
Managing
Grid and Web Services
and their exchanged messages

Authors
Harshawardhan Gadgil (his PhD topic), Geoffrey Fox,

Shrideep Pallickara, Marlon Pierce
Community Grids Lab, Indiana University

Presented by
Geoffrey Fox

gcf@indiana.edu

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 2

Talk Outline
 Management (Configuration/QoS

Implementation)

 Existing Management Approaches

 Overview of NaradaBrokering Messaging
infrastructure

 NaradaBrokering Use Cases

 Our Management Architecture

 Management Prototype and some results from it

 Future work and conclusion

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 3

Management I
 Characteristics of today’s (Grid) applications

– Increasing complexity
– Components widely dispersed and disparate in nature and

access
 Span different administrative domains
 Under differing network / security policies
 Limited access to resources due to presence of firewalls, NATs

etc… (major focus in prototype)

– Dynamic
 Components (Nodes, network, processes) may fail

 Services must meet
– General QoS and Life-cycle features
– (User defined) Application specific criteria

 Need to “manage” services to provide these
capabilities

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 4

Management II
 Management Operations* include

– Configuration and Lifecycle operations (CREATE, DELETE)
– Handle RUNTIME events
– Monitor status and performance
– Maintain system state (according to user defined criteria)

 Protocols like WS-Management/WS-DM define inter-service
negotiation and how to transfer metadata

 We are designing/prototyping a system that will manage a
general world wide collection of services and their network links

 We are starting with our messaging infrastructure as
– we need this to be robust in Grids we are using it in (Sensor and

amterial science)
– we are using it in management system
– and it has critical network requirements

* From WS – Distributed Management
http://devresource.hp.com/drc/slide_presentations/wsdm/index.jsp

http://devresource.hp.com/drc/slide_presentations/wsdm/index.jsp

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 5

Some Existing Management Protocols I
 SNMP – Simple Network Management Protocol

– Application layer protocol, based on reliable connection-
oriented protocol.

– Enables network admins to manage network
performance and find and solve problems

– Lacks security (Authentication), hence vulnerable to
masquerading occurences, information modification etc…

– In most cases “SET” operation not implemented and
hence degenerates to monitoring facility only.

– Mainly deals with hardware resources.

 CMIP – Common Management Information services
and Protocols
– Provides improved security (access control, authorization

and security logs) over SNMP

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 6

Some Existing Management Protocols II
 CIM – Common Information Management

– Object oriented model that represents and organizes information

– Allows extending existing management standards

 Web Service based (WS-Management, WS-Distributed
Management), Upcoming merger to a common Web Service
based management architecture
– Helps making management interoperable

– Work underway to map CIM constructs to WSDM

– Provides a SOAP binding for various verbs (CREATE / DELETE / SET /
GET)

– Defines negotiation between services and some metadata

– Manage services or non-service entities wrapped as services
 HARDWARE – Processors, printers etc…

 SOFTWARE – Processes (E.g. Brokers in our case)

 Managers are ALWAYS Services

June 19, 2006 Community Grids Lab, Bloomington

IN :CLADE 2006:

7

Stream

NB supports messages

and real-time streams

Ideas related to Skype

NB role for Grid is

Similar to

MPI role for MPP

Queues

SensorsNaradaBrokering

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 8

NaradaBrokering Core Features I

 Supports general linkage of threads, processes and services
 Message-level security (See Grid06 paper

http://www.naradabrokering.org/papers/NB-Security.pdf)
 Message Payload Options

– Compression and Decompression of payloads
– Fragmentation and Coalescing of payloads

 Message Compliance
– Java Message Service (JMS) 1.0.2b compliant
– (Obsolete) Support for routing P2P JXTA interactions.

 Grid Feature Support
– NaradaBrokering enhanced Grid-FTP. (Old) bridge to Globus.

 Web Service Support
– Implementations of WS-ReliableMessaging, WS-Reliability

and WS-Eventing.

S1 S2NB

http://www.naradabrokering.org/papers/NB-Security.pdf
http://www.naradabrokering.org/papers/NB-Security.pdf
http://www.naradabrokering.org/papers/NB-Security.pdf

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 9

NaradaBrokering Core Features II
 Multiple protocol transport support

– Transport protocols supported include TCP, Parallel TCP streams,
UDP, Multicast, SSL, HTTP and HTTPS.

