
On the Costs for Reliable Messaging in Web/Grid Service Environments
Shrideep Pallickara, Geoffrey Fox, Beytullah Yildiz, Sangmi Lee Pallickara, Sima Patel and Damodar Yemme

(spallick, gcf, byildiz, leesangm, skpatel, dyemme)@indiana.edu
Community Grids Lab, Indiana University.

Abstract

As Web Services have matured they have been
substantially leveraged within the academic, research and
business communities. An exemplar of this is the
realignment, last year, of the dominant Grid application
framework ─ Open Grid Services Infrastucture (OGSI) ─
with the emerging consensus within the Web Services
community. Reliable messaging is an important
component within the Web Services stack. There are two
competing, and very similar, specifications within this
domain viz. WS-ReliableMessaging (WSRM) and WS-
Reliability (WSR); this work focuses on the WSRM
specification. In this paper we provide an overview of the
WSRM protocol, describe our implementation of WSRM,
and present an analysis of the costs (in terms of latencies
and memory utilizations) involved in the use of WSRM.
Since WSRM is very similar to WS-Reliability we expect
the performance of WSRM to be very similar to that of
WSR. We hope that the work presented here helps
researchers and systems designers gauge the suitability of
Web Services based reliable messaging in their
applications and also to make appropriate trade-offs,
which includes inter alia interoperability, guarantees,
quality of service and performance.

Key words: Web Services, WS-ReliableMessaging,
guaranteed messaging, performance analysis

1. Introduction

The emerging Web Services stack comprising XML –
the lingua franca of the various standards, SOAP [1] and
WSDL [2] have enabled sophisticated interactions
between services. WSDL describes message formats and
message exchange patterns for services using XML, while
services/entities interact through the exchange of SOAP
messages. The use of XML throughout the Web Services
stack of specifications facilitates interactions between
services implemented in different languages, running on
different platforms, and over multiple transports.

As Web Services have matured, reliable messaging
(also known as guaranteed messaging) between service
endpoints has become increasingly important. When
service endpoints interact with each other, a need may
arise to ensure that the interactions are routed reliably

between them. In addition to the delivery guarantee these
endpoints may also need assurances on the ordered
delivery of these interactions. Finally, these delivery and
ordering guarantees need to be met irrespective of the
underlying transport used for communications. This area
of reliable messaging now has two competing, though
very similar, specifications: WS-ReliableMessaging [3]
(hereafter WSRM) and WS-Reliability [4] (hereafter
WSR). These specifications facilitate incremental addition
of reliable messaging capabilities to the service endpoints.
By funneling interactions through the implementations of
these specifications, services can automatically inherit
capabilities related to reliable and ordered delivery.

This complex area was previously was previously
being addressed within the Web Services community
using homegrown, proprietary, application specific
solutions. This prevented interoperation with services
outside the organization in which these protocols were
implemented. Another related issue was the lack of an
open-review process which would typically ferret out any
bugs in the underlying protocol. The aforementioned
specifications in the area of reliable messaging address
both these areas.

Both these specifications have been exhaustively
reviewed and deployed in a wide variety of settings.
These wide deployments, and ease of use, have ensured
that applications can more easily interoperate with each
other. By eliminating the need for system designers to
come up with proprietary solutions to the reliable delivery
problem, researchers/designers can instead focus their
efforts on the core problem within their respective
application domains.

The work outlined in this paper focuses on WSRM.
The over arching goal of this paper is to provide
researchers and system designers of the costs involved in
leveraging the WSRM specification. Since the WSR
specification is very similar to the WSRM specification
we expect these costs to be representative of those
involved in the WSR specification too. By costs we refer
to the CPU bound latencies and memory utilizations
involved in the benchmarked operations. Application
needs vary and there is never a one-size-fits-all solution:
costs involved in WSRM may be acceptable in some cases
and prohibitive in others. We hope this work can be used
by researchers and system designers to make informed
decisions about their Web Services reliable messaging
strategy. Specifically, researchers can use this work to
decide the tradeoffs involved in interoperability and ease-

 1

of-use engendered in the WSRM specification to the
acceptability of the costs involved in WSRM. In some
cases the complexity ─ and concomitant time constraints
─ of developing an optimized (application/domain
specific) reliable messaging protocol may be considered
vis-à-vis the ability to simply plug-in a well-tested
solution.

