
A Topology Viewer for Distributed Brokering Systems

Amey Dharurkar, Shrideep Pallickara and Geoffrey Fox
Community Grids Laboratory, Indiana University

(adharurk, spallick, gcf)@indiana.edu

Abstract

In this paper we present a topology viewer for the

NaradaBrokering system. The NaradaBrokering system
comprises a distributed network of cooperating broker
nodes organized within a logical overlay network. The
topology viewer’s layout algorithm is implemented such
that it augments the structure of the NaradaBrokering
network. Furthermore, we believe that this approach
could also be applied to similar visualization problems.
Our visualization scheme extends recent work in the
visualization of large hierarchies with primary focus on
algorithmic and visual simplicity. Specifically, we have
modified the ringed layout algorithm for placement of
various NaradaBrokering components in order to achieve
navigational efficiency. We also include performance
measurements in this paper.

1. Introduction

Visualization of network topologies is a challenging
problem. Networks can be thought of as graphs. Given a
set of nodes and a corresponding set of edges, the basic
graph drawing problem involves the calculation of the
position of the nodes and the curve that needs to be drawn
for each edge [5]. There are number of factors which
decide the quality of a good drawing [6] of a graph. The
size of a graph is a key issue in graph visualization [5]. As
the number of elements in the graph increase,
management of the layout becomes increasingly harder
and compute-intensive, ultimately restricting system
performance. Even if it is possible to layout and display
all the elements, issues of viewability and usability persist.
A typical layout algorithm may efficiently produce graphs
with several hundred nodes but that does not guarantee
that it would scale up to thousands of nodes with
navigational efficiency.

At the highest level, graph layout techniques can be
classified into geographical and logical layouts.
Geographical layout techniques place each node on a map
at its precise physical location, e.g. longitude and latitude,
and then draw lines between these connected nodes. In

1997, CAIDA developed Map-Net [8], a tool for
visualizing the infrastructure of multiple backbone
providers simultaneously based on the geographical
layout technique. Logical layout techniques [7] position
graph elements based on their connectivity rather than
their physical location. Such techniques reveal more
information about the structure of a graph, its hierarchical
nature, and its clustering factor. The design of logical
layout techniques is more difficult than geographical
techniques. Otter [8], a general purpose visualization tool
developed by CAIDA incorporates logical as well as
geographical layout.

When we explore logical layout in detail, it is often the
case that the information to be visualized exhibits some
form of hierarchical relationships. Further, it is often
desirable to reduce the number of visible elements being
viewed. Limiting the number of visual elements improves
both the clarity and the performance of the layout [5].
Clustering is a key approach for achieving the abstraction
necessary to reduce the visual complexity of a graph.

This paper is organized as follows. Section 2 presents
an overview of related work in the visualization of
hierarchical and clustered graphs. Section 3 provides a
brief overview of the NaradaBrokering system. In section
4 we present the design of the topology viewer for
visualization of the NaradaBrokering system. Section 5
presents results from our experiments. Finally, we outline
the conclusions and future work that could be derived
from our current work.

2. Related Work

Several techniques have been developed in order to

visualize hierarchical structures. The fundamental
problem in these techniques is how to provide enough
details at lower levels in a hierarchy, while maintaining
the context within the overall structure. Other desirable
features of such techniques would include facilitating
easier navigation and exploration through the information
hierarchy while ensuring smooth transitions among views
[9].

Treemap [10] is a space filling layout method
developed at the University of Maryland. It maps a tree
structure into nested rectangles, each representing a node.

Size and aspect ratio of the rectangular areas are
controlled by the value associated with the node. Efforts
have been made to make this space filling technique more
effective in visualizing information hierarchy. Treemaps
can easily handle hierarchies with tens and thousands of
leaf nodes. Shneiderman and Wattenberg have suggested
an algorithm for producing ordered treemaps [12] which
improves stability in the display of dynamically changing
data and preserves underlying order between tree
elements. Treemaps efficiently utilize screen space by
using 100% of available display and excellently portray
leaf nodes but the technique is useful for fairly simple
hierarchical plans [9].

