
 
A Collaborative Framework for Scientific Data Analysis and Visualization 

 

 
Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox 

Department of Computer Science 

Indiana University Bloomington, IN, 47404 

{jekanaya,spallick,gcf}@indiana.edu 

 

 
 ABSTRACT 
 

Human interpretation is a common practice in many 

scientific data analyses. After the data is processed to a 

certain extent, the remainder of the analyses is performed 

as a series of steps of processing and human 

interpretation. Many large scientific experiments span 

multiple organizations, therefore, both the data and the 

teams involved in these experiments, are distributed 

across these organizations. When the focus of an analysis 

is to extract new knowledge, collaboration is a key 

requirement. Real time or near real-time collaboration of 

expertise, on scientific data analyses, provides a better 

model of interpretation of the processed data.  In this 

paper, we present a collaborative framework for scientific 

data analysis that is also secure and fault tolerant. 

 

 
KEYWORDS: Collaboration Frameworks, Collaborative 

Distributed Systems, Scientific Computing. 

 

 

1. INTRODUCTION 
 

The final step of most scientific data analyses is human 

interpretation. Experts in a particular area of study are 

located in different parts of the country and in different 

countries. Collaborative scientific data analysis is a 

promising field of study, since its goal is to bring the 

expertise scattered all over the world to a single data 

analysis session. The typical steps of a large-scale 

scientific data analysis are:  (i) Locate the data from 

experiments (typically a large volume of data). (ii) 

Execute various analysis functions on this data. (iii) 

Further process the analyzed data to produce graphs or 

simulations. (iv) Interpretation by scientists. 

 

The collaborative approach yields tremendous benefits to 

the final interpretation, since it provides a framework for 

different experts to participate in the final step of the 

processing. Typically, these analyses are performed in a 

server cluster, computational grid, or in a group of 

voluntary participants' computers, as in the case of many  

 

projects under Berkeley Open Infrastructure for Network 

Computing[2]. These analyses may produce a different 

number of outputs (results), and these outputs may be 

generated at different time intervals. These factors decide 

the way a collaborative session can be set up for the 

interpretation of data produced by an analysis. If the 

analysis phase has multiple steps, and each phase takes 

fairly less time, then synchronous collaboration would be 

the right model. On the other hand, if the analysis takes a 

longer time to complete, then it is better to run the 

analysis first, and collaborate on the interpretation of the 

results in an asynchronous manner. In either case, the 

sharing of results can be done as shared displays or shared 

events.  

 

The shared display model fits best for simply sharing 

results. Therefore, the scientists who only wanted to see 

the results of an ongoing experiment can see them without 

further processing at their sites using this model. The 

shared event model, on the other hand, permits the 

scientists to participate in an experiment actively. They 

can either, perform further processing such as fitting 

models on the received events or simply merge the results. 

Both these paradigms have their own merits and demerits, 

which we will discuss extensively when we present the 

architecture of the proposed system. 

 

In many scientific data analyses, the composability 

property, which is the ability to perform the data analysis 

as a collection of sub data analyses that can be executed 

concurrently, and thereby producing the result by merging 

the outputs of these sub analyses, is often exploited to 

achieve scalability. This type of analysis produces a 

considerable amount of sub results, and by enabling 

collaboration for such analysis, the collaborating 

participants will be able to see the results getting shaped 

as and when the sub results are available. This will be a 

very dynamic collaboration if the number of sub results is 

high, and if they are produced at higher rates.  

 

High Energy Physics (HEP) data analysis is an example of 

composable data analysis. Typically, the aim of such data 



analysis is to identify a particular type of events within the 

millions of events, generated by HEP experiments. The 

result of such analysis would be a histogram of possible 

events. The task of the analysis is to go through all the 

events available, and identify a particular set of events. 

We can easily break down the initial data set into smaller 

subsets, and run the same analysis software on these 

subsets concurrently. The resulting histograms can then be 

combined to produce the final result. In a collaborative 

session, each participant will receive these histograms 

(under a shared event model) and see them being merged 

in real-time. Please note that the term  “event” in “shared 

event” has no correlation to the events in the HEP data 

analysis. 

 

As explained above, the scientists participating in a 

collaborative session will not be from only one 

organization or a single administrative domain. It will be a 

global participation. Therefore, supporting such 

collaboration requires careful attention to the security 

aspects of the framework for collaboration. How to 

authenticate various participants and how to authorize 

them to perform various activities are some of the 

questions that should be answered by the collaborative 

framework. 