The remainder of this paper is organized as follows. In
section 2 we include a brief overview of the WSRM
specification. Section 3 describes our implementation
strategy. We describe our performance measurements in
section 4, with related work being described in section 5.
Finally, in section 6 we outline our conclusions and future
work.

2. WSRM

WSRM describes a protocol that facilitates the reliable
delivery of messages between two web service endpoints
in the presence of component, system or network failures.
WSRM facilitates the reliable delivery of messages from
the source (or originator) of messages to the sink (or
destination) of messages. The delivery (and ordering)
guarantees are valid over a group of messages, which is
referred to as a sequence.

In WSRM prior to ensuring reliable delivery of
messages between the endpoints, the source initiates an
exchange with the sink pertaining to the creation of a
Sequence. This Sequence is intended to facilitate the
grouping of a set of related messages. This Sequence is
identified by an identifier, typically a UUID. Other
information associated with the Sequence include
information regarding ─
• The source and the sink
• Policy information related to protocol constants such

as acknowledgement and retransmission intervals.
• Security related information if needed.

In WSRM all messages issued by a source exist within
the context of a Sequence that was established prior to
communications. Once a source has determined that all
messages within a Sequence have been received at the
sink, the source initiates an exchange to terminate this
sequence. The specification allows for a maximum of 264 -
1 messages within a Sequence. In the unlikely event that
this number has been reached, a new Sequence needs to
be established. The specification places no limits on the
number of Sequences between a specific source and sink.
However, it is expected that at any given time there is NO
more than 1 active Sequence.

Every message from the source contains two pieces of
information ─ the Sequence that this message is a part of
and a monotonically increasing Message Number within
this Sequence. These Message Numbers enable the
tracking of problems, if any, in the intended message

delivery at a sink by enabling the determination of out of
order receipt of messages as well as message losses.

In WSRM a sink is expected to issue
acknowledgements back to the source upon receipt of
messages. This acknowledgement contains information
pertaining to both the Sequence and the Message
Numbers within this Sequence. An acknowledgement
must be issued only after a certain time ─ the
acknowledgement interval ─ has elapsed since the receipt
of the first unacknowledged message. This
acknowledgement may cover a single message or a group
of messages within a Sequence. Upon receipt of this
acknowledgement a source can determine which messages
might have been lost in transit and proceed to retransmit
the missed messages. Thus if a sink has acknowledged the
receipt of messages 1 ─ 10 and 13 ─ 18, the source
can conclude that messages with Message Numbers 11
and 12 were lost en route to the sink and proceed to
retransmit these messages.

A source may also pro-actively initiate the
retransmission of a message for which that an
acknowledgement has not been received within a
specified time ─ the retransmission interval ─ after which
it was issued. In WSRM error corrections can also be
initiated at the sink; this is done through the use of
negative acknowledgements which identify the message
numbers that have not been received at a sink. Since
Message Numbers increase monotonically, if Message
Numbers 1,2,3,4 and 8 within a specific Sequence have
been received at a sink, this sink can easily conclude that
it has not received messages with message numbers 5,6
and 7 from the source.

WSRM provides for notification of errors in
processing between the endpoints involved in reliable
delivery. The range of errors can vary from an inability to
decipher a message’s content to complex errors pertaining
to violations in implied agreements between the
interacting source and sink.

2.1 Specifications leveraged by WSRM

WSRM leverages other specifications such as WS-
Addressing [5] and WS-Policy [6]. WS-Addressing is a
way to abstract from the underlying transport
infrastructures the addressing needs of an application.
WS-Addressing incorporates support for end point
references (EPRs) and message information (MI) headers.
EPRs standardize the format for referencing a Web
service and Web service instances.

Before we proceed further, we make a brief note on the
notation that we will be using throughout this paper. The
notation wsx:widget corresponds to the schema element
widget within the wsx specification’s schema. Thus, the
wsa:To element corresponds to the To schema element
within the WS-Addressing schema, while the

 2

wsrm:CreateSequence corresponds to the
CreateSequence element within the WSRM schema.