Cone tree [13] is another simple technique which
presents hierarchy in 3D. A cone is projected from parent
node and its children are displayed along the
circumference of the base of that cone. Cone tree adjusts
the height of each level so that all cones at the same levels
are of same height. There are some disadvantages in this
technique. First, the display can only handle about 100
nodes or 10 layers of branching. Second, its 3D rendering
is time consuming. Finally, a general problem with
traditional techniques is that they are applicable for
relatively small graphs, which makes them unsuitable for
visualizing the NaradaBrokering network, a network that
can expand up to thousands of nodes and links.

A practical solution is simply to layout a spanning tree
for the graph, which forms the base for advanced tree
layout techniques [5]. One such algorithm, presented by
Lamping, Rao and Piroli [14, 15], takes advantage of the
hyperbolic geometry. The H3 layout technique proposed
by Munzner [16] is a hyperbolic layout technique which
optimizes the cone tree layout algorithm by placing
children nodes on the hemisphere around the cone instead
of on its perimeter.

Clustered graph is yet another category of graphs
which exhibits recursive clustering structure over the
vertices [17]. In two dimensions, clustering structure is
represented by region inclusions. Heuristic methods for
such drawing have been developed by Sugiyama and
Misue [18, 19], North [20] and Madden [21]. Straight line
planar convex drawing of clustered graphs using Tutte’s
algorithm [22] is common. In orthogonal rectangular
drawing [23] of a clustered graph, edges are drawn as
sequences of horizontal and vertical segments while
vertices are drawn on grid points and regions for clusters
are represented by rectangles inside the grid diagram. As
structure of a graph becomes more complex, 3D
multilevel visualization techniques are used. All these 3D
visualization techniques are time consuming in terms of
navigation and rendering and thus do not fit into our
visualization problem that aims at simplicity and clarity.

Circular layout or radial layout is commonly used for
placement of clusters their sub-clusters and nodes. The
graph layout toolkit developed by Tom Sawyer Software

[24], includes a circular library whose layout algorithm
places clusters on circles according to the logical
interconnections of the clusters while ordering them to
minimize crossings and also to reduce overall edge length.
NicheWorks [25], visualization tool developed at Bell
Laboratories uses radial tree layout as an initial layout for
examining large telecommunication networks [26]. All of
the above techniques which implement circular layout
have a fundamental problem in that they inefficiently use
the available space for the display of the hierarchical
structure. Ringed Interactive-Navigation Graph System
(RINGS) [27] is a technique for visualizing large
hierarchical data which overcomes the space utilization
problem. The strength of RINGS is in its ability to show
more area in focus and more contextual information than
existing techniques while using a fixed resolution display.
In RINGS a node is represented by a circle, however its
children are placed as equal-sized circles in concentric
rings around the center of the parent cluster instead of
placing them on the circumference of the parent circle.

Children having large grandchildren are placed in the
outermost ring inside the parent circle while the rest of the
children are placed similarly in the inner rings. This kind
of placement allows maximum space utilization. Further,
RINGS allows the user to interactively explore large data.
The primary focus is changed simply by clicking on the
child to focus on. The child will be new center of the
picture and the parent will be moved to the side. The
algorithm thus maintains structural context even if the
primary focus has been changed. Visual cues like color
and transparency are frequently used to effectively
enhance structural information.

In the design of Topology Viewer for the
NaradaBrokering, we make use of such ringed layout with
few changes in order to reduce visual and algorithmic
complexity. We discuss our scheme in subsequent
sections.

3. NaradaBrokering: A Brief Overview

NaradaBrokering [1, 2, 3] is an event brokering system

designed to run on a large network of cooperating broker
nodes. Communication within NaradaBrokering is
asynchronous and the system can be used to support
different interactions by encapsulating them in specialized
events. NaradaBrokering efficiently routes any given
message between the originators and registered
consumers of the message in question. Messages could be
used to encapsulate information pertaining to transactions,
data interchange, system conditions and finally the search,
discovery and subsequent sharing of resources.
NaradaBrokering places no constraints either on the
number, size or rate of these interactions. Scaling,
availability and fault tolerance requirements entail that the

messaging infrastructure managing this information flow
be based on a distributed network of cooperating nodes.