 

When many scientists participate in a collaborative 

session for data analysis, it is crucial to consider the fault 

tolerance aspect of the framework as well. A single failure 

in the processing entities or the software components 

should not waste the total man hours put into the analysis 

task. The framework should be able to respond to these 

failures and proceed with the analysis. 

 

Typical collaborative frameworks in the scientific 

community fall into two categories. First is the framework 

for sharing data and heterogeneous distributed resources 

and, second is the framework for supporting collaboration 

among multiple participants. Most grid portal frameworks 

such as OGCE[9] and GridSphere[8] fall into the first 

category, and form a more static version of collaboration. 

Sharing data and resources among the participants is a key 

strength in these technologies. Software such as 

NEESGrid[6] extends the goal of sharing data and 

resources into near real-time tele-observation of sensor 

and experimental data and also to tele-operation of remote 

equipment control systems, allowing a dynamic form of 

collaboration among the participants. The collaborative 

frameworks such as Enabling Virtual 

Organizations(EVO)[4] and Anabas[1] fall into the 

second category. They focus on developing tools for 

collaboration, such as shared white boards, audio video 

conferencing, recording, playback etc. Although the above 

systems support different aspects of collaborative data 

analysis, there is no support for real-time (synchronous) 

collaborative data analysis in either major Grid or Web 

2.0 systems. 

 

Our architecture provides a solution to both data analysis 

and real-time or near real-time sharing of results for a set 

of collaborative participants. The support for executing 

the data analyses in a close network proximity to the data 

minimizes the overall data movement, and thereby favors 

scientific data analyses involving large volumes of 

distributed data. The multiple modes of collaboration, 

supported by the proposed framework enable the scientists 

to join a collaborative data analysis session using a model 

of their choice. For example, a scientist with limited 

computer power can decide to join a collaborative session 

using the shared display mode. In addition, a scientist who 

joins in late to a collaborative session can retrieve the 

results (events) as shared events or shared displays. This 

form of collaboration is best suited for the final steps of 

most scientific data analyses, which focus on extracting 

knowledge from the processed data. The goal of the 

proposed framework is to support this type of 

collaboration with secure and fault tolerant manner. 

 

In this paper, we present a secure and fault tolerant 

framework for collaborative data analysis that supports 

different collaborative modes. Section 2 discusses the 

proposed architecture and the core software components. 

Section 3 of the paper discusses the advanced research 

prototype of the system and section 4 presents the 

performance evaluation of our system. Section 5 discusses 

the related work in this area of research. We present our 

conclusions and future work in section 6. 

 

2. ARCHITECTURE 
 

Before presenting the architecture of the proposed 

framework, it is important to identify the key features, 

which are expected from the proposed framework. We 

will use the following terms in our discussion. Master 

client- the user interface program that a scientist uses to 

initiate the data analysis task. Client - a user interface 

program used by other scientists who participate in the 

collaborative data analysis. The collaborative data 

analysis framework should support: 

 Functionality to create an experimental session to 

keep track of relevant content such as analysis scripts, 

configuration files, and communication topics.  

 Execution of the analysis in multiple geographic 

locations where the data is available. 

 Multiple modes of collaboration such as shared 

events, shared displays, synchronous, and 

asynchronous collaboration. 

 Capability to perform different post processing on the 

results received. 

 Performing the above scenarios in a secure and fault 

tolerant manner. 



A framework capable of supporting the above 

requirements can be designed by incorporating three main 

software components: 

1. A gateway to compute resources i.e. a server capable 

of operating at the head node of a cluster or as a grid 

enabled web service framework. 

2. Content distribution framework as the communication 

layer. Publish/subscribe messaging systems are best 

suited for this purpose, since we need to disseminate 

results and messages to all the participating entities 

within the collaborative session. 

3. Software components to keep track of the state of the 

entire system, including the collaborative sessions 

and the available compute resources. In our 

implementation, we have called these agents, and we 

use multiple instances of these to sustain failures.  

 

2.1. Software Subsystems 
 

We use Clarens server[7], developed at Caltech, for the 

data analysis framework and NaradaBrokering[10], a 

publish/subscribe messaging substrate, as our 

communication layer. 

