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Abstract 

 
In this paper we present a topology viewer for the 

NaradaBrokering system. The NaradaBrokering system 
comprises a distributed network of cooperating broker 
nodes organized within a logical overlay network. The 
topology viewer’s layout algorithm is implemented such 
that it augments the structure of the NaradaBrokering 
network. Furthermore, we believe that this approach 
could also be applied to similar visualization problems. 
Our visualization scheme extends recent work in the 
visualization of large hierarchies with primary focus on 
algorithmic and visual simplicity. Specifically, we have 
modified the ringed layout algorithm for placement of 
various NaradaBrokering components in order to achieve 
navigational efficiency. We also include performance 
measurements in this paper. 
 
 
1. Introduction 
 

Visualization of network topologies is a challenging 
problem. Networks can be thought of as graphs. Given a 
set of nodes and a corresponding set of edges, the basic 
graph drawing problem involves the calculation of the 
position of the nodes and the curve that needs to be drawn 
for each edge [5]. There are number of factors which 
decide the quality of a good drawing [6] of a graph. The 
size of a graph is a key issue in graph visualization [5]. As 
the number of elements in the graph increase, 
management of the layout becomes increasingly harder 
and compute-intensive, ultimately restricting system 
performance. Even if it is possible to layout and display 
all the elements, issues of viewability and usability persist. 
A typical layout algorithm may efficiently produce graphs 
with several hundred nodes but that does not guarantee 
that it would scale up to thousands of nodes with 
navigational efficiency.  

At the highest level, graph layout techniques can be 
classified into geographical and logical layouts. 
Geographical layout techniques place each node on a map 
at its precise physical location, e.g. longitude and latitude, 
and then draw lines between these connected nodes. In 

1997, CAIDA developed Map-Net [8], a tool for 
visualizing the infrastructure of multiple backbone 
providers simultaneously based on the geographical 
layout technique. Logical layout techniques [7] position 
graph elements based on their connectivity rather than 
their physical location. Such techniques reveal more 
information about the structure of a graph, its hierarchical 
nature, and its clustering factor. The design of logical 
layout techniques is more difficult than geographical 
techniques. Otter [8], a general purpose visualization tool 
developed by CAIDA incorporates logical as well as 
geographical layout. 

When we explore logical layout in detail, it is often the 
case that the information to be visualized exhibits some 
form of hierarchical relationships. Further, it is often 
desirable to reduce the number of visible elements being 
viewed. Limiting the number of visual elements improves 
both the clarity and the performance of the layout [5]. 
Clustering is a key approach for achieving the abstraction 
necessary to reduce the visual complexity of a graph.  

This paper is organized as follows. Section 2 presents 
an overview of related work in the visualization of 
hierarchical and clustered graphs. Section 3 provides a 
brief overview of the NaradaBrokering system. In section 
4 we present the design of the topology viewer for 
visualization of the NaradaBrokering system. Section 5 
presents results from our experiments. Finally, we outline 
the conclusions and future work that could be derived 
from our current work.  
 
2. Related Work 

 
Several techniques have been developed in order to 

visualize hierarchical structures. The fundamental 
problem in these techniques is how to provide enough 
details at lower levels in a hierarchy, while maintaining 
the context within the overall structure. Other desirable 
features of such techniques would include facilitating 
easier navigation and exploration through the information 
hierarchy while ensuring smooth transitions among views 
[9].  

Treemap [10] is a space filling layout method 
developed at the University of Maryland. It maps a tree 
structure into nested rectangles, each representing a node. 

 



Size and aspect ratio of the rectangular areas are 
controlled by the value associated with the node. Efforts 
have been made to make this space filling technique more 
effective in visualizing information hierarchy. Treemaps 
can easily handle hierarchies with tens and thousands of 
leaf nodes. Shneiderman and Wattenberg have suggested 
an algorithm for producing ordered treemaps [12] which 
improves stability in the display of dynamically changing 
data and preserves underlying order between tree 
elements. Treemaps efficiently utilize screen space by 
using 100% of available display and excellently portray 
leaf nodes but the technique is useful for fairly simple 
hierarchical plans [9].  

Cone tree [13] is another simple technique which 
presents hierarchy in 3D. A cone is projected from parent 
node and its children are displayed along the 
circumference of the base of that cone. Cone tree adjusts 
the height of each level so that all cones at the same levels 
are of same height. There are some disadvantages in this 
technique. First, the display can only handle about 100 
nodes or 10 layers of branching. Second, its 3D rendering 
is time consuming.  Finally, a general problem with 
traditional techniques is that they are applicable for 
relatively small graphs, which makes them unsuitable for 
visualizing the NaradaBrokering network, a network that 
can expand up to thousands of nodes and links.  