SSC-A
 SC-1

SC-2

SC-3

l
13 14

15

n
20

21

i4 5

6

j
7 8

9

m16 17

18

k10 11
12

h1 2
3

19

1, 10 Super-super-cluster
controller

5, 9, 10, 16 Super-cluster controller
2,4, 6,8, 12,14,18,20 Cluster controller

Broker Node

Service Provider

End Client
Figure 1. Example of a NaradaBrokering broker
network sub-section

The smallest unit of the messaging infrastructure that
would provide a back bone for routing these messages
needs to be able to intelligently process and route
messages while working with multiple underlying
network communication protocols. We refer to this unit as
a broker where we avoid the use of the term servers to
distinguish it clearly from the application servers that
would be among the sources/sinks to messages processed
within the system. Entities within the system utilize the
broker network to effectively communicate and exchange
data with each other. These interacting entities could be
any combination of users, resources, services and proxies
thereto. These are also sometimes referred to as clients.

To address the issues of scaling, load balancing and
failure resiliency, NaradaBrokering is implemented on a
network of cooperating brokers. In NaradaBrokering we
impose a hierarchical structure on the broker network,
where a broker is part of a cluster that is part of a super-
cluster, which in turn is part of a super-super-cluster and
so on. Figure 1 depicts a sub-system comprising of a
super-super-cluster SSC-A with 3 super-clusters SC-1,
SC-2 and SC-3 each of which has clusters that in turn are
comprised of broker nodes. Clusters comprise strongly
connected brokers with multiple links to brokers in other
clusters, ensuring alternate communication routes during
failures. This organization scheme results in “small world
networks” where the average communication path-lengths
between brokers increase logarithmically with geometric
increases in network size, as opposed to exponential
increases in uncontrolled settings.

This distributed cluster architecture allows
NaradaBrokering to support large heterogeneous client

configurations that scale to a very large size. Within every
unit (cluster, super-cluster and so on), there is at least one
unit-controller, which provides a gateway to nodes in
other units. For example in figure 1, cluster controller
node 20 provides a gateway to nodes in cluster m.
Creation of broker network maps (BNMs) and the
detection of network partitions are easily achieved in this
topology.

4. The NaradaBrokering Topology Viewer

In this section we outline our design of the topology

viewer for NaradaBrokering. We first outline certain
objectives that we seek to achieve and then proceed to
include a detailed discussion of our scheme.

4.1 Design Goals

In NaradaBrokering we limit the number of sub-units

within a unit to 32. Thus, there can be 32 nodes, at most,
within a cluster. In a 4-level system comprising of super-
super-clusters we can possibly have 32x32x32x32 =
1,048,576 nodes within the system. Given the high
number of nodes that can be part of the brokering
networking, the layout should be as efficient as possible
in order to minimize both algorithmic and visual
complexity. Furthermore, the algorithm that is used for
navigation should take negligible time as compared to the
time required for redrawing the graph. This would ensure
that the redrawing time remains the only deciding factor
in navigational operations.

The layout algorithm should also quickly respond to
modification (addition and deletion of nodes and links) to
the underlying network fabric with minimum changes in
the layout. The nodes in the graph should be evenly
distributed over the available space ensuring that overall
structure is easily visualized. Each level within the
network also needs to be easily discernible.

Finally, it should be possible for users to concentrate
on any small part of the broker network. In addition to
this a user should be able to retrieve information
associated with any particular node or link easily.

4.2 The Layout Algorithm

4.2.1 Node Placement. In our scheme we use a ringed
layout algorithm where the parent node is represented by
a circle as described in RINGS technique and all the
children are distributed inside the parent circle along
concentric rings located at half of the original parent-
circle radius. However, as opposed to RINGS where the
children are distributed over multiple concentric rings, we
place all the children on the same ring. This reduces the
number of calculations that need to be performed while
plotting the graph on screen. This variation introduces the

disadvantage of reduced efficiency in space utilization but
it improves the performance of the layout algorithm. The
algorithm for distribution of child nodes in a parent node
is propagated to the lowest level in NaradaBrokering
network.