The MI headers standardize information related to the
origin (wsa:From) and destination (wsa:To) of message.
It also standardizes elements that identify where replies
and faults resulting from a message should be sent.
Another element the wsa:Action element snapshots the
semantic intent of message, while the wsa:RelatesTo
element helps describe the relationship of a message to
prior messages. Besides, the use of WS-Addressing for
describing the source and the sink, WSRM also leverages
fault reporting headers to report problems in the
processing messages. Every message within WSRM has a
unique identifier, typically a UUID, which is carried
within the wsa:Message-ID information header. Finally,
wsa:Action is also leveraged by WSRM to indicate the
semantic intent of control messages such as Creation and
Termination of sequences, and also Faults carried within
the SOAP messages.

WSRM uses WS-Policy to exchange information
regarding protocol constants such as acknowledgement
intervals, retransmission intervals, inactivity timeouts and
exponential backoffs. An entity may specify these
constants for a specific Sequence or for a set of
Sequences. WS-Policy can also be used to convey security
related information.

WSRM is intended to enable incremental additional of
capabilities to a Web Service endpoint. All that a web
service endpoint needs to ensure is that ALL inbound and
outbound SOAP messages are funneled through the
WSRM implementation. Once this is done, the web
service endpoint should be able to avail of WSRM’s
reliable messaging capabilities automatically.

3. Implementation of the WSRM

To facilitate incremental addition of capabilities at a
web service endpoint, we had two objectives. First, the
endpoint should have access to all WSRM related
capabilities. Second, the interface to do so must very
simple. In order to achieve this incremental addition all
inbound and outbound SOAP messages at the web service
endpoint should be funneled through the WSRM software.

In our implementation (Java-based) functionality
related to the sink and sink roles in WSRM are
encapsulated within the SourceProcessor and
SinkProcessor respectively. Both these processors
extend the WsProcessor base class which contains
several of the capabilities that are need in both the
SourceProcessor and SinkProcessor. First, the
WsProcessor contains a method
processExchange() which can be used by the
endpoint to funnel all inbound and outbound messages to
and from the endpoint. This method provides the entry
point to capabilities encapsulated within approximately
300 Java classes related to WSRM processing. This

scheme also satisfies our objective of enabling simplified
addition of WSRM capabilities. It should be noted that a
given endpoint may be a source, sink or both for the
reliable delivery of SOAP messages. In the case that the
endpoint is both a source and a sink, both the
SourceProcessor and the SinkProcessor will be
cascaded at the endpoint.

Another class of interest is the WsMessageFlow
class. This interface contains two methods
enrouteToApplication() and
enrouteToNetwork() which are leveraged by the
WsProcessor to route SOAP messages (requests,
responses or faults) en route to the hosting web service or
a network endpoint respectively. The WsProcessor has
methods which enable the registration of
WsMessageFow instances. Since the WsProcessor
delegates the actual transmission of messages to Web
Service container-specific implementations of the
WsMessageFlow, it can be deployed in a wide variety
of settings within different Web Service containers such
as Apache Axis and Sun’s JWSDP by registering the
appropriate WsMessageFlow instance with the
WsProcessor.

By funneling all messages through the processors we
also have the capability of shielding the web service
endpoints from some of the control messages that are
exchanged as part of the routine exchanges between
WSRM endpoints. For example, the web service endpoint
need not know about (or cope with) control messages
related the acknowledgements and the
creation/termination of Sequences in WSRM.