A practical solution is simply to layout a spanning tree 
for the graph, which forms the base for advanced tree 
layout techniques [5]. One such algorithm, presented by 
Lamping, Rao and Piroli [14, 15], takes advantage of the 
hyperbolic geometry. The H3 layout technique proposed 
by Munzner [16] is a hyperbolic layout technique which 
optimizes the cone tree layout algorithm by placing 
children nodes on the hemisphere around the cone instead 
of on its perimeter.  

Clustered graph is yet another category of graphs 
which exhibits recursive clustering structure over the 
vertices [17]. In two dimensions, clustering structure is 
represented by region inclusions. Heuristic methods for 
such drawing have been developed by Sugiyama and 
Misue [18, 19], North [20] and Madden [21]. Straight line 
planar convex drawing of clustered graphs using Tutte’s 
algorithm [22] is common. In orthogonal rectangular 
drawing [23] of a clustered graph, edges are drawn as 
sequences of horizontal and vertical segments while 
vertices are drawn on grid points and regions for clusters 
are represented by rectangles inside the grid diagram. As 
structure of a graph becomes more complex, 3D 
multilevel visualization techniques are used. All these 3D 
visualization techniques are time consuming in terms of 
navigation and rendering and thus do not fit into our 
visualization problem that aims at simplicity and clarity. 

Circular layout or radial layout is commonly used for 
placement of clusters their sub-clusters and nodes. The 
graph layout toolkit developed by Tom Sawyer Software 

[24], includes a circular library whose layout algorithm 
places clusters on circles according to the logical 
interconnections of the clusters while ordering them to 
minimize crossings and also to reduce overall edge length. 
NicheWorks [25], visualization tool developed at Bell 
Laboratories uses radial tree layout as an initial layout for 
examining large telecommunication networks [26]. All of 
the above techniques which implement circular layout 
have a fundamental problem in that they inefficiently use 
the available space for the display of the hierarchical 
structure. Ringed Interactive-Navigation Graph System 
(RINGS) [27] is a technique for visualizing large 
hierarchical data which overcomes the space utilization 
problem. The strength of RINGS is in its ability to show 
more area in focus and more contextual information than 
existing techniques while using a fixed resolution display. 
In RINGS a node is represented by a circle, however its 
children are placed as equal-sized circles in concentric 
rings around the center of the parent cluster instead of 
placing them on the circumference of the parent circle.  

Children having large grandchildren are placed in the 
outermost ring inside the parent circle while the rest of the 
children are placed similarly in the inner rings. This kind 
of placement allows maximum space utilization. Further, 
RINGS allows the user to interactively explore large data. 
The primary focus is changed simply by clicking on the 
child to focus on. The child will be new center of the 
picture and the parent will be moved to the side. The 
algorithm thus maintains structural context even if the 
primary focus has been changed. Visual cues like color 
and transparency are frequently used to effectively 
enhance structural information. 

In the design of Topology Viewer for the 
NaradaBrokering, we make use of such ringed layout with 
few changes in order to reduce visual and algorithmic 
complexity. We discuss our scheme in subsequent 
sections. 
 
3. NaradaBrokering: A Brief Overview 

 
NaradaBrokering [1, 2, 3] is an event brokering system 

designed to run on a large network of cooperating broker 
nodes. Communication within NaradaBrokering is 
asynchronous and the system can be used to support 
different interactions by encapsulating them in specialized 
events. NaradaBrokering efficiently routes any given 
message between the originators and registered 
consumers of the message in question. Messages could be 
used to encapsulate information pertaining to transactions, 
data interchange, system conditions and finally the search, 
discovery and subsequent sharing of resources. 
NaradaBrokering places no constraints either on the 
number, size or rate of these interactions. Scaling, 
availability and fault tolerance requirements entail that the 

 



messaging infrastructure managing this information flow 
be based on a distributed network of cooperating nodes. 
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Figure 1. Example of a NaradaBrokering broker 
network sub-section 

The smallest unit of the messaging infrastructure that 
would provide a back bone for routing these messages 
needs to be able to intelligently process and route 
messages while working with multiple underlying 
network communication protocols. We refer to this unit as 
a broker where we avoid the use of the term servers to 
distinguish it clearly from the application servers that 
would be among the sources/sinks to messages processed 
within the system. Entities within the system utilize the 
broker network to effectively communicate and exchange 
data with each other. These interacting entities could be 
any combination of users, resources, services and proxies 
thereto.  These are also sometimes referred to as clients. 

