this would also work with
AXIS). This would allow us to communicate with messages
issued using gSOAP, SOAP::Lite and Axis SOAP.

5. COMPLEMENTING SERVICE

INTERACTIONS
In this section we identify areas such as discovery and load
balancing where the substrate can provide additional functionality
to the hosted services. These services are a precursor to a system
where the substrate can compose services from discovered
constituent services each of which would be chosen from a set
comprising multiple instances. The substrate then needs to rely on
its capabilities to ensure robust delivery to ensure that a task
involving coordinated processing between multiple services
(identified based on the task specification) is completed in the
presence of failures. The substrate’s capability to provide order
also ensures that the invocations/interactions are consistent.

5.1 Discovering services using

advertisements
SOAP handlers can automatically generate service advertisements
on service startup. Web Services connect directly to
NaradaBrokering and expose their capabilities through
advertisements. The substrate supports a wide variety of querying
schemes such as XPath queries, SQL queries (through JMS),
Regular expressions and simple string matching. One or more of
these will be used to support querying of services hosted on the
substrate.

Entities in the system can advertise their services using WSDL.
These advertisements would be stored in the same way that the
profiles are stored within the system. Events propagated by
interested clients would essentially be either XPath or Regular
expressions-like queries. These events would then be matched
against the stored advertisements with the matching ones being
routed back to the initiating client. The query events can specify
the realms within which the query’s propagation might take place,
thus allowing individual entities to control how localized their
services can be. Results pertaining to the performance of
NaradaBrokering’s matching engines can be found in Ref [4]. In
the event that multiple resources have been discovered the
discovery scheme can leverage the load balancing scheme
outlined in the next section.

5.2 Ability to load balance services
Load balancing algorithms operate on the ability to keep track of
the number of active service instances as well as the load on these
instances. In our proposed scheme this is done by exchanging
information with the instances at regular instances. Finally, the
substrate also uses round-trip delays from an entity to the
replicated resources in question to compute the network distance
separating the entity from the resource instance. The resource
selection scheme in the substrate utilizes both the usage metric at
a resource and the network distance to arrive at a decision
regarding the resource to use.

To facilitate the same scheme for services, handlers would be
registered with the handler chain associated with service
endpoints. These handlers would perform functions such as –
• Constructing usage metric: This handler would construct

usage metric at a node based on the number of requests
processed, the rate of requests and the volume of information
transferred. Additionally, this handler would also construct
profiles regarding the underlying hardware hosting it – CPU
performance, available memory and cache size.

• Creating round trip delay request and responses: This handler
would facilitate the creation of round trip delay requests,
responses and finally calculation of delay based on the
response.

• Creating heart-beat monitors: This handler would send out
heart beats at regular intervals so that the substrate can
continue to track its availability.

It should be noted that services augmented with this functionality
can still continue to interact with services and requestors that do
not posses the requisite handlers.

5.3 Enhanced messaging features and fault

tolerance
As Web Services have become dominant in the Internet and Grid
systems landscape, a need to ensure guaranteed delivery of
interactions (encapsulated in messages) between services has
become increasingly important. This highly important and
complex area was previously being addressed in the Web Services
community using homegrown proprietary application specific
solutions. It should be noted that the terms guaranteed delivery
and reliable delivery tend to be used interchangeably to signify
the same concept. Reliable delivery of messages is now a key
component of the Web Services roadmap, with two promising,
and competing, specifications in this area viz. WS-Reliability [19]
from OASIS and WS-ReliableMessaging [20] from IBM and
Microsoft among others. The current open source release of
NaradaBrokering incorporates a prototype implementation of the
WS-ReliableMessaging specification. We plan to also provide
support for WS-Reliability and to federate between the
aforementioned specifications. Finally, the knowledge of hosted
services and load balancing features inherited from the substrate
can be used to enable efficient service compositions.
Specifications like WS-CoordinationFramework, WS-
Coordination [21] can be used to ensure the completion of the
composed activity.

6. GRID COMPUTING AND USING THE

SCHEME WITH FRAMEWORKS
The proposed approach to introducing part of the
NaradaBrokering functionality into the SOAP message processing
chain makes it possible to leverage the NaradaBrokering features
when building Grid applications using different Web Services-
based infrastructures, like WS-RF and WS-GAF.