 

2.1.1 Clarens Server 

Clarens is a grid enabled web service framework, 

implemented in Python, which supports most common 

web service protocol stacks comprising HTTP and 

SOAP/XML-RPC with SSL/TLS encryption and X.509 

certificate-based authentication. Although the server 

implementation of Clarens is Python-based, it provides 

client libraries for other languages such as Python, Iguana, 

JavaScript, and most importantly, the C++ based 

interpreted language supported by the ROOT Analysis 

framework[17]. Support for all the above features as well 

as the integrated support for ROOT makes Clarens a key 

framework for various scientific data analyses. 

 

2.1.2. NaradaBrokering 

NaradaBrokering is a content distribution infrastructure. 

The NaradaBrokering substrate itself comprises a 

distributed network of cooperating broker nodes. It can be 

used as a message-oriented middleware or as a 

notification framework. Communication within 

NaradaBrokering is asynchronous, and the substrate 

places no constraints on the size, rate, or scope of the 

interactions encapsulated within events or the number of 

entities present in the system. In addition, it incorporates 

support for wide verity of transport protocols making it an 

ideal communications infrastructure for heterogeneous 

distributed systems. 

 

2.2. Collaborative Data Analysis Framework 
 

Figure 1 shows the architecture diagram of the system 

with the above software components, and how they 

interact to provide a scalable framework for collaborative 

data analysis. 
 

 
 
 

Figure 1. Architecture of the Proposed Framework 

 

In the above architecture, the Clarens server acts as the 

gateway to data and compute resources at a particular site. 

Entities in our architecture, clients, servers, and agents, 

communicate using NaradaBrokering. At startup, each 

Clarens server notifies its availability to the agents, and 

the agents start keeping track of the available servers 

thereafter. We have given complete details of a scalable 

approach to tracking entities in a distributed system in a 

secure and authorized manner in Ref[11]. The scientist 

who initiates the analysis session uses the client software 

(simply master client hereafter) to locate an agent and then 

uses the agent to locate available Clarens servers and data. 

Next, the scientist proceeds by creating a session for the 

experiment with the agent, specifying the experiment 

details such as the data files, the analysis files, and other 

settings related to communication topics. These steps are 

shown by the arrow a. Once a session is created, other 

participating scientists can connect to the same session, 

shown by arrow c, using their client software. After this 

initialization step, the scientist who initiates the analysis 

(client 1 in Figure 1) informs the agent to start the analysis. 

The Agent notifies the Clarens servers about the 

availability of the analysis jobs, and the Clarens servers 

starts processing them (shown by the arrow b). This 

approach decouples the communication logics associated 



with the computational servers from the client 

implementation. Once an analysis job is completed, the 

Clarens servers notify the results to the collaborating 

clients (shown by the arrows a and c). 

 

2.3. Collaboration Modes 
 

The above architecture supports most of the typical 

collaborative modes such as synchronous and 

asynchronous collaboration each with either shared event 

or shared display modes. 

 

2.3.1. Synchronous with Shared Event Mode 

We support two main approaches within this type of 

collaboration based on the way the results of the analysis 

are transferred to the participating entities. One approach 

is based on the “push paradigm”, where the Clarens server 

publishes the result of an analysis job once it is available. 

The main advantage of this approach is that the 

participating clients do not need to connect to the servers 

to retrieve results. Once they discover the topic over 

which the results are published, the results will be 

delivered to them as and when they are available at the 

servers. When the results are available at the client it can 

then perform additional processing on the results, which is 

a main benefit of this approach, if needed or simply save 

the results.  

 

Another approach that we support is to let the Clarens 

servers publish the location of the result of a particular 

analysis job once it is completed. These can be the inputs 

for another level of processing (if required). Although we 

have not yet explored this, the above feature enables a 

hierarchical data analysis using our framework. 

 

2.3.2. Synchronous with Shared Display Mode 

In the shared display mode of collaboration, the master 

client handles the control of the collaborative session. 

When the master client receives a result from a Clarens 

server, it performs the necessary post processing such as 

fitting and plotting functions. If there is a change in the 

user interface, then the client program captures it, and 

publishes it using the NaradaBrokering. Collaborating 

entities who are only interested in seeing the results of an 

experiment without actively participating in processing 

these results (shown by the arrow d) receive these events. 

The client programs, used by scientists, will simply render 

the images sent to them by the master client. This 

approach has many advantages, since it simply expands 

the number of ways of distributing the results of a 

particular analysis. The only post processing required at 

the client program is simply rendering these images. 

Another possibility is to upload the images to a web server 

so that they can be publicly available. 