– Communications through authenticating proxies/firewalls & NATs.
Network QoS based Routing

– Allows Highest performance transport with 1-2 ms overhead and
<1ms timing guarantees

 Subscription Formats
– Subscription can be Strings, Integers, XPath queries, Regular

Expressions, SQL and tag=value pairs.
 Reliable Delivery

– Robust and exactly-once delivery in presence of failures
 Ordered Delivery

– Producer Order and Total Order over a message type. Time Ordered
delivery using Grid-wide NTP based absolute time

 Recovery & Replay
– Recovery from failures and disconnects. Replay of events/messages at

any time. Buffering services.

 Open Source http://www.naradabrokering.org

http://www.naradabrokering.org/

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 10

NaradaBrokering Management Needs
 NaradaBrokering Distributed Messaging System consists of peers (brokers)

that collectively form a scalable messaging substrate. Optimizations and
configurations include:

– Where should brokers be placed and how should they be connected, E.g.
RING, BUS, TREE, HYPERCUBE etc…, each TOPOLOGY has varying
degree of resource utilization, routing, cost and fault-tolerance
characteristics.

 Static topologies or topologies created using static rules may be inefficient in
some cases

– E.g., In CAN, Chord a new incoming peer randomly joins nodes in the
network. Network distances are not taken into account and hence some
lookup queries may span entire diameter of network

– Runtime metrics provide dynamic hints on improving routing which leads
to redeployment of messaging system (possibly) using a different
configuration and topology

– Can use (dynamically) optimized protocols (UDP v TCP v Parallel TCP)
and go through firewalls but no good way to make choices dynamically

 These actions collectively termed as Managing the Messaging Middleware

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 11

NaradaBrokering Use Cases
 Use case I: Audio – Video Conferencing

(GlobalMMCS project,
http://www.globalmmcs.org) which
uses NaradaBrokering as a event delivery
substrate

 Consider a scenario where there is a
teacher and 10,000 students. One would
typically form a TREE shaped hierarchy of
brokers

 One broker can support up to 400
simultaneous video clients and 1500
simultaneous audio clients with acceptable
quality*. So one would need (10000 / 400
≈ 25 broker nodes).

 May also require additional links between
brokers for fault-tolerance purposes

 Use Case II: Sensor Network

 Both use cases need high QoS streams of
messages

 Use Case III: Management System itself

* “Scalable Service Oriented Architecture for
Audio/Video Conferencing”, Ahmet Uyar, Ph.D.
Thesis, May 2005

… … …

…

400
participants

400
participants

400
participants

A single participant
sends audio / video

Use Case I

http://www.globalmmcs.org/

June 19, 2006 Community Grids Lab, Bloomington IN :CLADE 2006: 12

Typical use of Grid Messaging in NASA

Datamining Grid

Sensor Grid implementing using NB

NB GIS Grid

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 13

Core Features of Management Architecture
 Remote Management

– Allow management irrespective of the location of the resource (as long
as that resource is reachable via some means)

 Traverse firewalls and NATs
– Firewalls complicate management by disabling access to some

transports and access to internal resources
– Utilize tunneling capabilities and multi-protocol support of messaging

infrastructure

 Extensible
– Management capabilities evolve with time. We use a service oriented

architecture to provide extensibility and interoperability

 Scalable
– Management architecture should be scale as number of managees

increases

 Fault-tolerant
– Management itself must be fault-tolerant. Failure of transports OR

management components should not cause management architecture
to fail.

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 14

Management System built in terms of

 Bootstrap System – Robust itself by Replication

 Registry for metadata (distributed database) – Robust
by standard database techniques and our system itself
for Service Interfaces

 NaradaBrokering for robust tunneled messages – NB
itself robust using our system

 Managers – Easy to make robust using our system

 Managees – what you are managing – Our system
makes robust – There is NO assumption that Managed
system uses NB

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 15

Basic Management Architecture I
 Registry

– Stores system state.

– Fault-tolerant through replication

– Could be a global registry OR separate registries
for each domain (later slide)

– Current implementation uses a simple in-memory
system

– Will use our WS - Context service as our registry
(Service/Message Interface to in-memory
JavaSpaces cache and MySQL)

– Note metadata transported by messages but we
use distributed database to implement

 Messaging Nodes
– NaradaBrokering nodes that form a scalable

messaging substrate

– Main purpose is to serve as a message delivery
mechanism between Managers and Service
Adapters (Managees) in presence of varying
network conditions

Registry

Read / Write
from / to

Registry via
pre-

determined
TOPIC

NB

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 16

Basic Management Architecture II

 Resources to Manage (Managee)
– If the resources DO NOT have a Web Service

interface, we create a Service Adapter (a
proxy that provides the Web Service interface
as a wrapper over the basic management
functionality of the resource).