Included below is the definition of the
processExchange() method. Using the
SOAPContext it is possible to retrieve the encapsulated
SOAP message. The logic related to the processing of the
funneled SOAP messages is different depending on
whether the SOAP message was received from the
application or network. Exceptions thrown by this method
are all checked exceptions and can be trapped using
appropriate try-catch blocks. Depending on type of the
exception that is thrown, either an appropriate SOAP
Fault is constructed and routed to the relevant location or
it triggers exception related to processing at the node in
question. A processor decides on processing a SOAP
message based one of three parameters
• The contents of the WSA action attribute contained

within the SOAP Header.
• The presence of specific schema elements in either

the Body or Header of the SOAP Message.
• If the message has been received from the application

or if it was received over the network.

public boolean
processExchange(SOAPContext soapContext,
 int direction)
throws UnknownExchangeException,

 3

 IncorrectExchangeException,
 MessageFlowException,
 ProcessingException

If the WsProcessor instance does not know how to
process a certain message, it throws an
UnknownMessageException an example of this
scenario is a WSRM SourceProcessor receiving a control
message corresponding to a different WS specification
such as a WS-Eventing subscribe request. An
IncorrectExchangeException is thrown if the
WsProcessor instance should not have received a specific
exchange. For example if a WSRM SinkProcessor
receives a wsrm:Acknowledgement it would throw this
particular exception since acknowledgements are
processed by the source. MessageFlowException
reports problems related to networking within the
container environment within which the WsProcessor is
hosted. The ProcessingException corresponds to
errors related to processing the received SOAP message.
This is typically due to errors related to the inability to
locate protocol elements within the SOAP message, the
use of incorrect (or different versions of) schemas and no
values being supplied for some schema elements.

If the ProcessingException was caused due to a
malformed SOAP message received over the network an
appropriate SOAP Fault message is routed back to the
remote endpoint. If a ProcessingException was
thrown due to messages received from the hosting web
service endpoint or if networking problems are reported in
the MessageFlowException processing related to the
SOAP message is terminated immediately.

The capabilities within the WsProcessor and the
WsMessageFlow enable the SourceProcessor and
SinkProcessor to focus only on the logic related to
the respective roles within the WSRM protocol. Upon
receipt of an outgoing SOAP message the
SourceProcessor checks to see if an active Sequence
currently exists between the hosting endpoint and the
remote endpoint. If one does not exist, the
SourceProcessor automatically initiates a create
sequence exchange to establish an active Sequence. For
each active Sequence, the SourceProcessor also
keeps track of the Message Number last assigned to
ensure that they monotonically increase, starting from 1.
The SourceProcessor performs other functions as
outlined in the WSRM specification which includes inter
alia the processing of acknowledgements, issuing
retransmissions and managing inactivity related timeouts
on Sequences. The SinkProcessor responds to the
requests to create a sequence, and also acknowledges any
messages that are received from the source. The
SinkProcessor issues acknowledgements (both
positive and negative) at predefined intervals and also
manages inactivity timeouts on Sequences. Finally, both
the SourceProcessor and SinkProcessor detect

any problems related to malformed SOAP messages and
violations of the protocol, and throw the appropriate faults
as outlined in the WSRM specification.

Since WSRM leverages capabilities within WS-
Addressing and WS-Policy we also had to implement
Processors which incorporate support for rules and
functionalities related to these specifications. While
generating responses to a targeted web service, WS-
Addressing rules need to be followed in dealing with the
wsa:ReferenceProperties and
wsa:ReferenceParameters element contained in a
service endpoint’s EPR. Similarly responses, and faults
are targeted to a web service or designated intermediaries
based on the information encapsulated in other WS-
Addressing elements such as wsa:ReplyTo and
wsa:FaultTo elements. The WS-Policy specification is
used to deal with policy issues related to sequences. An
entity may specify policy elements from an entire range of
sequences. The WSRM processors leverages capabilities
available within these WS-Addressing and WS-Policy
processors to enforce rules/constraints, parsing and
interpretation of elements and the generation of
appropriate SOAP messages (as in WS-Addressing rules
related to the creation of a SOAP message targeted to a
specific EPR).

Upon receipt of a SOAP message, at either the
SourceProcessor or the SinkProcessor, the first
set of headers that need to be processed are those related
to WS-Addressing. For example, the first header that is
processed in typically the wsa:From element which
identifies the originator of the message. The wsa:To
element is also checked to make sure that the SOAP
message is indeed intended for the hosting web service
endpoint. In the case of control exchanges, the semantic
intent of the SOAP message is conveyed through the
wsa:Action element in WS-Addressing. Similarly, the
relationship between a response and a previously issued
request is captured in the wsa:RelatesTo element.

