A Scalable Approach for the Secure and Authorized Tracking of the Availability of Entities in Distributed Systems

Shrideep Pallickara, Jaliya Ekanayake & Geoffrey Fox Community Grids Lab Indiana University

Motivation

- Proliferation of distributed systems
- Interactions predicated on knowledge of the availability of entities
 - Control messages, protocol handshakes, actions and data interchange
 - Track resources at all times
 - Load, usage patterns etc
- Remedial actions in response to failures
 - Failure suspicions, failures, shutdown

Definition of Terms

- Entity
 - Resource, service, instruments, clients etc
- Tracing
 - Process of probing, and becoming aware of, the availability of an entity
- Traced Entity
 - The entity whose availability is being probed
- Trackers
 - Entities initiating availability probes for a traced entity
- Traces
 - Messages encapsulating the state of a traced entity

Push or Pull

• Push

- Traced entities push traces to the trackers at regular intervals
- Receipt of such pushed traces provides info on availability
- Pull
 - Trackers poll the availability at regular intervals
 - Decisions based on the outcome of the poll

Issues in developing solution

- In simple scheme every entity issues a trace every second
 - Does not scale well
 - With increasing scale every entity is inundated with traces
- Entities operate in myriad domains
 - May deploy different transports for communications

Desired Features

- Reduction of complexity
 - Reduce the number of entities that a given entity needs to communicate with
 - Push/pull requires some entity to communicate with a rather large set
- Transport independent
- Selectivity in traces
 - For e.g. register ONLY to receive change notification traces
- Authorization
 - Restrict who is allowed to be part of the tracing process
- Security
 - Make the trace itself confidential
- Cope with some classes of DDoS attacks

Publish/Subscribe Systems

NaradaBrokering

- Provisions an enabling infrastructure for building distributed systems
 - Has services, and makes these services accessible to entities through simple invocations.
 - Processing at the service, and the infrastructure may be complicated, but this is shielded from the clients
- Dissemination is based on the pub/sub paradigm
- Open-source project <u>http://www.naradabrokering.org</u>
- Deployed in a wide variety of domains
 - GIS, Audio/Video conferencing, collaboration, Geoscience and Physics
- 1425 classes, 157 packages and 300,000 lines of code

The NaradaBrokering Substrate

Gateway to Services Service multiple clients Organize Subscriptions Route Messages Enforce constraints

Topic Discovery Scheme

- Create topics that are unique in space and time in a decentralized fashion
- Establish topic provenance
 - Deterministic cryptographic verification of ownership
- Restrict discovery of topics
 - Possess valid credentials
 - Specified ACL
- Establish topic life-cycle
- Manage topic collections & organization

Our scheme

- Leverage pub/sub for disseminating traces
- Facilitate selectivity in trace consumption by trackers
 - Different types of Traces are issued over different topics.
- Restrictions on **authorizations** related to topics over which traces are issued
 - Discovery of these topics
 - Actions associated with these topics
- Traces demonstrate authorization, tamper-evidence and source
 - Unambiguously verify this
- Secure the distribution of traces

Trace Topic

- Topic related to trace information related to a given entity
 - Derivative topics are constructed from this
- At creation time, the traced entity must specify who is authorized to trace it
 - ACL or based on credentials
- Register a descriptor that will facilitate discovery
 - Availability/Traces/Entity-ID

Constrained Topics

- Systems Topics
- Derivative topics managed by the broker
 - Multiple derived topics facilitates trace selectivity
- Constraints are based on
 - Limits on performed actions
 - Proof of authorization to perform action
 - Security
 - Dissemination range for the action
- Anatomy of a Constrained Topic
 - /Constrained/{Event Type}/{Constrainer}/ {Allowed Actions }/{Distribution} /{Other "/"separated Suffixes}

Registration of Trace Entity

- First create a Trace topic
- Register with broker
 - Over constrained topic that ONLY broker subscribes to
- Traced Entity needs to sign registration message
 - Verify credentials and tamper evidence
- Broker generates session identifier
 - Along with the trace topic, is used to derive a constrained topic
 - ONLY the Broker subscribes to
 - ONLY traced entity publishes to.

Broker Operations

- Responsible for failure detection
 - Must report status of traced entity to trackers
- Issues pings at regular intervals to traced entity
 - Every ping has monotonically increasing message number, and timestamp.
 - Ping responses should include both of these
 - To correlate requests and responses
 - Failure suspicions and confirmations based on lack of ping responses
- Traced entity can notify broker about
 - LOAD, Network metrics, Graceful exits and state transitions

Registering to receive traces

- Need to discover trace topic associated with a given traced entity
- Construct appropriate derived constrained topics to initiate interactions
 - Selectivity allows registering to different types of traces
- A broker generates traces ONLY if there are entities interested in traces
 - GAUGE INTEREST message issued periodically

Authorization

- Every trace message initiated by the traced entity checked for authorization (source) and tamper evidence
- Traces published by broker
 - Broker needs to demonstrate authorization to generate traces.
 - This is verified by every broker that receives it
 - Cryptographic token generated by traced entity is included

Security

- Broker indicates that traces will be secured in the GAUGE INTEREST message.
- Trackers respond with their credentials.
- The broker secures the secret-trace-key
 - Using the tracker's credentials

Performance

- Cryptographic Profile
 - 1024-bit RSA with 160-bit SHA-1 and PKCS#1Padding.
 - Symmetric encryptions/decryptions use 192-bit AES keys
- 4 CPU Xeon, 2.4GHz, 2GB RAM
- 100 Mbps LAN
- JVM 1.4

Performance: Topology

Benchmarks: Tracker Increase

Optimization: Authorization

Conclusions

- Pub/Sub provides loosely-coupled framework for the tracing scheme
- Topic provenance lays the groundwork for the trace authorization scheme
- Transport independence facilitates wider use
- The costs introduced by the secure, authorized tracing scheme are acceptable for several applications.
- System can enforce secure and authorization schemes equally well.
- Selectivity and Change notifications reduce number of messages