– The Service Adapters connect to existing
messaging nodes. This mainly leverages
multi-protocol transport support in the
messaging substrate. Thus, alternate
protocols may be used when network policies
cause connection failures

 Managers
– Active entities that manage the resources.
– May be multi-threaded to improve scalability

(currently under further investigation)

Manager

Registry

…

Read / Write
from / to

Registry via
pre-

determined
TOPIC

Service
Adapter

Resource

Managees

NB

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 17

Architecture
Use of Messaging Nodes

 Service adapters and Managers communicate through
messaging nodes

 Direct connection possible, however
– This assumes that the service adapters are appropriately

accessible from the machines where managers would run
 May require special configuration in routers / firewalls

– Typically managers and messaging nodes and registries are
always in the same domain OR a higher level network domain
with respect to service adapters

 Messaging Nodes (NaradaBrokering Brokers) provides
– A scalable messaging substrate

– Robust delivery of messages

– Secure end-to-end delivery

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 18

Architecture
Bootstrapping Process

 The architecture is arranged hierarchically.
– Resources in different domains can be

managed with separate policies for each
domain

 A Bootstrapping service is run in every domain
where the management architecture exists.
– Serves to ensure that the child domain

bootstrap process are always up and
running.
 Periodic heartbeats convey status of

bootstrap service
– Bootstrap service periodically spawns a

health-check manager that checks health of
the system (ensures that the registry and
messaging nodes are up and running and
that there are enough managers for
managees)
 Currently 1 manager per managee

/ROOT

/ROOT/FSU

/ROOT/CGL

Registry
Registry

Hierarchical
Bootstrap

Nodes

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 19

Architecture: User Component
 Application-specific specification of the characteristics that the

resources/services being managed, should maintain.
– Impacts Managee interface, registry and Manager

 Generic and Application specific policies are written to the
registry where it will be picked up by a manager process.

 Updates to the characteristics (WS-Policy in future) are
determined by the user.

 Events generated by the Managees are handled by the
manager.
– Event processing is determined by policy (future work),

 E.g. Wait for user’s decision on handling specific
conditions

 The event can be processed locally, so execute default
policy, etc…

 Note Managers will set up services if registry indicates that is
appropriate; so writing information to registry can be used to
start up a set of services

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 20

Architecture
Structure of Managers

 Manager process starts
appropriate manager thread for
the manageable resource in
question
– Heartbeat thread periodically

registers the Manager in registry
– SAM (Service Adapter Manager)

Module Thread starts a
Service/Resource Specific “Resource
Manager” that handles the actual
management task

– Management system can be
extended by writing
ResourceManagers for each type of
Managee

Manager

Heartbeat
Generator Thread

SAM
Module

Resource
Manager

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 21

Prototype
 We illustrate the architecture by managing the distributed messaging

middleware, NaradaBrokering as illustrated by 3 use cases
– This example motivated by the presence of large number of dynamic

peers (brokers) that need configuration and deployment in specific
topologies

 Use WS – Management (June 2005) parts (WS – Transfer [Sep 2004], WS
– Enumeration [Sep 2004] and WS – Eventing) (could use WS-DM)
– WS – Enumeration implemented but we do not foresee any immediate

use in managing the brokering system
– WS – Transfer provides verbs (GET / PUT / CREATE / DELETE) which

allow us to model setting and querying broker configuration,
instantiating brokers and creating links between them and finally
deleting brokers (tear down broker network) and re-deploy with
possibly a different configuration and topology

– WS – Eventing (will be leveraged from the WS – Eventing capability
implemented in OMII)

 WS – Addressing [Aug 2004] and SOAP v 1.2 used (needed for WS-
Management)
– Used XmlBeans 2.0.0 for manipulating XML in custom container.