 

 

2.3.3. Asynchronous Collaboration 

Although a collaborative session is more interactive when 

all the participants are participating in real-time (in 

synchronous fashion), getting all the interested 

participants to participate in a session at the right time will 

be hard. This is especially true when they are participating 

from locations around the globe that are in different time 

zones. Therefore, we should expect to support participants 

who come late into a collaborative session or participants 

who need to only  see the results of an already terminated 

collaborative session.  

 

Our architecture supports both these types of 

collaborations in the following manner. When a master 

client creates a collaborative session with an agent, the 

agent keeps track of the collaborative session. It stores 

information such as the communication topics under 

which various events related the experiment are 

disseminated, analysis functions, and the location of the 

data files. Nardabrokering's reliable delivery 

feature[12,13] guarantees that once a client is subscribed 

to a particular topic it can retrieve all the events that have 

been published to the same topic from the creation of that 

topic. To eliminate the possibilities of overlapping topic 

names, master client appends a 128 bit long universally 

unique identifier to each topic that it creates for a data 

analysis session. If a scientist joins a collaborative session, 

after it has been started, or after it has finished, the 

scientist can simply retrieve the events related to that 

experiment. Here also, the scientists can retrieve results 

events either as they were and perform further processing 

of their own or simply see the screenshots published by 

the master client. With the former method, the scientists 

will be able to see the results as if it is being performed in 

real-time.  

 

2.4. Security 
 

The above collaborative infrastructure spans multiple 

domains of control, and therefore the security aspect of 

the framework is a very important consideration. The 

Clarens server provides authentication[18] via a Public 

Key Infrastructure, which is based on the X509 

certificates issued by a trusted Certificate Authority, and 

authorization via a gridmap file similar to other grid 

frameworks such as the GlobusToolkit[5]. Since our 

framework uses publish/subscribe messaging as the main 

medium of communication, we need to guarantee that only 

the authorized entities will be able to discover topics and 

publish data to those topics. In a companion paper, S. 

Pallickara et al.[14] have given a detailed description of 

NaradaBrokering's framework for the secure and 

authorized end-to-end delivery of streams. Clarens server 

uses the user credentials available in the publish/subscribe 

messages for the authentication and authorization. This 

ensures that only the authorized scientists can perform 



analysis jobs using Clarens. This will ensure that only the 

authorized entities can create experimental sessions with 

an agent, and publish or subscribe to topics used.  

 

2.5. Fault Tolerance 
 

The proposed architecture does not have any central 

control point such as a “portal” and hence poses no threat 

of a single-point-of-failure. The messaging infrastructure 

can be configured as a set of broker network, which 

supports fault tolerance[13]. Agents keep track of the 

ongoing experiments and other bookkeeping information 

relevant to the experiments. We incorporate a discovery 

mechanism for agents wherein the client is allowed to 

discover an available agent based on certain criteria such 

as response time. Once such an agent is discovered, the 

client uses that agent to run the experiments. Agents also 

use a gossip protocol to synchronize the experiment's 

metadata between them; this allows the system to tolerate 

individual agent failures. Clarens server failures during 

the execution of a data analysis task can cause an 

incomplete result set. However, the composability 

property of the data analysis allows users to restart the 

analysis in a different Clarens server for the data files that 

have not been analyzed if the same data is available in the 

new location as well. In our current architecture, user 

intervention is required in selecting a new Clarens server 

and for restarting the analysis. 

 

3. IMPLEMENTATION 
 

We selected a particle physics data analysis task as our 

main use-case and built a proof of concept implementation 

to see how the overall system works. Physicists at Caltech 

were using the Clarens server and ROOT to perform 

various data analyses tasks relating to particle physics 

experiments. ROOT was the data analysis framework for 

the particle physicist, and the Clarens server also supports 

execution of data analysis functions written in ROOT. 

However, their use of these technologies did not help 

them to collaborate over an analysis task or to process 

data available at different geographic locations. We have 

access to their analysis scripts, and demonstrated that our 

system can perform the data analysis in a collaborative 

and much more scalable manner than before. 

 

ROOT also comes with a C++ interpreter named CINT[3], 

which can be used for rapid prototyping. Thus, we also 

decided to use CINT as our user interface programming 

language. With this decision, our implementation uses 

ROOT as an object oriented data analysis framework, of 

which the analysis functions are written, and as a language 

for developing user interfaces. 