Mathematically, if there are n children to be placed
inside a parent node then centers of circles representing
the children coincides with the vertices of a regular n-
angled polygon located in the middle of a parent circle.
Angular distance between child nodes will thus be 2П / n.
Length of the side of such a regular polygon can be easily
calculated as depicted in the figure 2 below. The radius of
the circle representing the child node is set to slightly less
than R Sin (Ө/2) where R is the radius of the circle
representing the parent node and Ө is the angular distance
between the centers of consecutive circles representing
the children nodes.

the
the
cir
det
scr
sup
oth
Ma
sim
rec
the
sim
fea
scr
oft

can
con
cli
[x,
det
abs

comparisons we determine the closest super-super cluster,
then closest super cluster inside the super-super cluster,
and so on. Once the clicked node is found, the
information associated with it is retrieved. Since the node
placement algorithm reduces the number of operations
that need to be performed, the response time associated
with the retrieval of information associated with node is
reduced.

We also introduce the idea of a virtual node, which
does not exist physically but is the topmost level which
contains all the super-super-clusters. At the start, the
center of our virtual node is the center of the view port
while its radius is half of the minimum between width and
height of the view port. This virtual node is never drawn
on the screen but its center and radius controls the
locations of all the other components within the network.

4.2.2 Edge Management. Radial edges between nodes at
adjacent levels, representing the tree structure as
suggested in RINGS technique are avoided. Edges
between broker nodes are drawn as straight lines.
Uniform circular layout minimizes the overlapping of the
edges. Additional edges between nodes at different levels
can be shown in different colors so that the user can judge
the interconnections easily.

4.3 Interactive Navigation

4.3.1 Interactive Navigation and Translations. Like
other visualization techniques our design allows users to
interactively explore the large hierarchical structure. It is

V1

V2

R/2

R/2

Ө R Sin (Ө/2) C

Figure 2. Calculation of Radius of a Child
Node inside Parent Node

The node placement algorithm mainly aims at reducing
 plotting time when a user views inner components of
 graph. Since each component is represented by a
cle and encompasses all its children, it becomes easy to
ermine whether a particular component can lie on the
een. For example, if a user is exploring a particular
er-super cluster (after zoom operations) some of the
er super-super clusters may not be seen on the screen.
thematically, knowing the center and radius, it is
ple to determine if the circle lies on a given
tangular area. If any circular component does not lie on
 rectangular screen then it and all its children are
ply excluded from drawing the screen image. This
ture helps reduce the time required for redrawing the
een while a user views inner components, which is
en the case.
Our design also provides a facility, using which, a user
 see all the information related to a node (address,
nections and supported transport protocols) by

cking right button of the mouse on that node. From the
 y] Cartesian co-ordinates of the clicked point, we
ermine the node closest to that point. Due to inherent
traction in the node placement algorithm, after a few

also important that a user can navigate at a particular level
by changing the focus. Change of focus can be achieved
by simply clicking on that point in the graph. The clicked
point moves to the center of the screen while rest of the
scene within the view port is just translated to occupy new
position.

For achieving this operation, the center of the virtual
node is first shifted by the horizontal and virtual
difference between old focus and new focus. The radius
of the virtual node is unchanged. From the new location
of the center of virtual node, positions of nodes at all the
levels are determined and the graph is redrawn. Since
every node is a circle, only two parameters need to be
changed – the (x, y) coordinate of their centers. This
translational operation is differs from the change of focus
operation described on RINGS in that the RINGS
approach maintains the entire drawing context.

This approach improves plotting performance. When a
user is observing a detailed view at the lowest levels (after
zooming) we present only that part of the graph on the
screen. The choice of a circle for representing a
component helps reduce the time required for changing
parameters as only center of the coordinates need to be

changed. Figure 3 demonstrate this change of focus that
we described.