6.1 WS-RF
The Web Services Resources Framework suite of specifications
represent a rendering of the OGSI conceptual model for building
Grid applications that is based on existing Web Services
specifications like WSDL and WS-Addressing. The framework
introduces the concept of stateful resource on which Web Services
may operate. WS-RF concentrates on modeling the interactions

with such stateful resources, defines patterns for managing the
lifetime of their states, enables subscriptions to their state, etc.

WS-RF can be combined with other Web Services specifications
when additional functionality, like message-level security,
transactions, coordination, etc., is required. Hence, it is also
possible to use the NaradaBrokering SOAP handlers with
WS-RF-enabled services to enable features like load-balancing of
interactions when interacting with particular stateful resources,
monitoring of the activity of resources, bridging between different
implementations of reliability and notification specifications, etc.

6.2 WS-GAF
The Web Services Grid Application Framework is a proposal on
how Grid applications could be built using only existing Web
Services standards, and without the need to explicitly model
resources. It addresses the same requirements as OGSI but in a
way that is consistent with current Web Services standards.
Unlike WS-RF which is concerned with the modeling of resources
as the building blocks for distributed applications, WS-GAF
focuses only on the use of services and messages and encourages
the use of stable and widely accepted specifications. Design
patterns on how issues with resource identity,
stateful/contextualized interactions, metadata, and lifetime
management are presented in [14]. WS-GAF is not an
infrastructure per se but, rather, a collection of design patterns that
software architects could employ when designing Web Services-
based distributed applications.

Since WS-GAF does not introduce a new infrastructure,
NaradaBrokering SOAP handlers could be used to provide
additional QoS features and/or bridges between semantically
similar specifications (e.g., in the areas of notification,
coordination, etc.) in applications. There is nothing different in
the use of the NaradaBrokering SOAP handlers with WS-GAF
from what was described in the previous sections.

6.3 VPN Grid and Inter-Enterprise

NaradaBrokering communications
It is inevitable that the realms across which we try to
communicate would be protected by firewalls, DHCP and NAT
boundaries that can stop our elegant application channels dead in
their tracks. The substrate facilitates communications across
firewall (HTTP tunneling is used if only HTTP traffic is allowed),
DHCP and NAT boundaries. Sometimes communications would
also be through authenticating proxies. The various authentication
schemes currently supported include Basic, Digest and NTLM (a
proprietary scheme from Microsoft). The firewalls/packet-
inspecting authentication proxies over which we have conducted
testing include Microsoft’s ISA, Checkpoint firewall software and
Apache proxies. The administrative module cycles through a set
of protocols before it determines which protocol/authentication-
challenge needs to be deployed to facilitate communications.

As VPN technology has matured, it has been increasingly
deployed within a wide range of organizations. We are currently
planning to incorporate well known VPN protocols such as Point-
to-Point Tunneling Protocol (PPTP) from Microsoft and the more
recent Layer Two(2) Tunneling Protocol (L2TP) from
Cisco/Microsoft. Like PPTP, L2TP requires that the ISP's routers
support the protocol. IPSec can be used within both these

schemes. Since VPN support is currently available in most
organizations, support for these protocols within the substrate will
allow us to leverage capabilities in this technology. This will lead
to a Virtual Private Grid explored further in Ref [6].

7. RELATED WORK
In this section we introduce related work in the area of distributed
publish/subscribe and peer-to-peer systems. We compare these
systems based on the type of interactions that they support and
also on their schemes for robust delivery of events. Please note
that most of these systems do not currently have schemes to
interface with Web Services. Different systems address the
problem of event delivery to relevant clients in different ways. In
Elvin [22] network traffic reduction is accomplished through the
use of quench expressions, which prevent clients from sending
notifications for which there are no consumers. This, however,
entails each producer to be aware of all the consumers and their
subscriptions. In Sienna [23] optimization strategies include
assembling patterns of notifications as close as possible to the
publishers, while multicasting notifications as close as possible to
the subscribers. In Gryphon [24] each broker maintains a list of
all subscriptions within the system in a parallel search tree (PST).
The PST is annotated with a trit vector encoding link routing
information. These annotations are then used at matching time by
a server to determine which of its neighbors should receive that
event. Approaches for exploiting group based multicast for event
delivery is discussed in Ref [25]. The Event Service [26]
approach adopted by the OMG is one of establishing channels and
subsequently registering suppliers and consumers to the event
channels. The approach could entail consumers to be aware of a
large number of event channels.