 

NaradaBrokering is the main communication medium in 

our architecture, and hence, it should be accessible to all 

the entities in the system. Integrating NaradaBrokering 

written in Java with user interfaces written in ROOT and 

with Clarens server written in Python is one of the main 

challenges that we encounter. We implemented a 

publish/subscribe client in C++, and incorporated the 

necessary changes into Clarens in the Python language. 

This allows both Clarens and the user interfaces written in 

ROOT to access the publish/subscribe capabilities of 

NaradaBrokering. During the first phase of the work, we 

exclude the implementation of agents, and we are 

currently working on completing the implementation to 

comply with the proposed architecture. Figure 2 shows the 

user interface of the client program that a physicist can 

use for collaborative data analysis. 
 

 
Figure 2. User Interface of Proof of Concept 

Implementation 
 

The top right corner of Figure 2 shows the available 

Clarens servers for the data analysis tasks. The compute 

capabilities used by these servers depend on the way they 

have configured at each location. Once a user selects 

servers and presses a button to connect to them, the user 

interface retrieves names of the available data files and 

shows them to the user. In our current implementation, 

these names are retrieved directly from Clarens servers. 

Once user selects an appropriate number for grouping the 

data files to computing jobs (we call them rootlets) the 

user interface starts submitting these jobs to the 

appropriate servers. This step happens only in the master 

client. The rest of the participants, once connected to a 

collaboration session, simply await the results.  

 

At the end of processing each rootlet, the respective 

Clarens servers notify the clients publishing the results. 

Once an event is received, the user interface performs the 

necessary post-processing. In our use-case, the size of a 

single data file is 33MB, and we group multiple of these 

files for a single execution unit (rootlet) for analysis. The 

resulting histogram of an analysis job is nearly 9KB in 

size. The cells shown at the right hand side of the 

screenshot (Figure 2) are the individual analysis jobs. 

Once a histogram is received by the user interface, it 

merges the histogram with the existing histograms and 



executes a “fitting” function to fit a curve to the available 

data, and finally, it updates the current result displayed in 

the canvas. 

 

4. RESULTS 
 

We performed several benchmarks using our proof of 

concept implementation. First, we measured the time for 

various execution tasks in our framework. Figure 3 shows 

the experiential setup that was used, while Figure 4 

highlights the key metrics that we obtained. 
 

     
Figure 3. Benchmark Setup 

 

 

 
Figure 4. Main Processing Tasks and their Execution 

Times 
 

After identifying key execution times we measured the 

propagation time of events from the end of the data 

analysis phase till it reaches the shared event clients and 

from there on to the shared display clients. We measured 

this by varying the number of participants within the 

collaboration session to see the effect of the number of 

participants on the event propagation latencies. 

 

The results obtained by the above benchmark are shown 

in the Figure 5 in which the event propagation time is 

shown in a logarithmic scale. In our architecture, at least 

one participant, typically, the master client should publish 

screenshots of the client software to support the shared 

display mode of collaboration. The additional cost in 

capturing the screen and publishing it adds a delay to the 

shared display events. This is the reason for having a 

higher event propagation time for shared display type 

collaboration in the graph. From these results, it is evident 

that the number of collaborators does not cause any 

performance implications on the event propagation time. 

Typically, these numbers of participants are significantly 

lower than the scalability and the peak throughputs that 

can be sustained by NaradaBrokering messaging substrate. 

 

 
 

Figure 5. Latencies Involved for Interactions in 

Different Collaboration Modes 
 

Next, we performed a benchmark to see how the network 

overhead varies with the increase in the rate at which the 

results are generated from the analysis. We also went on 

to generate a high number of shared display events such as 

200 images per second to see the network overhead 

caused by the higher rates. Figure 6 shows our results. 

 

In our use case, shared display events ( 20KB) are larger 

than the resulting histograms ( 9KB) from sub analysis 

and hence transferring images incur a slightly higher 

network overhead. However, this can change drastically 

depending on the analysis. If the size of the results (in its 

raw format) is larger than the screenshots then these 

values may change. Converting the output to an image 

may reduce the resolution of the results and hence 

scientists may prefer raw data (share events) to 

screenshots (shared display). Therefore, the collaboration 

mode we should use depends entirely on the 

characteristics of the underlying data analysis task. 



 
 

Figure 6. Network Overhead for Collaborative 

Interactions under Varying Results Stream Rates 

 

5. RELATED WORK 
 

Collaboration among various entities is a well studied 

field in both industry and the academic communities. 

