A Framework for Secure Endto-End Delivery of Messages in Publish/Subscribe Systems

Shrideep Pallickara, Marlon Pierce, Harshawardhan Gadgil, Geoffrey Fox, Yan Yan, Yi Huang

spallick@indiana.edu Community Grids Lab, Indiana University

Motivation

As applications have gotten increasingly distributed there is a need for ensuring the secure and authorized distribution of data.

Messaging Systems

- Messaging is the routing of content from the producer to the consumer.
 - This can be point-to-point or many-to-many.
- Messaging Infrastructures underlie most complex systems
- Approaches to messaging include systems such as queuing, P2P systems and publish/subscribe.

Publish/Subscribe Systems

Messages & Selectivity

Topic Discovery Scheme

- Create topics that are unique in space and time in a decentralized fashion
- Establish topic provenance
 - Deterministic cryptographic verification of ownership
- Restrict discovery of topics to only those that possess valid credentials or within a defined set
- Establish topic life-cycle
- Manage topic collections & organization

Security Scheme: Desiderata

- Thwart eavesdropping
- Tamper-evidence
- Authorized data generation/consumption
 - Specify allowed actions
 - Duration of rights
- Identity assertion & Non-repudiation
- Transport-independent
- Cope with attack scenarios

Leveraged cryptographic tools

- Symmetric keys for payload encryptions and decryptions
- Message digests for tamper evidence
- PKI for signing and verifications
- For secure "dialogue" between two entities use combination of symmetric and asymmetric keys

http://www.naradabrokering.org

Communications/Interactions

- All interactions are through the exchange of discrete messages
 - Need to know the communication topic
- Entities are selective about who can discover its communication topic(s)
- Topic owner needs to first discover the KMC willing to host the secure topic
 - Based on credentials supplied during discovery
 - Willing KMCs will respond with their communication topics (secured) in the responses

Security Scheme: Broker Processing

IEEE/ACM GRID 2006

http://www.naradabrokering.org

Coping with a couple of attacks

- Denial of Service attacks
 - Unauthorized generation of data is not allowed
 - Deluging KMC is difficult
 - Quite hard to "guess" the 128-bit UUID
 - Network location know only to hosting broker
- Replay attacks
 - For every entity maintain information about last timestamp
 - Discard messages published in the past
 - For higher publish rates, maintain combination of NTP timestamps and message numbers
 - No need to keep track of message identifiers

End-to-End Delivery of Messages for different topologies Cryptographic Profile: 256-bit AES, 7PKCS padding 1024-bit RSA keys and 160-bit SHA-1

Benchmark Topologies

IEEE/ACM GRID 2006

Operation		Mean	Standard Deviation	Error
Publisher Costs				
II	nitialization Vector	1.108	0.025	0.003
E	ncryption	1.421	0.055	0.005
S	Signing .			
	Payload	15.518	0.126	0.013
	Header	15.238	0.112	0.011
Broker Costs				
	oken and Message alidation	6.989	0.199	0.020
R	eplay-attack check	0.031	0.005	0.0
S	Subscription validity [.]	0.027	0.004	0.0
Subscriber Costs				
V	/erify Token + Header	3.74	0.13	0.013
	erify Payload	1.64	0.032	0.003
D	Decryption	1.41	0.021	0.002
ncryption {AES 256, PKCS7 padding CBC mode}				

Signing {1024-bit RSA, 160-bit SHA-1}

Conclusions

- Topic provenance lays the groundwork for the security framework
- Since the scheme is transport independent, it is applicable for systems that can't use SSL
 - E.g. Audio/Video conferencing systems
- Overheads introduced by the security scheme relate to cryptographic operations.
 - No significant increase in message size
 - Jitter introduced by scheme is quite low
- Since the nature of processing is determined by the contents in autonomous messages the system can enforce secure and best-effort schemes equally well.

Future Work

- Detecting security compromises
 - Issue authentication challenges at regular intervals
 - Issue queries from a previously negotiated set of queries/responses during initialization
 - Shorter key lifetimes

In case of a compromise

- Compute new keys
- Propagate compromise info to relevant nodes within the system

Related Work

- GKMP For Multicast
- Groove Secure shared spaces
- GSI
- WS-Security