WSRM requires the availability of a stable storage at
every endpoint. The storage service leverages the JDBC
API which allows interactions with any SQL-compliant
database. Our implementation has been tested with two
relational databases ─ MySQL and PostgreSQL.

 4

Figure 1: Overview of WSRM implementation

3.1 Processing Schemas

Figure 1 provides a high-level view of the architecture
of our implementation

While implementing the WSRM specifications we

were faced with an important decision regarding the
choice of tool to use in processing the XML schema
pertaining to WSRM, WS-Addressing, WS-Policy and
SOAP. We were looking for a solution that allowed us to
process XML from within the Java domain. There were
three main choices. First, we could use the Axis Web
Service container’s wsdl2java compiler. Issues (in version
1.2) related to this tool’s support for schemas have been
documented in Ref [7]. Specifically, the problems related
to insufficient (and in some cases incorrect) support for
complex schema types, XML validation and serialization
issues.

The second approach was to use the JAXB
specification ─ a specification from Sun to deal with
XML and Java data-bindings. JAXB though better than
what is generated using Axis’ wsdl2java still does not
provide complete support for the XML Schema. We
looked at both the JAXB reference implementation from
Sun and JaxMe from Apache (which is an open source
implementation of JAXB).

The final approach involves utilizing tools which focus
on complete schema support. Here, there were two
candidates –- XMLBeans and Castor –- which provide
good support for XML Schemas. We settled on
XMLBeans because of two reasons. First, it is an open
source effort. Originally developed by BEA it was
contributed by BEA to the Apache Software Foundation.
Second, in our opinion, it provides the best and most
complete support for the XML schema of all the tools
currently available. It allows us to validate instance
documents and also facilitates simple but sophisticated
navigation through XML documents. The XML generated
by the corresponding Java classes is true XML which

conforms to (and can be validated against) the original
schema.

4. Performance Measurements

We now include performance measurements from our
experiments. These experiments were performed on a 3.5
GHz Pentium IV machine with Sun’s 1.4.2 Java Virtual
Machine. For each measurement we performed the
experiment 100 times. An outlier removal program was
used to remove outliers, if any, in the result set. To detect
outliers we first calculate the mean and standard deviation
of the entire data set. This is then used to obtain a z-score
for each data point, according to following formula:

s
xxz i

i
−

= where x is the mean and is the standard

deviation of the original sample. If the z-value is greater
than 3, the corresponding data point is deemed an outlier.

s

For each run we also tracked the memory utilization.
This was done by simply recording the memory utilization
prior to the invocation of a specific operation and after the
invocation. In some cases this calculation resulted in a
negative utilization because of garbage collection (via the
Java garbage collector thread) in the intervening period.
We have measured several relevant performance aspects
of our implementation. We now proceed to discuss each
of this in detail. A synopsis of our results is also available
in a separate table (Table 1) for the reader’s perusal. This
table lists the operation, the mean, the standard deviation,
standard error, minimum and maximum values for the
CPU bound latencies (in microseconds) and finally the
memory utilization associated with the operation.

In our performance measurements we started off by
measuring the time to create a SOAP messages within the
Axis Web Services container (SOAPMessage) and using
our XMLBeans representation of the SOAP schema
(EnvelopeDocument). We found that the costs in terms of
{latencies, memory utilization} for these operations were
similar. For EnvelopeDocument the cost was {126.86
µSecs, 2192 B} while for SOAPMessage this cost was
around {117.34 µSecs, 2192 B}. The standard deviation
(and the corresponding standard error) was higher for
SOAPMessage creation at 187.30 µSecs. Since every
interaction between web service endpoints are
encapsulated within SOAP messages, these costs
represent the minimum costs that such interactions may
incur.

To facilitate deployments within Apache’s Axis and
Sun’s JWSDP container, we have developed utilities
which facilitate conversions between the SOAP
representations ─ SOAPMessage and EnvelopeDocument.
The cost to convert an EnvelopeDocument into a
SOAPMessage was around {2627.54 µSecs and 60816B}
while the cost for converting a SOAPMessage into a
EnvelopeDocument was around {827.58 µSecs, 34424B}.

