
Scalable, Fault-tolerant
Management of Grid Services

Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara,
Marlon Pierce

Presented By

Harshawardhan Gadgil (hgadgil@cs.indiana.edu)

Cluster 2007

Sep 18, 2007

Talk Outline

• Use Cases and Motivation

• Architecture
– Handling Consistency and Security Issues

• Performance Evaluation

• Conclusion
– Contributions and Future Work

2

Grid
Large Number of Distributed Resources

• Applications
distributed and
composed of a large
number and type
(hardware, software)
of resources

• Components widely
dispersed and
disparate in nature
and access

Messaging

Substrate

Media Device

Slow Client

behind modem

Laptop

PDA

Computer

File Server

Compute Server

behind firewall

Media

Server

Audio / Video

Conferencing Client

User

Compute

Server

3

Sensor Grid*

4

Galip Aydin, Ph.D. Thesis

Indiana University, Jan 2007

Example
Audio Video Conferencing

• GlobalMMCS (http://www.globalmmcs.org)
uses NaradaBrokering as an event
delivery substrate

• Consider a scenario where there is a
teacher and 10,000 students. One
way is to form a TREE shaped
hierarchy of brokers

• One broker can support up to 400
simultaneous video clients and 1500
simultaneous audio clients with
acceptable quality*.
– So one would need (≈ 10000 / 400 = 25

broker nodes).

5

* “Scalable Service Oriented Architecture
for Audio/Video Conferencing”, Ahmet
Uyar, Ph.D. Thesis, May 2005

… … …

…

400 participants

400 participants

400
participants

A single participant
sends audio / video

Definition:
What is Management ?

• Service Management – Maintaining System’s ability to provide
its specified services with a prescribed QoS

• Management Operations* include
– Configuration and Lifecycle operations (CREATE, DELETE)

– Handle RUNTIME events

– Monitor status and performance

– Maintain system state (according to user defined criteria)

• This paper addresses:
– Configuring, Deploying and Maintaining Valid Runtime Configuration

• Crucial to successful working of applications

• Static (configure and bootstrap) and Dynamic (monitoring / event
handling)

6

*From WS – Distributed Management
http://devresource.hp.com/drc/slide_presentations/wsdm/index.jsp

http://devresource.hp.com/drc/slide_presentations/wsdm/index.jsp

Existing Systems

• Distributed Monitoring frameworks
– NWS, Ganglia, MonALISA
– Primarily serve to gather metrics (which is one aspect of resource

management, as we defined)

• Management Frameworks
– SNMP – primarily for hardware (hubs, routers)

• CMIP – Improved security & logging over SNMP

– JMX – Managing and monitoring for Java applications
– WBEM – System management to unify management of distributed

computing environments

• Management systems not-interoperable – Move to Web
Services based management of resources
– XML based interactions that facilitate implementation in different

languages, running on different platforms and over multiple transports
– Competing Specifications (WS – Management and WS – Distributed

Management)

7

Motivation:
Issues in Management

• Services must meet
– General QoS and Life-cycle features

– (User defined) Application specific criteria

– Improper management such as wrong configuration – major cause of
service downtime

• Large number of widely dispersed Services
– Decreasing hardware cost => Easier to replicate for fault-tolerance (Espl.

Software replication)

– Presence of firewalls may restrict direct access to Services

• Service specific management systems have evolved
independently (different platform / language / protocol)
– Requires use of proprietary technologies

• Central management System
– Scalability and single point of failure

8

Desired Features of the Management Framework

• Fault Tolerance

– Failures are Normal, Services may fail, but so also
components of the management framework.

– Framework MUST recover from failure

• Scalability

– With Growing Complexity of application, number of
Services (application components) increase
• E.g. LHC Grid consists of a large number of CPUs, disks and mass

storage servers (on the order of ~ 30K)

– In future, much larger systems will be built

– MUST cope with large number of Services in terms of
• Additional components Required

9

Desired Features of the Management Framework

• Performance
– Initialization Cost, Recovery from failure, Responding to runtime

events

• Interoperability
– Service exist on different platforms, Written in different

languages, managed using system specific protocols and hence
not INTEROPERABLE

– Framework must implement interoperable protocols such as based
on Web-Service standards

• Generality
– Management framework must be a generic framework
– Should be applicable to any type of resource (hardware/

software). This paper primarily focuses on Service Management

• Usability
– Autonomous operation (as much as possible)

10

Architecture

• Applicable to services which can be controlled
by modest external state

• We assume Service specific external state to be
maintained by a Registry (assumed scalable,
fault-tolerant by known techniques)

• We leverage well-known strategies for
providing
– Fault-tolerance (E.g. Replication, periodic check-

pointing, request-retry)