4.3.2 Zooming Operations. Zoom-in and zoom-out
occurs at the focus (center of the screen). Zoom-in
provides a more detailed view of the portion of the graph
around the current focus. Consider that the current focus
(screen center) is [Xc, Yc] while center of the virtual node
is [Xv, Yv]. When the zoom-in option is selected, the
center of the virtual node is shifted depending on the
zoom-in factor. Assume that zoom-in factor is 2. The
radius of the virtual node is doubled while the new
location of its center becomes [(Xv – (Xc - Xv)), (Yv – (Yc -
Yv))]. In general the formula for zoom-in factor N is as
follows:
(a) Xvnew = Xv – (N -1) (Xc - Xv)
(b) Yvnew = Yv – (N -1) (Yc - Yv)

Once radius of the virtual node is changed and its new
center is determined, centers of nodes at all the levels are
recalculated using the basic layout algorithm while their
radii are multiplied by the zoom-in factor. Due to the
symmetric nature of the node placement, the above
changes indeed reflect in perfect zooming around the
screen center. Similar approach is applied for achieving
zoom-out operation. This is depicted in figure 4.

4.4 Features of our approach

The whole graph is symmetrically distributed so the

top view gives a good idea about underlying clustering.
The approach is very suitable for adaptive networks.

Changes in any of the super-super-clusters does not affect
placement inside other super-super-clusters.

The same algorithm is used for placement of child
nodes within a parent node at any adjacent levels. Thus it
is simple and efficient.

Navigational operations themselves take negligible
amount of time and plotting of the graph is the only
deciding factor. Drawing time reduces drastically as user
observes detailed view at lowest levels.

5. Performance Measurements

In this section we discuss the results from our

performance measurements. Plotting delay is the most
crucial factor that determines smoothness between
transitions. All the measurements were performed on a P4
(1.48GHz, 512 MB RAM, Windows XP) machine
keeping maximum limit on number of children inside a
parent node as 12 (i.e. maximum number of nodes in the
system are 12 * 12 * 12 *12). Among the factors that we
measured include graph plotting time, translation time and
time for zooming operations.

Figure 3. Views before and after the change
of the focus

5.1 Plotting a Graph

Drawing of a graphical image on to the available

screen takes the maximum amount of time and is the sole
factor which decides how smooth the transitions are.
Assuming that the screen is size fixed, the top view of the
topology lies inside the boundary of the virtual circle
irrespective of number of nodes or links in the network.
While plotting the whole graph, all the nodes, clusters,
super-clusters and super-super-clusters are drawn, each
representing a circle filled with some color. As number of
nodes in the network increase, circles representing them
become smaller and smaller due to the limited space.
Obviously the time required to draw smaller filled-circles
is less compared to time required for drawing bigger
filled-circles. Figure 4. Views before and after Zoom-In

It was observed that time required to plot the whole
graph does not increase linearly with number of nodes.
Furthermore, the time required to plot required portion of
a graph decreases considerably as users are restricted to
lower levels in the network. This phenomenon is
explained in Section 4.2.1. Degree of independence from
the number of nodes in the network is more prominent in
such partial views. Figure 5 represents the time required
to draw various components in the graph against a
number of nodes in the system. The graph in Figure 5
clearly shows that as the view becomes more restricted,
the time required to draw the image reduces. Furthermore,
for restricted views, the plotting time increases less
rapidly as the number of nodes in the system increase.

5.2 Zooming Operations

The time required for all the recalculation as described

in Section 4.3.2, is in tens of microseconds which is far
less compared to time required for drawing the image on
screen. Time required doing such parametric
manipulations increases linearly with the total number of
nodes in the system as depicted by Figure 6. Complexity
of redrawing the graph is identical to the explanation
outlined in Section 5.1.

5.3 Translation Response

Whenever mouse is clicked over a point on the screen,
whole image is translated so that the clicked point
becomes a new focus and appears at center of the screen.
As explained in section 4.3.1, it was observed that time
required for changing these parameters is in few tens of

milliseconds even if number of nodes exceed 10000.
Once again most of the time is taken to redraw the graph.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

2000 4000 6000 8000 10000

Ti
m

e
in

 M
ic

ro
se

co
nd

s

Number of Nodes

Plot of Display Time (Topology Viewer)

Display of few Super Clusters
Display of a Single Super Super Cluster

Display of few Super Super Clusters
Display of Complete Graph

5.4 Analysis of Node Operations

In our implementation of the topology viewer, the
virtual node maintains a list of super-super-clusters. Each
super-super-cluster maintains a list of super-clusters and
so on. Given a node address, first the super-super-cluster
id is compared with available super-super-clusters till a
match is found. The process of comparison propagates to
the lowest level (4 – corresponding to a broker node), till
the required node having the correct node-id is found.
Maximum number of comparisons are 4 * n where n is
the maximum number of children per parent. Thus
complexity of finding a node given its node address is
O(n). Complexity of adding a node or deleting a node
also comes out to be O(n).