Unlike Elvin and the OMG Event Service, NaradaBrokering
provides decoupled interactions between the interacting clients.
Furthermore, the organization of subscriptions and calculation of
destinations do not result in explosive search spaces. As opposed
to the Gryphon approach where all nodes store the complete set of
subscriptions at every broker node, in NaradaBrokering none of
the nodes store all the subscriptions within the system. Also not
every broker in NaradaBrokering is involved in the calculation of
destinations. This greatly reduces the CPU cycles expended in
NaradaBrokering for computing and routing interactions within
the system.

The Network Weather System (NWS) [27] collects end-to-end
throughput and latency information and uses that information to
forecast future performance. In addition to network metrics, NWS
also accumulates CPU and available non-paged memory
information from various nodes. The NaradaBrokering
Monitoring service is designed such that it can incorporate results
from services such as NWS. This in turn can be used in routing,
and additionally also play a role in load balancing multiple
resource instances.

The JXTA [28] (from juxtaposition) project at Sun Microsystems
is a research effort to support large-scale P2P infrastructures. P2P
interactions are propagated by a simple forwarding by peers and
specialized routers known as rendezvous peers. These
interactions are attenuated by having TTL (time-to-live)
indicators. The JXTA approach results in flooding the peer
network, with the range being controlled by the TTL indicators
contained in the interactions. The NaradaBrokering scheme

selectively deploys links for disseminating interactions. In Ref
[29] we have demonstrated that we can route JXTA interactions
more efficiently than the JXTA core itself.

Distributed Hash Tables (DHTs) have been quite popular in
several P2P systems. Here each data object is associated with a
key. Similar to a traditional hashtable data structure, other
operations supported in the DHT include put and get. In P2P
overlay networks the nodes are organized based on the content
that they possess. Here DHTs are used to locate, distribute,
retrieve and manage data in these settings. This scheme provides
bounded lookup times. However, P2P overlay networks such as
Pastry [30] from Microsoft do not facilitate keyword based
searching, the lookups are instead based on identifiers computed
by hashing functions such as SHA-1 and are derived from the
content encapsulated within the communal resource. Recent
efforts such as the use of Space Filling Curves [31] have been
used to address this issue and support sophisticated searches.
FLAPPS [32] is an exemplar of P2P overlay networks that are not
based on the DHT paradigm. FLAPPS’ support for composable
namespaces facilitates support for rich discovery mechanisms.

DACE [33] introduces a failure model, for the strongly decoupled
nature of pub/sub systems. This model tolerates crash failures and
partitioning, while not relying on consistent views being shared
by the members. DACE achieves its goal through a self-
stabilizing exchange of views through the Topic Membership
protocol. This however may prove to be very expensive if the
number and rate at which the members change their membership
is high. The Gryphon [34] system uses knowledge and curiosity
streams to determine gaps in intended delivery sequences. This
scheme requires persistent storage at every publishing site and
meets the delivery guarantees as long as the intended recipient
stays connected in the presence of intermediate broker and link
failures. It is not clear how this scheme will perform when most
entities within the system are both publisher and subscribers, thus
entailing stable storage at every node in the broker network.
Furthermore it is conceivable that the entity itself may fail, the
approach does not clearly outline how it handles these cases.
Systems such as Sienna and Elvin focus on efficiently
disseminating events, and do not sufficiently address the reliable
delivery problem. The Fault Tolerant CORBA (FT-CORBA) [35]
specification from the OMG defines interfaces, policies and
services that increase reliability and dependability in CORBA
applications. The fault tolerance scheme used in FT-CORBA is
based on entity redundancy [36], specifically the replication of
CORBA objects. Approaches such as Eternal [37] and Aqua [38],
provide fault tolerance by modifying the ORB. OS level
interceptions of have also been used to tolerate faults in
applications.