 5

One of the reasons for this disparity is that the Axis
implementation renames the schema namespace qualifiers
contained within the EnvelopeDocument.

Since WSRM heavily leverages the WS-Addressing
specification we benchmarked some overheads related to
WS-Addressing processing. Here, we first measured the
costs associated with the creation of simple EPRs based
on a simple URL String and the more elaborate EPR that
contains the wsa:ReferenceProperties element. As
might be expected the costs for the simple EPR (150.51
µSecs, 2648B) were better than those for the more
elaborate EPR (397.34 µSecs, 7184B).
Next, we measured the costs involved in the creation of a
SOAP message, targeted to a specific EPR, with the most
basic WSA fields ─ wsa:To and wsa:MessageID within
the SOAP message. In the second case, we included
additional elements such as wsa:From, wsa:RelatesTo
and the wsa:Action field. In both these cases the created
SOAP message conformed to the rules outlined in the
WS-Addressing specification. Here we found that the cost
for creating the SOAP message with basic WS-
Addressing elements were (397.34, 7184B) while the cost
for additional elements was (537.81 µSecs, 13880B).

Upon receipt of a SOAP message, the first task that
needs to be performed is the parsing of the SOAP
message for the WS-Addressing elements. This is
typically the precursor to further more specific parsing
later on since the WSA elements indicate not only the
semantic intent (wsa:Action) but also the context
(wsa:Relates, wsa:MessageID) and also where errors
need to be issued to in case there are problems. For
example, once we have determined the semantic intent of
a message from the wsa:Action to be a Create Sequence
request, we may initiate operations to parse the
wsrm:CreateSequence element within the Body of the
SOAP message. In our benchmarks the cost for parsing
the SOAP message for WS-Addressing elements was
found to be {1224.752 µSecs, 61024B}. Since this
operation is performed for every SOAP message this is a
cost that will be incurred during each interaction between
the service endpoints.

Next, we measured the costs involved in the creation of
a WSRM create sequence request (352.16 µSecs, 16392B)
and the response (335.21 µSecs, 18160B) generated upon
the receipt of this request. These costs are in addition to
any costs involved due to communication overheads
between the service endpoints.

For every message received from the hosting service
endpoint at the SourceProcessor, the appropriate
wsrm:Sequence is added. This contains the identifier
associated with the previously created Sequence and the
Message Number assigned to this message. We measured
the costs involved in the creation of this
wsrm:Sequence element (44.72 µSecs, 2424B) and the
costs involved in the addition (12.67 µSecs, 464B) of this

element to the SOAP message received at the
SourceProcessor.

A WSRM sink is expected to acknowledge messages at
regular intervals (based on the acknowledgement
interval). We have measured the costs involved in the
creation of wsrm:SequenceAcknowledgement
document based on a set of Message Numbers. We found
this cost to be (516.58 µSecs, 20624B). This cost includes
the costs involved in the creation of the one or more
wsrm:AcknowledgementRange elements which cover
acknowledgements for a group of messages. Thus if one is
acknowledging Message Numbers
1,2,3,4,5,7,8,9,11,12,13 there would be 3
acknowledgement ranges corresponding to 1─5, 7─ 9 and
11─13.

We also measured the costs involved in the creation of
wsrm:TerminateSequence (24.66 µSecs, 2072B) and
the time to create a WSRM Fault(519 µSecs, 18096)
based on the rules outlined in the WSRM and WS-
Addressing specifications.

 0

 5000

 10000

 15000

 20000

 0 10 20 30 40 50 60 70 80 90 100

El
ap

se
d

Ti
m

e
(M

ic
ro

se
co

nd
s)

Test Run #

Total W SRM Processsing times at Source and Sink

W SRM Source Node
W SRM Sink Node

Figure 2: Total Processing times

Figure 2 depicts the total processing times at a WSRM
source and sink. This includes the times for storage of
message to stable storage at both source and sink. In our
experiments the stable storage was based on MySQL. For
MySQL we found the storage cost to be typically between
4-6millseconds for message sizes 100B-10KB. Only after
the SOAP message with the added wsrm:Sequence
element has been stored onto stable storage will the
message be routed to the remote sink endpoint. The graph
does not include communication overheads involved in
communication between the service endpoints. So these
costs are in addition to the networking costs involved. In
our experience we have found this cost to vary from a few
milliseconds in LAN settings to a few hundred
milliseconds in WAN settings.