To address the issues of scaling, load balancing and 
failure resiliency, NaradaBrokering is implemented on a 
network of cooperating brokers.  In NaradaBrokering we 
impose a hierarchical structure on the broker network, 
where a broker is part of a cluster that is part of a super-
cluster, which in turn is part of a super-super-cluster and 
so on. Figure 1 depicts a sub-system comprising of a 
super-super-cluster SSC-A with 3 super-clusters SC-1, 
SC-2 and SC-3 each of which has clusters that in turn are 
comprised of broker nodes. Clusters comprise strongly 
connected brokers with multiple links to brokers in other 
clusters, ensuring alternate communication routes during 
failures. This organization scheme results in “small world 
networks” where the average communication path-lengths 
between brokers increase logarithmically with geometric 
increases in network size, as opposed to exponential 
increases in uncontrolled settings. 

This distributed cluster architecture allows 
NaradaBrokering to support large heterogeneous client 

configurations that scale to a very large size. Within every 
unit (cluster, super-cluster and so on), there is at least one 
unit-controller, which provides a gateway to nodes in 
other units. For example in figure 1, cluster controller 
node 20 provides a gateway to nodes in cluster m. 
Creation of broker network maps (BNMs) and the 
detection of network partitions are easily achieved in this 
topology.   
 
4. The NaradaBrokering Topology Viewer 

 
In this section we outline our design of the topology 

viewer for NaradaBrokering. We first outline certain 
objectives that we seek to achieve and then proceed to 
include a detailed discussion of our scheme. 

 
4.1 Design Goals 

 
In NaradaBrokering we limit the number of sub-units 

within a unit to 32. Thus, there can be 32 nodes, at most, 
within a cluster.  In a 4-level system comprising of super-
super-clusters we can possibly have 32x32x32x32 = 
1,048,576 nodes within the system. Given the high 
number of nodes that can be part of the brokering 
networking, the layout should be as efficient as possible 
in order to minimize both algorithmic and visual 
complexity. Furthermore, the algorithm that is used for 
navigation should take negligible time as compared to the 
time required for redrawing the graph. This would ensure 
that the redrawing time remains the only deciding factor 
in navigational operations.  

The layout algorithm should also quickly respond to 
modification (addition and deletion of nodes and links) to 
the underlying network fabric with minimum changes in 
the layout.  The nodes in the graph should be evenly 
distributed over the available space ensuring that overall 
structure is easily visualized. Each level within the 
network also needs to be easily discernible.  

Finally, it should be possible for users to concentrate 
on any small part of the broker network. In addition to 
this a user should be able to retrieve information 
associated with any particular node or link easily. 
 
4.2 The Layout Algorithm 
 
4.2.1 Node Placement. In our scheme we use a ringed 
layout algorithm where the parent node is represented by 
a circle as described in RINGS technique and all the 
children are distributed inside the parent circle along 
concentric rings located at half of the original parent-
circle radius. However, as opposed to RINGS where the 
children are distributed over multiple concentric rings, we 
place all the children on the same ring. This reduces the 
number of calculations that need to be performed while 
plotting the graph on screen. This variation introduces the 

 



disadvantage of reduced efficiency in space utilization but 
it improves the performance of the layout algorithm. The 
algorithm for distribution of child nodes in a parent node 
is propagated to the lowest level in NaradaBrokering 
network.  

Mathematically, if there are n children to be placed 
inside a parent node then centers of circles representing 
the children coincides with the vertices of a regular n-
angled polygon located in the middle of a parent circle. 
Angular distance between child nodes will thus be 2П / n. 
Length of the side of such a regular polygon can be easily 
calculated as depicted in the figure 2 below. The radius of 
the circle representing the child node is set to slightly less 
than R Sin (Ө/2) where R is the radius of the circle 
representing the parent node and Ө is the angular distance 
between the centers of consecutive circles representing 
the children nodes. 
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comparisons we determine the closest super-super cluster, 
then closest super cluster inside the super-super cluster, 
and so on. Once the clicked node is found, the 
information associated with it is retrieved. Since the node 
placement algorithm reduces the number of operations 
that need to be performed, the response time associated 
with the retrieval of information associated with node is 
reduced.  

We also introduce the idea of a virtual node, which 
does not exist physically but is the topmost level which 
contains all the super-super-clusters. At the start, the 
center of our virtual node is the center of the view port 
while its radius is half of the minimum between width and 
height of the view port. This virtual node is never drawn 
on the screen but its center and radius controls the 
locations of all the other components within the network. 
 