8. CONCLUSIONS & FUTURE WORK
In this paper we outlined our strategy of interfacing the
NaradaBrokering substrate with Web Services. This would allow
applications built using the Web Services approach to leverage
capabilities available in the NaradaBrokering substrate. The
advantages in the approaches outlined in this paper include the
fact that our proposed scheme would entail no changes to the
service implementations themselves. In the proxy based scheme
there would be no changes in the processing stack either. At most
in our strategies the deployment descriptors associated with Web
Services would be updated. In the plug-in mode services

automatically inherit functionalities and capabilities provided by
the substrate. Finally, the scheme ensures that services in either
scheme and other stand-alone services can still continue to
interoperate with each other.

9. REFERENCES
[1] The NaradaBrokering Project at the Community Grids Lab:

http://www.naradabrokering.org
[2] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A

Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids. Proceedings of
ACM/IFIP/USENIX International Middleware Conference
Middleware-2003.

[3] Geoffrey Fox and Shrideep Pallickara. An Event Service to
Support Grid Computational Environments Journal of
Concurrency and Computation: Practice & Experience.
Special Issue on Grid Computing Environments. Volume
14(13-15) pp 1097-1129.

[4] Shrideep Pallickara and Geoffrey Fox. On the Matching Of
Events in Distributed Brokering Systems. Proceedings of
IEEE ITCC Conference on Information Technology. April
2004. pp 68-76 Volume II.

[5] Shrideep Pallickara and Geoffrey Fox. A Scheme for
Reliable Delivery of Events in Distributed Middleware
Systems. Proceedings of the IEEE International Conference
on Autonomic Computing. 2004.

[6] G. Fox, S. Lim, S. Pallickara and M. Pierce. Message-Based
Cellular Peer-to-Peer Grids: Foundations for Secure
Federation and Autonomic Services. (To appear) Journal of
Future Generation Computer Systems.

[7] Hasan Bulut, Shrideep Pallickara and Geoffrey Fox.
Implementing a NTP-Based Time Service within a
Distributed Brokering System. ACM International
Conference on the Principles and Practice of Programming in
Java. Pp 126-134.

[8] Pallickara et al. A Security Framework for Distributed
Brokering Systems. Available from
http://www.naradabrokering.org.

[9] Shrideep Pallickara et al. A Transport Framework for
Distributed Brokering Systems. Proceedings of the
International Conference on Parallel and Distributed
Processing Techniques and Applications. (PDPTA'03).

[10] M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging
Framework," June 2003. http://www.w3.org/TR/2003/REC-
soap12-part1-20030624/

[11] Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl

[12] The Open Grid Services Infrastructure (OGSI).
http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-
ogsi-gridservice-23_2003-02-17.pdf

[13] The Web Services Resource Framework (WSRF)
http://www.globus.org/wsrf/

[14] Web Services Notification http://www-
106.ibm.com/developerworks/library/specification/ws-
notification/

[15] Savas Parastatidis, Jim Webber, Paul Watson, Thomas
Rischbeck. A Grid Application Framework based on Web
Services Specifications and Practices. CS-TR-825, School of
Computing Science, University of Newcastle upon Tyne,
UK, Jan 2004.

[16] Web Services Invocation Framework (WSIF)
http://ws.apache.org/wsif/

http://www.naradabrokering.org/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/wsdl
http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-ogsi-gridservice-23_2003-02-17.pdf
http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-ogsi-gridservice-23_2003-02-17.pdf
http://www.globus.org/wsrf/
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://ws.apache.org/wsif/

[17] Web Services Addressing (WSAddressing)
ftp://www6.software.ibm.com/software/developer/library/
wsadd200403.pdf

[18] Impact of WS-Addressing on SOAP.
ftp://www6.software.ibm.com/software/developer/library/ws
-address.pdf

[19] Web Services Reliable Messaging TC WS-Reliability.
http://www.oasis-open.org/committees/download.php/
5155/WS-Reliability-2004-01-26.pdf

[20] Web Services Reliable Messaging Protocol (WS-
ReliableMessaging)
ftp://www6.software.ibm.com/software/devel
oper/library/ws-reliablemessaging200403.pdf

[21] Web Services Coordination (WS-Coordination)
ftp://www6.software.ibm.com/software/developer/library/ws
-coordination.pdf

[22] Bill Segall and David Arnold. Elvin has left the building: A
publish/subscribe noti.cation service with quenching. In
Proceedings AUUG97, pages 243–255, Canberra, Australia,
September 1997.