 6

Table 1: Summary of results (All results in Microseconds)
Operation Mean Standard

Deviation
Standard
Error

Num of
Outliers

Min
Value

Max
Value

Memory
Utilization
(Bytes)

Create an XMLBeans based Envelope
Document

126.864 49.395 5.041 4 108 424 2192

Create an Axis based SOAPMessage 117.340 187.302 19.017 3 34 1183 1824
Convert an EnvelopeDocument to a
SOAPMessage

2627.548 905.483 93.894 7 1722 5350 60816

Convert SOAPMessage to
EnvelopeDocument

827.589 586.872 60.211 5 325 2802 34424

Create a WS-Addressing EPR
(Contains just a URL address)

87.562 58.590 5.979 4 71 465 2072

Create a WS-Addressing EPR
(Contains WSA ReferenceProperties)

150.515 96.764 9.927 5 112 705 2648

Create an Envelope targeted to a
specific WSA EPR

397.340 200.396 20.669 6 267 1276 7184

Create an Envelope targeted to a
specific WSA EPR with most WSA
message information headers

537.814 347.497 35.283 3 344 2123 13880

Parse an EnvelopeDocument to
retrieve Wsa Message Info Headers

1224.752 727.870 73.904 3 645 4573 61024

CreateWsrmSequenceRequest 352.163 260.997 26.364 2 229 1568 16392
CreateWsrmSequenceResponse 335.210 226.060 23.193 5 224 1174 18160
CreateWsrmSequenceDocument 44.724 4.733 0.478 2 42 75 2424
Add a WsrmSequenceDocument to an
existing envelope. (Contains sequence
identifier and message number)

12.670 0.494 0.050 3 12 14 464

Create a WSRM
SequenceAcknowledgement based on
a set of message numbers

516.583 248.274 25.339 4 335 1514 20624

CreateTerminateSequence 24.666 36.203 3.638 1 19 380 2072
CreateWsrmFault 519.802 294.699 30.077 4 347 1619 18096

5. Related Work

Traditional group based systems have a large body of
work [8, 9] addressing the problems of reliable delivery
and ordering. An exemplar of a group based system which
addressed these issues is the Isis system, which pioneered
the virtual synchrony model. Here a distributed system is
allowed to partition under the assumption that there would
be a unique partition which could make decisions on
behalf of the system as a whole, without risk of
contradictions arising in the other partitions and also
during partition mergers. The Isis [10] model works
extremely well works well for problems such as
propagating updates to replicated sites. By incorporating
variants of the virtual synchrony model systems such as
Horus [11] and Transis [12] can handle concurrent views
in different partitions.

In the area of publish/subscribe systems such as DACE
[13], Gryphon [14] and NaradaBrokering [15] address the

problem of reliable delivery from multiple producers to
multiple consumers. These systems incorporate schemes
which are based on asynchronous control-message
exchanges to ensure reliable delivery. These systems also
leverage stable storages to facilitate reliable delivery and
also have extensions to enable exactly once delivery of
messages.

Message queuing products (MQSeries) [16] leverage
the store-and-forward approach where the queues are
statically pre-configured to forward messages from one
queue to another. This forwarding takes place only after
the queue has first stored a message to stable storage.
Powerful distributed object systems such as CORBA also
have schemes for increased reliability for CORBA
applications. More specifically, the FT-CORBA) [17]
specification leverages entity redundancy (through
replication) and defines interfaces, policies and services to
achieve additional resilience.

In the area of Web Services, the WS-Reliability
specification from Sun and Oracle includes support for

 7

more or less the same set of capabilities as in WS-Reliable
Messaging.