 WS-Context will replace current registry

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 22

Prototype Components
 Broker Service Adapter

– Note NB illustrates an electronic entity that didn’t start off with an
administrative Service interface

– So add wrapper over the basic NB BrokerNode object that provides WS –
Management front-end

– Also provides a buffering service to buffer undeliverable responses
 These will be retrieved later by a separate Request – Response message

exchange

 Broker Network Manager
– WS – Management client component that is used to configure a broker

object through the Broker Service Adapter

– Contains a Request-Response as well as Asynchronous messaging style
capabilities

– Contains a topology generator component that determines the wiring
between brokers (links that form a specific topology)
 For the purpose of prototype we simply create a CHAIN topology where each

ith broker is connected to (i-1)st broker

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 23

Prototype
Resources/Properties Modeled (very specific to NaradaBrokering)

Resource URI Operations Description

BROKER Create

Delete

Instantiates the broker with
current configuration

 Deletes the broker node

LINK (Note we manage
brokers and streams)

Create

Delete

 Creates a link between two
brokers

 Deletes the link between two
brokers

CONFIGURATION,

CONFIGURATION
PROPERTY

Get

Put

 Retrieves the current
configuration / a single property

 Saves the specified
configuration / single property

NODE ADDRESS,

GATEWAY ADDRESS

 Create  Assigns a NODE / GATEWAY
address to the current node if
one is not already assigned

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 24

Benchmarks - I
 Test -I: Deployed a network of 8 brokers on 8 different

machines.
– Noted the overhead (Create Message + Marshall SOAP + Network

Latency + Unmarshall SOAP) introduced by the system
 Set Configuration: 73.56 mSec

 Get Configuration: 61.11 mSec

 Create Broker: 61.4 mSec

 Create Link: 88.35 mSec

 Get Node Address: 68.94 mSec

 Delete Broker: 75.02 mSec

– Used direct HTTP connection (custom written SOAP client / server to
allow for use of SOAP 1.2 based messages and provide compatibility with
other software)

– Currently working on detailed analysis of benchmarks with time
probably largely determined by marshalling and un-marshalling
messages which are one-way Web Service invocations over TCP

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 25

Benchmarks - II
 Test -II: Managed brokers were present on remote machines

– 3 brokers behind a Home DSL ROUTER

– Used a distributed messaging substrate to route messages to appropriate
recipients.

 Distributed messaging substrate provides multiple transport support,
tunneling through firewalls (to enable remote management)

– Noted the overhead introduced by the system

 Set Configuration: 172.01 mSec

 Get Configuration: 178.69 mSec

 Create Broker: 149.52 mSec

 Create Link: 143 mSec

 Get Node Address: 144.34 mSec

 Delete Broker: 131.41 mSec

– SOAP message is received by a HTTP mapper service and is relayed to the
service adapter by publishing a message over a pre-determined topic (with the
soap message as event payload). Response is relayed back in a similar fashion.

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 26

Benchmarks - III

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 27

Axis2 Performance on Multi Core Machines

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

Messages per Second

R
o

u
n

d
 T

ri
p

 T
im

e
 (

s
e

c
o

n
d

s
)

Sun T2000 - 100Bytes Sun T2000 - 400Bytes Sun T2000 - 1000Bytes

Intel Xeon - 100Bytes Intel Xeon - 400Bytes Intel Xeon - 1000Bytes

ms

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 28

Axis2 Performance on Different JVMs

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400

Messages per Second

R
o

u
n

d
 T

r
ip

 T
im

e
 (

M
il
li
s

e
c

o
n

d
s

)

j2sdk1.4.2_03

+

Tomcat 4.1

jdk1.5.0_07

+

Tomcat 5.5

jrockit-R26.3.0-jdk1.5.0_06

+

Tomcat 5.5

On Intel Xeon with 400 byte messages

Newer JVMs

BEA JDK1.5

ms

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 29

Future Work & Conclusion I
 This paper gives an overview of architecture and

illustrates with a prototype.
– Prototype focuses on using alternate means of transports to

provide different QoS (Quality of Service) when certain
transports are blocked due to network policies, presence of
firewalls or due to NAT devices.

 Work is underway to demonstrate fault-tolerance of
cmanagement omponents themselves (managers,
messaging nodes, registry) and how it affects the
overall management

 We will switch to MySQL/Javaspace implementation of
WS-Context for registry – note this is compatible with
UDDI
– http://grids.ucs.indiana.edu/ptliupages/publications/SKG06-Aktas.pdf

June 19, 2006
Community Grids Lab, Bloomington IN

:CLADE 2006: 30

Future Work & Conclusion II
 The scheme provides a Web Service management

interface for easy configuration and deployment of
middleware components with both general and
application specific features

 The costs obtained are one-time initialization costs
and hence acceptable.

 We provided basic tests for scalability purposes and
are currently investigating solutions that would
improve the scalability in heterogeneous and wide-
area (cross-continent) resource management.

 Might be useful for debugging framework as detects
and reports errors