4.2.2 Edge Management. Radial edges between nodes at 
adjacent levels, representing the tree structure as 
suggested in RINGS technique are avoided. Edges 
between broker nodes are drawn as straight lines. 
Uniform circular layout minimizes the overlapping of the 
edges. Additional edges between nodes at different levels 
can be shown in different colors so that the user can judge 
the interconnections easily.   

 
4.3 Interactive Navigation 
 
4.3.1 Interactive Navigation and Translations. Like 
other visualization techniques our design allows users to 
interactively explore the large hierarchical structure. It is 
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Figure 2. Calculation of Radius of a Child
Node inside Parent Node 
 
The node placement algorithm mainly aims at reducing 
 plotting time when a user views inner components of 
 graph. Since each component is represented by a 
cle and encompasses all its children, it becomes easy to 
ermine whether a particular component can lie on the 
een. For example, if a user is exploring a particular 
er-super cluster (after zoom operations) some of the 
er super-super clusters may not be seen on the screen. 
thematically, knowing the center and radius, it is 
ple to determine if the circle lies on a given 
tangular area. If any circular component does not lie on 
 rectangular screen then it and all its children are 
ply excluded from drawing the screen image. This 
ture helps reduce the time required for redrawing the 
een while a user views inner components, which is 
en the case.  
Our design also provides a facility, using which, a user 
 see all the information related to a node (address, 
nections and supported transport protocols) by 

cking right button of the mouse on that node. From the 
 y] Cartesian co-ordinates of the clicked point, we 
ermine the node closest to that point. Due to inherent 
traction in the node placement algorithm, after a few 

also important that a user can navigate at a particular level 
by changing the focus. Change of focus can be achieved 
by simply clicking on that point in the graph. The clicked 
point moves to the center of the screen while rest of the 
scene within the view port is just translated to occupy new 
position.  

For achieving this operation, the center of the virtual 
node is first shifted by the horizontal and virtual 
difference between old focus and new focus. The radius 
of the virtual node is unchanged. From the new location 
of the center of virtual node, positions of nodes at all the 
levels are determined and the graph is redrawn. Since 
every node is a circle, only two parameters need to be 
changed – the (x, y) coordinate of their centers. This 
translational operation is differs from the change of focus 
operation described on RINGS in that the RINGS 
approach maintains the entire drawing context.  

This approach improves plotting performance. When a 
user is observing a detailed view at the lowest levels (after 
zooming) we present only that part of the graph on the 
screen. The choice of a circle for representing a 
component helps reduce the time required for changing 
parameters as only center of the coordinates need to be 



changed. Figure 3 demonstrate this change of focus that 
we described. 
 

4.3.2 Zooming Operations. Zoom-in and zoom-out 
occurs at the focus (center of the screen). Zoom-in 
provides a more detailed view of the portion of the graph 
around the current focus. Consider that the current focus 
(screen center) is [Xc, Yc] while center of the virtual node 
is [Xv, Yv]. When the zoom-in option is selected, the 
center of the virtual node is shifted depending on the 
zoom-in factor. Assume that zoom-in factor is 2. The 
radius of the virtual node is doubled while the new 
location of its center becomes [(Xv – (Xc - Xv)), (Yv – (Yc - 
Yv))].  In general the formula for zoom-in factor N is as 
follows:  
(a) Xvnew = Xv – (N -1) (Xc - Xv)    
(b) Yvnew = Yv – (N -1) (Yc - Yv) 

Once radius of the virtual node is changed and its new 
center is determined, centers of nodes at all the levels are 
recalculated using the basic layout algorithm while their 
radii are multiplied by the zoom-in factor.  Due to the 
symmetric nature of the node placement, the above 
changes indeed reflect in perfect zooming around the 
screen center. Similar approach is applied for achieving 
zoom-out operation. This is depicted in figure 4. 
 
4.4 Features of our approach 

 
The whole graph is symmetrically distributed so the 

top view gives a good idea about underlying clustering. 
The approach is very suitable for adaptive networks. 

Changes in any of the super-super-clusters does not affect 
placement inside other super-super-clusters. 

The same algorithm is used for placement of child 
nodes within a parent node at any adjacent levels. Thus it 
is simple and efficient. 

Navigational operations themselves take negligible 
amount of time and plotting of the graph is the only 
deciding factor. Drawing time reduces drastically as user 
observes detailed view at lowest levels. 
 
5. Performance Measurements 

 
In this section we discuss the results from our 

performance measurements. Plotting delay is the most 
crucial factor that determines smoothness between 
transitions. All the measurements were performed on a P4 
(1.48GHz, 512 MB RAM, Windows XP) machine 
keeping maximum limit on number of children inside a 
parent node as 12 (i.e. maximum number of nodes in the 
system are 12 * 12 * 12 *12). Among the factors that we 
measured include graph plotting time, translation time and 
time for zooming operations. 