6. Conclusions and Future Work

In this paper we presented details about our
implementation of the WS-ReliableMessaging
specification. We also included results from our
implementation. We hope that this work can be used by
researchers and system designers to make informed
decisions about their Web Services based reliable
messaging strategy. Specifically, researchers can use this
work to decide the tradeoffs that might need to be made
within their application domain.

We have recently finished implementation of the WS-
Reliability specification and will be releasing this
software to the open source community soon. One area of
future research that we feel holds promise if the the use of
pull parsers to speed up some of the parsing operations.
We are hopeful that this strategy would improve the
overall performance costs involved and intend to explore
this further in future works.

References

[1] M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging

Framework," June 2003. http://www.w3.org/TR/
2003/REC-soap12-part1-20030624/

[2] Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl

[3] Web Services Reliable Messaging Protocol (WS-
ReliableMessaging)
ftp://www6.software.ibm.com/software/devel
oper/library/ws-reliablemessaging200403.pdf

[4] Web Services Reliable Messaging TC WS-Reliability.
http://www.oasis-open.org/committees/download.php/
5155/WS-Reliability-2004-01-26.pdf

[5] Web Services Addressing (WSAddressing)
ftp://www6.software.ibm.com/software/developer/library/
wsadd200403.pdf

[6] Web Services Policy Framework (WS-Policy). IBM, BEA,
Microsoft and SAP. http://www-
128.ibm.com/developerworks/library/specification/ws-
polfram/

[7] Kevin Gibbs, Brian D Goodman, IBM Elias Torres. Create
Web services using Apache Axis and Castor. IBM
Developer Works. http://www-
106.ibm.com/developerworks/webservices/library/ws-
castor/.

[8] Vassos Hadzilacos and Sam Toueg. A modular approach to
fault-tolerant broadcasts and related problems. Technical
Report TR94-1425, Cornell University, Ithaca, NY-14853,
May 1994.

[9] Kenneth Birman and Keith Marzullo. The role of order in
distributed programs. Technical Report TR 89-1001,
Cornell University, Ithaca, NY 14853, 1989.

[10] Kenneth Birman. Replication and Fault tolerance in the
ISIS system. In Proceedings of the10th ACM Symposium

on Operating Systems Principles, pages 79–86, Orcas
Island, WA USA, 1985.

[11] R Renesse, K Birman, and S Maffeis. Horus: A flexible
group communication system. In Communications of the
ACM, volume 39(4). April 1996.

[12] D Dolev and D Malki. The Transis approach to high-
availability cluster communication. In Communications of
the ACM, vol 39(4). April 1996.

[13] Romain Boichat Effective Multicast programming in Large
Scale Distributed Systems. Concurrency: Practice and
Experience, 2000.

[14] Sumeer Bhola, Robert E. Strom, Saurabh Bagchi,
Yuanyuan Zhao, Joshua S. Auerbach: Exactly-once
Delivery in a Content-based Publish-Subscribe System.
DSN 2002: 7-16

[15] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A
Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids. Proceedings of ACM/IFIP/
USENIX International Middleware Conference. 2003.

[16] The IBM WebSphere MQ Family. http://www-
3.ibm.com/software/integration/mqfamily/

[17] Object Management Group, Fault Tolerant CORBA
Specification. OMG Document orbos/99-12-08 edition,
December 1999.

 8

http://www.w3.org/TR/ 2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/ 2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/wsdl
ftp://www6.software.ibm.com/software/devel oper/library/ws-reliablemessaging200403.pdf
ftp://www6.software.ibm.com/software/devel oper/library/ws-reliablemessaging200403.pdf
http://www.oasis-open.org/committees/download.php/ 5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/ 5155/WS-Reliability-2004-01-26.pdf
ftp://www6.software.ibm.com/software/developer/library/ wsadd200403.pdf
ftp://www6.software.ibm.com/software/developer/library/ wsadd200403.pdf
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-3.ibm.com/software/integration/mqfamily/
http://www-3.ibm.com/software/integration/mqfamily/

	Abstract
	Introduction
	WSRM
	Specifications leveraged by WSRM

	Implementation of the WSRM
	Processing Schemas

	Performance Measurements
	Related Work
	Conclusions and Future Work
	References

