
Experiences in Deploying Services within the Axis

Container

Beytullah Yildiz
Indiana University

byildiz@indiana.edu

ICIW'06 February , 2006

Guadeloupe, French Caribbean

Outline

• Introduction

– Web Service

– Handler

– Container

• Experiences and Suggestions

• Conclusion

Web Service

• Provides a distributed computing environment

to solve interoperability issues.

• An effort for seamless communication.

• Leverages XML.

• Has support from a large community.

• Many specifications.

Handler

• Services facilitate incremental addition of
capabilities, called handler or filter.

• An endpoint’s capability is enhanced without the
need for making changes to the application.

• A handler may need peers in both client and
service.

• Several handlers could be cascaded together to
comprise a handler chain.

• Handler sequence needs to be defined.

Container

• A Web Service is typically hosted within a Web
Service container.

• There are several choices for the containers
depending on the platform and the language.

• Most dominant Web Service container is the
open-source Apache Axis.

• We enumerate the problems, limitations and
our solutions.

• We also have a set of recommendations that
would make a more flexible container.

Axis I (Version 1.2)

• Java base Web Service container.

• Plethora of applications

• We describe our experiences in deploying Web Services,

specifically WS-ReliableMessaging and WS-Eventing.

• Problems

– Based on the request-response paradigm.

– Does not support message injection.

– Does not have the ability to gracefully terminate processing within

the handler chain.

– Handler chain has a static configuration.

Axis II (Version 1.2)

• Every message is considered to be a request which

should have its accompanying response within a pre-

defined period of time.

• Does not support one-way and asynchronous messaging.

Client

Web

Service

Container

Service

Response

Request

One-way Messaging

• An example; informing an entity about an event,

Notification and Acknowledgement.

• Can be accomplished by discarding the dummy response

messages.

• Responding back should be optional.

• Can help to build asynchronous messaging.

Web Service

Container

Service

Web Service

Container

Client One way Messaging

Discarded by client

Asynchronous Messaging

• There exist many scenarios where this is needed

– Bundling acknowledgments.

• Services are addressable while clients are not.

• Service is not able to send subsequent response

messages after a certain amount of time.

Web Service

Container

Service

Web Service

Container

Client One way Messaging

Service ClientOne way Messaging

Improvement in Messaging

• Utilizing one way

messaging costs more.

• Overhead comes from a

new “service call”

initiation.

• Messaging can be

improved by adding

message initiation

capability on the service

side.

Web Service

Container

Service

Web Service

Container

Client Message from Service

Stopping Message Propagation

• A scenario: acknowledgment
in reliable messaging.

• A very crucial performance
issue if the endpoint gets a
huge amount of
acknowledgements.

• The current architecture does
not allow us to stop message
propagation gracefully.

• Causes network overheads;
Exception propagates back
through handler structure and
back to the client.

• The completed tasks are rolled
back if an exception is thrown.

B

S1

S2

S3

A

C3

C2

C1

Network

Flexible Handler I

• A processing order within a chain is important.

• There exists two options; static and dynamic.

• Currently, containers utilize the static approach.

– Axis 2 is dynamic.

• The chain is setup when a service is being deployed.

• A new handler can not be added, just as an old one

cannot be removed from the chain after deployment.

• A static structure is generally easy to implement, but

harder to customize.

Flexible handler II

• Handler chains should be

customizable on the fly.

• A Web Service needs to

have the ability to select its

handlers from the pool of

handlers.

– A digital signature handler

• A handler may need to be

removed on the fly too.

– A parameter increment

Handler

Service

H1

Client

Network

Handle Repository

H2

DS

H3

Conclusion

• We suggest that containers should support one

way and asynchronous messaging.

• There should be a mechanism to ensure that a

message can be gracefully stopped while

traversing though the handler chain.

• Handler chain should be able to deploy the

handlers dynamically.