Many of proprietary collaborative frameworks such as 

WebEx[22], Windows Meeting Space[23] and Anabas[1]  

are all focused on sharing multimedia content over a 

collaborative session. These include audio, video streams, 

desktop sharing, online meetings, collaborative 

whiteboards and presentations. Academia also has similar 

set of applications focusing on data sharing and 

multimedia collaborations. EVO[4] (the successor of the 

Virtual Room Videoconferencing System) is a tool from 

Caltech which supports instant messaging, video 

conferencing and desktop sharing functionalities. These 

functionalities make them essential software components 

for interactive collaborative sessions where a group of 

people can exchange data, ideas and suggestions. 

However, use of these systems for sharing real-time 

results of scientific data analysis is not straight forward 

where the focus is more towards dissemination of content 

irrespective of the format of the content. 

 

The Data Turbine[19] presented by S. Tilak et al. is a 

content dissemination framework for scientific and 

engineering applications. They claim that the many 

content dissemination systems based on messaging 

architectures do not suit well for scientific data 

dissemination. However, we argue that the content 

dissemination should be decoupled from the complexities 

of the specific data type used by the scientific application. 

In our implementation we used NaradaBrokering, a 

publish/subscribe messaging framework, to transfer 

information relating to the collaborative sessions as well 

as data files generated during the analyses. Higher level 

APIs provide the specific level of abstractions for the data 

that the system transfers. For example, when an analysis 

job is completed, we can either publish the location of the 

output or the output itself using Naradabroking. Real-time 

Data Viewer (RDV)[16] is an interface for viewing real-

time, synchronized, streaming data from an equipment site. 

RDV can also be configured to receive streams from the 

Data Turbine server. This setup is the only close 

implantation that we found similar to our work. However, 

RDV supports only the time series data from equipments 

where as in our architecture we pose no limitation on the 

way the scientist can process the received data. 

Collaborating participants can receive any form of data 

depending on the analyses task, and they can perform 

various posts processing on these data as well. 

 

Portal frameworks such as OGCE, uPortal[20] and 

GridSphere support collaboration by providing a coherent 

framework for sharing data, compute resources and 

services to its participants. The web browser based 

interface allows minimal software for accessing data and 

services provided by portals, and also they support 

portlets for monitoring and visualizing data streams 

generated by scientific applications or sensors. Our user 

interface can be made into a portlet so that the participants 

can see the result on the portal. V. Watson presents[21] 

design criteria for scientific collaborative applications 

where he discusses different collaborative modes such as 

synchronous and asynchronous collaboration. 

 

6. CONCLUSION AND FUTURE WORK 
 

In this paper, we have presented a framework for 

collaborative scientific data analysis. The architecture 

differs from typical collaboration support provided by 

applications focusing on delivering multimedia content to 

the participants. Our architecture integrates processing 

entities, content dissemination sub system, session 

management entities and end users into a single 

framework. Participants can collaborate over data 

analyses where the results of a particular analysis is 

relayed to all the participants either in its raw format or as 

screenshots, produced after post processing, in real-time. 

We have successfully converted a stand-alone application 

used by particle physicist researchers at Caltech into a 

collaborative application using our architecture.  

 

Although our framework can withstand failures of agents 

and individual collaborative client applications, failure of 

Clarens servers results in an incomplete result set. The 

composability feature of the data analysis allows restarting 

of the experiment only for the failed server, as the analysis 

does not depend on the order in which the results of sub 

analyses are combined. The framework requires user 

intervention in selecting the data set at a different site (if 

available). In our future work, we will explore the 

possibility of using the agents to automatically identify the 

available Clarens servers attached to the same data set and 

restart the analysis without user interventions. Currently, 



the user interfaces of our application is implemented in 

ROOT's interpreted language CINT which is the de-facto 

standard for data analysis toolkit in particle physics 

research. However, R[15] is an another data analysis 

toolkits used by many scientific data analyses. Supporting 

multiple data analysis toolkits to expand the usability of 

our implementation is also one of our research goals. 

 

ACKNOWLEDGEMENT 
 

This research is supported by a grant from the National 

Science Foundation's Division of Earth Sciences project 

number EAR-0446610, and from a Department of Energy 

STTR grant (grant number DE-FG02-07ER86301). 

 

REFERENCES 
 
[1] Anabas Inc., http://www.anabas.com/ 

 

[2] Anderson, D.P., “BOINC: A System for Public-Resource 

Computing and Storage,” GRID 2004, pp. 4-10. 