Figure 5. Time Required to Display
Various Components

Our implementation also provides a facility with which
a user can see all the information related to a node
(address, connections etc.) by performing a right-mouse-
click operation on that node. Once again the maximum
number of comparisons are 4*n and complexity of
locating a node given [x, y] coordinates is O(n) where n
is the maximum number of children per parent. Thus, the
response time for locating a node is almost independent of
the total number of nodes in the system. Graph depicted
in Figure 7 illustrates that the response time (for getting
node information) vary about certain interval once the
network is populated by the nodes.

0

5000

10000

15000

20000

25000

2000 4000 6000 8000 10000

Ti
m

e
in

 M
ic

ro
se

co
nd

s

Number of Nodes

Plot of Zoomin/Zoomout Time (Excluding display time)

Time Required to Change the Parameters

60

70

80

90

100

110

120

2000 4000 6000 8000 10000

Ti
m

e
in

 M
ic

ro
se

co
nd

s

Number of Nodes

Plot of Response Delay while Retrieving Node Information

Time Delay to Fetch Node Information

Figure 6. Time Required for Zooming

Figure 7. Variation in Response

6. Conclusions and Future Work

In this paper we have described the design of a
topology viewer for NaradaBrokering. Our scheme is a
variant of the RINGS approach. The scheme we outlined

is simple and very efficient. Though the design of the
topology viewer is currently specific to NaradaBrokering
we believe that it does have the underpinnings to be
applicable to large scale messaging infrastructures. We
have tested our approach for large broker networks and it
can handle display of over one hundred thousand nodes.
A simulation of the NaradaBrokering topology viewer can
be found at [4].

NaradaBrokering incorporates a monitoring service at
each broker node. These monitoring services monitor
links that originate from the broker. We intend to augment
the topology viewer with functions to access the
monitoring service running at individual broker nodes to
retrieve this performance information. Finally, we also
wish to extend the topology viewer to enable individual
users to run their own instances of the topology viewer
which would coordinate and synchronize with the main
instance of the topology viewer.

7. References

[1] NaradaBrokering: A Middleware Framework and

Architecture for Enabling Durable Peer-to-Peer Grids.
Proceedings of the ACM/IFIP/USENIX International
Middleware Conference Middleware-2003. pp 41-61.

[2] The NaradaBrokering Project at the Community Grids
Lab: http://www.naradabrokering.org

[3] Geoffrey Fox and Shrideep Pallickara. An Event Service
to Support Grid Computational Environments Journal of
concurrency and Computation: Practice & Experience.
Volume 14(13-15) pp 1097-1129.

[4] A Simulation of the NaradaBrokering Topology Viewer.
http://www.naradabrokering.org/tv/simulation/topology.
htm

[5] I. Herman, G. Mclancon and M. S. Marshall, “Graph
Visualization and Navigation in Information
Visualization: a Survey”, IEEE Transaction on
Visualization and Computer Graphics, Vol. 6, pp. 24-43,
2000.

[6] G. di Battista, P. Eades, R. Tamassia, and I.G. Tollis,
“Algorithms for drawing graphs: an annotated
bibliography”, Computational Geometry: Theory and
Applications, Vol. 4, No. 5, pp. 235–282, 1994.

[7] Inas Khalifa, “Characterization of the Internet at the AS
Level: Visualization and Modelling”, ENSC 835 Project,
2002.

[8] Cooperative Association for Internet Data Analysis
(CAIDA), MapNet and Otter Tools

[9] Nickie Buckner, “Visualization Techniques for
Hierarchical Information Structures”.