– Fault-detection (E.g. Service heartbeats)

– Scalability (E.g. hierarchical organization)
11

Management Architecture built in terms of

• Hierarchical Bootstrap System
– Services in different domains can be managed with separate

policies for each domain
– Periodically spawns a System Health Check that ensures

components are up and running

• Registry for metadata (distributed database) – Robust
by standard database techniques and our system itself
for Service Interfaces
– Stores Service specific information (User-defined

configuration / policies, external state required to properly
manage a service)

– Generates a unique ID per instance of registered component
– Our present implementation is a simple registry service

12

Management Architecture built in terms of

• Messaging Nodes form a scalable messaging substrate
– Provides transport protocol independent messaging between

components
– Can provide Secure delivery of messages
– In our case, we use NaradaBrokering Broker as a messaging node

(http://www.naradabrokering.org)

• Managers – Active stateless agents that manage
services.
– Since they don’t maintain state, hence robust
– Actual management functions are performed by a service specific

manager component

• Services – what you are managing
– Wrapped by a Service Adapter which provides a Web Service interface.
– Service Adapter connects to messaging node to leverage transport

independent publish subscribe communication with other components

13

Architecture:
Scalability: Hierarchical distribution

14

ROOT

US EUROPE

FSU CARDIFF

CGL

Active Bootstrap Nodes
/ROOT/EUROPE/CARDIFF

Always the leaf nodes in the hierarchy

Responsible for maintaining a working set
of management components in the
domain

Passive Bootstrap Nodes
Only ensure that all child bootstrap
nodes are always up and running

…
Spawns if not present and

ensure up and running

…

Architecture:
Framework Components

Resource to

Manage

(Managee)

Service

Adapter

Bootstrap

Service

...
System Health

Check Manager

15

Resource to

Manage

(Managee)

Service

Adapter

Resource to

Manage

(Managee)

Service

Adapter

Manager

Messaging

Node

Registry

Manager

Manager

...

Connect to Messaging
Node for sending and
receiving messages

User writes system
configuration to registry

Manager processes periodically
checks available services to

manage. Also Read/Write service
specific external state from/to

registry

Always ensure up
and running

Always ensure up and
running

Periodically Spawn

WS Management

Publish Subscribe based communication via Messaging Node

Architecture
User Component

• Service Characteristics are determined by the user
(Administrator for the services in question)

• Events generated by the services are handled by the
manager
– Event processing is determined by via WS-Policy

constructs
For e.g., Automatically instantiate a failed service instance
<pol:Policy xmlns:pol=http://schemas.xmlsoap.org/ws/2004/09/policy

xmlns:pol1="http://www.hpsearch.org/schemas/2006/07/policy">

<pol:All>

<pol1:AUTOInstantiate

forkProcessLocator="udp://156.56.104.152:65535"/>

</pol:All>

</pol:Policy>

• Managers can set up services
– A set of services can be started by simply writing appropriate

info to Registry 16

Issues in the distributed system
Consistency

• Examples of inconsistent behavior
– Two or more managers managing the same service
– Old messages / requests reaching after new requests
– Multiple copies of services existing at the same time / Orphan services

leading to inconsistent system state

• Use a Registry generated monotonically increasing
Unique Instance ID (IID) to distinguish between new
and old instances
– Requests from manager A are considered obsolete IF IID(A) < IID(B)
– Service Adapter stores the last known MessageID (IID:seqNo) allowing it

to differentiate between duplicates AND obsolete messages
– Service adapter periodically renews with registry

• IF IID(serviceInstance_1) < IID(serviceInstance_2)
• THEN serviceInstance_1 is OBSOLETE
• SO serviceInstance_1 silently shuts down

17

Issues in the distributed system
Security

• NaradaBrokering’s Topic Creation and Discovery* and
Security Scheme# addresses

– Message level security

– Provenance, Lifetime, Unique Topics

– Secure Discovery of endpoints

– Prevent unauthorized access to services

– Prevent malicious users from modifying message
• Thus message interactions are secure when passing through insecure

intermediaries

18

* NB-Topic Creation and Discovery - Grid2005 / IJHPCN

NB-Security (Grid2006)

Implemented:
• Management framework

• WS – Specifications
– WS – Management (could use WS-DM) -June 2005 parts (WS – Transfer [Sep

2004], WS – Enumeration [Sep 2004]) and WS – Policy[Sep 2004], SOAP v 1.2
(needed for WS-Management)

– WS – Eventing (Leveraged from the WS – Eventing support in
NaradaBrokering)

– Used XmlBeans for manipulating XML in custom container

• Management of NaradaBrokering Brokers*
– Released with NaradaBrokering in Feb 2007

– Currently being used as a Grid builder tool to remotely deploy Grids
dynamically (Rui Wang, Anabas.com)