 

[3] CINT - The CINT C/C++ Interpreter, 

http://root.cern.ch/twiki/bin/view/ROOT/CINT 

 

[4] EVO Collaboration Network, http://evo.caltech.edu/ 

 

[5] Foster, I. and C. Kesselman, “Globus: A Metacomputing 

Infrastructure Toolkit,” Proceedings of the Workshop on 

Environments and Tools for Parallel Scientific Computing, 

SIAM, Lyon, France, August 1996. 

 

[6] Gullapalli, S., S. Dyke, P. Hubbard, D. Marcusiu, L. 

Pearlman, and C. Severance, “Showcasing the Features and 

Capabilities of NEESgrid: A Grid Based System for the 

Earthquake Engineering Domain,” Proceedings. 13th IEEE 

International Symposium on High performance Distributed 

Computing, 2004. 

 

[7] Lingen, F.V., C. Steenberg, A. Anjum, F. Khan,H. 

Newman, A. Ali, J. Bunn, and I. Legrand, “The Clarens 

Web service framework for distributed scientific analysis in 

grid projects,” Proceedings of the 2005 International 

Conference on Parallel Processing Workshops 

( ICPPW'05), pp. 45 – 52.  

 

[8] Novotny, J., M. Russell, and O. Wehrens, “GridSphere: a 

portal framework for building collaborations,” 

Concurrency and Computation: Practice & Experience, Vol. 

16, No. 5, 2004, pp.503-513.  

[9] OGCE -The Open Grid Computing Environments Portal 

and Gateway Toolkit, http://www.collab-ogce.org 

 

[10] Pallickara, S., G. Fox, “NaradaBrokering: A Distributed 

Middleware Framework and Architecture for Enabling 

Durable Peer-to-Peer Grids,” Middleware 2003, pp. 41-61. 

 

[11] Pallickara, S., J. Ekanayake, and G. Fox, “A Scalable 

Approach for the Secure and Authorized Tracking of the 

Availability of Entities in Distributed Systems,” IPDPS 

2007, pp. 1-10. 

 

[12] Pallickara, S., G. Fox, B. Yildiz, S.L. Pallickara, S. Patel, 

and D Yemme,  “On the Costs for Reliable Messaging in 

Web/Grid Service Environments,”  Proceedings of the 

2005 IEEE International Conference on e-Science & Grid 

Computing, Melbourne, Australia, pp. 344-351. 

 

[13] Pallickara, S., H. Bulut, and G. Fox, “Fault-Tolerant 

Reliable Delivery of Messages in Distributed 

Publish/Subscribe Systems,” Proceedings of the 4th IEEE 

International Conference on Autonomic Computing. 

 

[14] Pallickara, S., M. Pierce, H. Gadgil, G. Fox, Y. Yan, and Y. 

Huang, “A Framework for Secure End-to-End Delivery of 

Messages in publish/Subscribe Systems,” GRID 2006, pp. 

215-222. 

 

[15] R - R Project for Statistical Computing, http://www.r- 

project.org/ 

 

[16] Real-time Data Viewer, http://it.nees.org/software/rdv 

 

[17] ROOT - An Object Oriented Data Analysis Framework, 

http://root.cern.ch/ 

 

[18] Steenberg, C.D., E. Aslakson, J.J. Bunn, H.B. Newman, 

M.Thomas, and F.V. Lingen, “The Clarens Web Services 

Architecture,” Proceedings of CHEP2003, La Jolla, Paper 

MONT008, 2003. 

 

[19] Tilak, S., P. Hubbard, M. Miller, and T. Fountain, “The 

Ring Buffer Network Bus (RBNB) DataTurbine Streaming 

Data Middleware for Environmental Observing Systems,”  

Third IEEE International Conference on E-Science and 

Grid Computing, India, 2007. 

 

[20] uPortal, http://www.uportal.org/ 

 

[21] Watson, V. “Supporting Scientific Analysis within 

Collaborative Problem Solving Environments,” 

Proceedings of the 34th Annual Hawaii International 

Conference on System Sciences HICSS-34, 2001. 

 

[22] WebEx - Cisco Web Meetings and Collaboration Solutions, 

http://www.webex.com/ 

 

[23] Windows Meeting Space, 

http://www.microsoft.com/windows/products/windowsvista

/features/details/meetingspace.mspx 