[23] A Carzaniga, DS. Rosenblum, and A. L. Wolf. Achieving
scalability and expressiveness in an internet-scale event
notification service. In Proceedings of the 19th ACM
Symposium on Principles of Distributed Computing, pages
219–227, USA, 2000.

[24] G. Banavar et al. An Efficient Multicast Protocol for
Content-Based Publish-Subscribe Systems. In Proceedings of
the IEEE International Conference on Distributed Computing
Systems, Austin, Texas, May 1999.

[25] Lukasz Opyrchal et. al. Exploiting IP Multicast in Content-
Based Publish-Subscribe Systems. Middleware 2000: 185-
207

[26] The Object Management Group (OMG). OMG’s CORBA
Event Service. Available from http://www.omg.org/

[27] R. Wolski. Forecasting network performance to support
dynamic scheduling using the network weather service.
Proceedings of the 6th IEEE Symp. On High Performance
Distributed Computing, August 1997.

[28] Sun Microsystems. The JXTA Project and Peer-to-Peer
Technology http://www.jxta.org

[29] Geoffrey Fox, Shrideep Pallickara and Xi Rao. A Scaleable
Event Infrastructure for Peer to Peer Grids. Proceedings of
ACM Java Grande ISCOPE Conference 2002. Seattle,
Washington. November 2002.

[30] Antony Rowstron and Peter Druschel. Pastry: Scalable,
decentralized object location and routing for large-scale peer-
to-peer systems. Proceedings of Middleware 2001.

[31] "Enabling Flexible Queries with Guarantees in P2P
Systems," C. Schmidt and M. Parashar, IEEE Network
Computing, Vol. 8, No. 3, pp. 19. 2004.

[32] Michel, S. and Reiher, P. "Peer-to-Peer Internetworking",
OPENSIG 2001 Workshop, Imperial College, London, 24-25
September 2001.

[33] R. Boichat, P. Th. Eugster, R. Guerraoui, and J. Sventek.
Effective Multicastprogramming in Large Scale Distributed
Systems. Concurrency: Practice and Experience, 2000.

[34] S. Bhola, et al. Exactly-once Delivery in a Content-based
Publish-Subscribe System. DSN 2002: 7-16

[35] Object Management Group, Fault Tolerant CORBA
Specification. OMG Document orbos/99-12-08 edition, 99.

[36] Object Management Group, Fault Tolerant CORBA Using
Entity Redundancy RFP. OMG Document orbos/98-04-01.

[37] P. Narasimhan, et al. Using Interceptors to Enhance
CORBA. IEEE Computer 32(7): 62-68 (1999)

[38] Michel Cukier et al. AQuA: An Adaptive Architecture that
Provides Dependable Distributed Objects. Symposium on
Reliable Distributed Systems 1998: 245-253.

ftp://www6.software.ibm.com/software/developer/library/ wsadd200403.pdf
ftp://www6.software.ibm.com/software/developer/library/ wsadd200403.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-address.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-address.pdf
http://www.oasis-open.org/committees/download.php/ 5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/ 5155/WS-Reliability-2004-01-26.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-coordination.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-coordination.pdf
http://www.omg.org/
http://www.jxta.org/

	ABSTRACT
	INTRODUCTION
	NARADABROKERING SUBSTRATE
	Dissemination of events
	Services within NaradaBrokering
	Reliable Delivery Service
	Experimental Results

	Dealing with large payload sizes: Compression/Fragmentation
	Time and Buffering Services
	Security Service
	Performance Monitoring Services

	The transport framework

	NARADABROKERING AND SOA
	Grid Services and Web Services

	APPROACHES TO INTERACTING WITH WEB SERVICES
	Proxy Approach
	Incorporating SOAP processing into the substrate
	A transport mechanism for SOAP messages
	Using WSIF

	Interacting directly with Web Services
	Incorporating SOAP processing stack into individual brokers
	Functioning as a SOAP intermediary

	The role of WS-Addressing

	The Handler approach

	COMPLEMENTING SERVICE INTERACTIONS
	Discovering services using advertisements
	Ability to load balance services
	Enhanced messaging features and fault tolerance

	GRID COMPUTING AND USING THE SCHEME WITH FRAMEWORKS
	WS-RF
	WS-GAF
	VPN Grid and Inter-Enterprise NaradaBrokering communications

	RELATED WORK
	CONCLUSIONS & FUTURE WORK
	REFERENCES