Figure 3. Views before and after the change 
of the focus 

 
5.1 Plotting a Graph 

 
Drawing of a graphical image on to the available 

screen takes the maximum amount of time and is the sole 
factor which decides how smooth the transitions are. 
Assuming that the screen is size fixed, the top view of the 
topology lies inside the boundary of the virtual circle 
irrespective of number of nodes or links in the network. 
While plotting the whole graph, all the nodes, clusters, 
super-clusters and super-super-clusters are drawn, each 
representing a circle filled with some color. As number of 
nodes in the network increase, circles representing them 
become smaller and smaller due to the limited space. 
Obviously the time required to draw smaller filled-circles 
is less compared to time required for drawing bigger 
filled-circles.  Figure 4. Views before and after Zoom-In 

It was observed that time required to plot the whole 
graph does not increase linearly with number of nodes. 
Furthermore, the time required to plot required portion of 
a graph decreases considerably as users are restricted to 
lower levels in the network. This phenomenon is 
explained in Section 4.2.1. Degree of independence from 
the number of nodes in the network is more prominent in 
such partial views. Figure 5 represents the time required 
to draw various components in the graph against a 
number of nodes in the system. The graph in Figure 5 
clearly shows that as the view becomes more restricted, 
the time required to draw the image reduces. Furthermore, 
for restricted views, the plotting time increases less 
rapidly as the number of nodes in the system increase. 

 



  

 
 
5.2 Zooming Operations 

 
The time required for all the recalculation as described 

in Section 4.3.2, is in tens of microseconds which is far 
less compared to time required for drawing the image on 
screen. Time required doing such parametric 
manipulations increases linearly with the total number of 
nodes in the system as depicted by Figure 6. Complexity 
of redrawing the graph is identical to the explanation 
outlined in Section 5.1.  

 

 

5.3 Translation Response 
 

Whenever mouse is clicked over a point on the screen, 
whole image is translated so that the clicked point 
becomes a new focus and appears at center of the screen. 
As explained in section 4.3.1, it was observed that time 
required for changing these parameters is in few tens of 

milliseconds even if number of nodes exceed 10000. 
Once again most of the time is taken to redraw the graph. 
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5.4 Analysis of Node Operations 
 

In our implementation of the topology viewer, the 
virtual node maintains a list of super-super-clusters. Each 
super-super-cluster maintains a list of super-clusters and 
so on. Given a node address, first the super-super-cluster 
id is compared with available super-super-clusters till a 
match is found. The process of comparison propagates to 
the lowest level (4 – corresponding to a broker node), till 
the required node having the correct node-id is found. 
Maximum number of comparisons are 4 * n where n is 
the maximum number of children per parent. Thus 
complexity of finding a node given its node address is 
O(n). Complexity of adding a node or deleting a node 
also comes out to be O(n).  

Figure 5. Time Required to Display 
Various Components  

Our implementation also provides a facility with which 
a user can see all the information related to a node 
(address, connections etc.) by performing a right-mouse-
click operation on that node. Once again the maximum 
number of comparisons are 4*n and complexity of 
locating a node given [x, y] coordinates is O(n) where n 
is the maximum number of children per parent. Thus, the 
response time for locating a node is almost independent of 
the total number of nodes in the system. Graph depicted 
in Figure 7 illustrates that the response time (for getting 
node information) vary about certain interval once the 
network is populated by the nodes. 
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Figure 7. Variation in Response  

 
6. Conclusions and Future Work 
 

In this paper we have described the design of a 
topology viewer for NaradaBrokering. Our scheme is a 
variant of the RINGS approach. The scheme we outlined 

 



is simple and very efficient. Though the design of the 
topology viewer is currently specific to NaradaBrokering 
we believe that it does have the underpinnings to be 
applicable to large scale messaging infrastructures. We 
have tested our approach for large broker networks and it 
can handle display of over one hundred thousand nodes. 
A simulation of the NaradaBrokering topology viewer can 
be found at [4]. 

NaradaBrokering incorporates a monitoring service at 
each broker node. These monitoring services monitor 
links that originate from the broker. We intend to augment 
the topology viewer with functions to access the 
monitoring service running at individual broker nodes to 
retrieve this performance information. Finally, we also 
wish to extend the topology viewer to enable individual 
users to run their own instances of the topology viewer 
which would coordinate and synchronize with the main 
instance of the topology viewer. 
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