[10] B. Johnson and B. Schneiderman, “Tree-maps: a Space-
filling Approach to the Visualization of Hierarchical
Information Structures”, Proceedings of IEEE
Visualization ’91, IEEE CS Press, pp. 275-282, 1991.

[11] Jason Baumgartner, Yuezheng Zou, and Katy Borner,
“Space Filling or Treemap Algorithms”,
http://iv.slis.indiana.edu/treemap.html

[12] Ben Shneiderman & Martin Wattenberg, “Ordered
Treemap Layouts”, Proceedings of Infovis 2001, pp. 73-
78, 2001.

[13] Robertson G.G., Mackinlay J.D, and Card S.K., “Cone
Trees: Animated 3D Visualizations of Hierarchical
Information”, Proceedings of CHI ’91. ACM, 1991. pp.
189-194.

[14] John Lamping and Ramana Rao, “Laying out and
Visualizing Large Trees using a Hyperbolic Space”,
Proceedings of UIST ’94, pp. 13-14, 1994.

[15] John Lamping, Ramana Rao, and Peter Pirolli, “A
focus+context Technique based on Hyperbolic Geometry
for Viewing Large Hierarchies”, Proceedings of the
ACM SIGCHI Conference on Human Factors in
Computing Systems, May 1995.

[16] T. Munzner, “H3: Laying out Large Directed Graphs in
3D Hyperbolic Space”, Proceedings of the IEEE
Symposium on Information Visualization (Infoviz ’97),
pp. 2-10, 1997.

[17] P. Eades and Q.-W. Feng, “Multilevel Visualization of
Clustered Graphs”, Proceedings of the Symposium on
Graph Drawing GD ’96, Springer-Verlag, pp. 101-112,
1997.

[18] K. Sugiyama and K. Misue, “Visualization of Structural
Information: Automatic Drawing of Compound
Diagraphs”. IEEE Transactions on Systems, Man and
Cybernetics, Vol. 21 No. 4, pp. 876-892, 1991.

[19] K. Misue and K. Sugiyama, “An Overview of Diagram
Based Idea Organizer: D-Abductor. Technical Report
IIAS-RR-93-3E, ISIS, Fujitsu Laboratories, 1993.

[20] S. C. North, “Drawing Ranked Diagraphs with Recursive
Clusters”, preprint, 1993. Software Systems and
Research Center, AT&T Laboratories.

[21] Brendan Madden, Patrick Madden, Steve Powers, and
Michael Himsolt, “Portable Graph Layout and Editing”,
Graph Drawing ’95, volume 1027 of Lecture Notes in
Computer Science, pp. 385-395. Springer-Verlag.

[22] W. Tutte, “How to Draw a Graph”, Proceedings of the
London Mathematical Society Vol. 3 No. 13, pp. 743-
768, 1963.

[23] P. Eades and Q.-W. Feng, “Orthogonal Grid Drawing of
Clustered Graphs”, Technical Report 96-04, Department
of Computer Science, The University of Newcastle,
Australia, 1996.

[24] Tom Sawyer Software, “Graph Layout Toolkit”,
http://www.tomsawyer.com/glt/

[25] G. J. Wills, “NicheWorks – Interactive Visualization of
Very Large Graphs”, Proceeding of Graph Drawing ’97,
Springer-Verlag, pp. 403-414, 1997.

[26] Ka-Ping Yee, Danyel Fisher, Rachna Dhamija and Marti
Hearst, “Animated Exploration of Dynamic Graphs with
Radial Layout”, Proceedings of the 2001 Symposium on
IEEE Information Visualization, pp. 43-50, 2001.

[27] Soon Tee Teoh and Kwan-Liu Ma, “RINGS: A
Technique for Visualizing Large Hierarchies”,
Proceedings of Graph Drawing ’02, 2002.

http://www.naradabrokering.org/
http://www.naradabrokering.org/tv/simulation/topology.htm
http://www.naradabrokering.org/tv/simulation/topology.htm
http://iv.slis.indiana.edu/treemap.html
http://www.tomsawyer.com/glt/