19

*Managing Grid Messaging Middleware
Harshawardhan Gadgil et.al, CLADE 2006

Scalable, Fault-tolerant Management in a Service Oriented Architecture
Harshawardhan Gadgil et. al, Poster HPDC 2007

Performance Evaluation
Measurement Model – Test Setup

• Cluster of 8 nodes (Dual
Intel Xeon HT CPUs 2.4GHz,
2GB RAM, 1 Gbps, 1.4.2
JVM)

• Multithreaded manager
process - Spawns a service
specific management thread
(A single manager can
manage multiple different
types of services)

• Limit on maximum services
that can be managed

• Limit on maximum number
of concurrent requests that
can be handled

Setup A: Running Managers on same machine

Setup B: Running Managers on multiple machine

M
a

c
h

in
e

 4

M
a

c
h

in
e

 3
M

a
c

h
in

e
 2

Broker Resources

M
a

c
h

in
e

 1

Broker Resources

M
a

c
h

in
e

 1

20

Performance Evaluation
Results

Scenario illustrating a case
with multiple concurrent
events

Response time increases
with increasing number of
concurrent requests

Response time is SERVICE
DEPENDENT and the shown
times are illustrative

Increases rapidly as no. of
requests > 210

MAY involve dependency on
external services such as
Registry access which will
increase overall response
time but can allow more
than (210) concurrent
requests to be processed

21

Performance Model

• Avg. Resp. Time = TP + [TR + 2 * (LMB + TX + LBR)]

= TP + K

• TP = TCPU + TExternal + TScheduling

• TPROC = (N/C) * TP

– N = Num requests, C = Simultaneous processing

• D = (C/TP)* 1000 ≈ (2/8.37 msec) * 1000 ≈ 239 req/sec

– D = Max requests handled by manager before saturating
22

Service

BrokerMANAGER Connection Pool Service

Service

...

T
P
 = Manager

Processing Time

L
MB

 = Network

Latency (Manager

and Broker)

T
X
 = Broker

Transit Time
L

BR
 = Network

Latency (Broker

and Service)

T
R
 = Service

Processing Time

Performance Evaluation
Comparing Increasing Managers on same machine w.r.t. different machines

23

Performance Evaluation
Research Question: How much infrastructure is required to manage N services ?

• N = Number of services to manage

• M = Max. no. of services that connect to a single messaging node

• D = Maximum concurrent requests that can be processed by a single
manager process before saturating

– For analysis, we set this as the number of services assigned per manager

• R = min. no. of registry service components required to provide desired level
of fault-tolerance

• Assume every leaf domain has 1 messaging node. Hence we have N/M leaf
domains

• Further, No. of managers required per leaf domain is M/D

• Other passive bootstrap nodes are not counted here since << N

• Total Components in lowest level
= (R registry + 1 Bootstrap Service + 1 Messaging Node + M/D Managers)

* (N/M such leaf domains)

= (2 + R + M/D) * (N/M)

24

Performance Evaluation
Research Question: How much infrastructure is required to manage N services ?

• Thus percentage of additional infrastructure is
= [(2 + R + M/D)*N/M] * 100 / N %
= [(2 +R)/M + 1/D] * 100 %

• A Few Cases
– If, D = 200, M = 800 and R = 4, then Additional Infrastructure

= [(2+4)/800 + 1/200] * 100 % ≈ 1.2 %

– Shared Registry then there is one registry interface per domain, R = 1, then
Additional Infrastructure
= [(2+1)/800 + 1/200] * 100 % ≈ 0.87 %

– If NO messaging node is used (assume D = 200), then Additional
Infrastructure
= [(R registry + 1 bootstrap node + N/D managers)/N] * 100 %
= [(1+R)/N + 1/D] * 100 %
≈ 100/D % (for N >> R)
≈ 0.5%

25

No. of services (N), No. of service assigned to manager (D), Registry Service
Instances (R), Max. Entities connected to Messaging Node (M)

Contributions
• Designed and implemented a Service Management

Framework
– Scalable to manage large number of services

– Tolerant to failures in framework itself
• Can handle failures in managed services via user defined policies

• We have shown that Management framework can be
built on top of a publish subscribe framework to
provide transport independent messaging between
framework components

• Implemented Web Service Management to manage
services

• Detailed evaluation of the system components to show
that the proposed architecture has acceptable costs

26

Future Work
• Apply the framework to broader domains

• Investigate application of architecture where
significant runtime state needs to be maintained
– Higher frequency and size of messages

– XML processing overhead becomes significant

• Investigate strategies to distribute framework
components (load balance) considering factors such
as locality of resources and runtime metrics

27

Thanks

Questions / Comments ?

28

