
GGF Boston 2005 http://www.naradabrokering.org

Experiences with implementing

some WS-* specifications

Shrideep Pallickara

Community Grids Lab

Indiana University

spallick@indiana.edu

http://www.naradabrokering.org

Outline

Overview of some Web Service specifications

 Implementation strategy

Problems encountered

GGF Boston 2005 http://www.naradabrokering.org

PART – I

WS-Addressing

http://www.naradabrokering.org

WS-Addressing

Web Services Addressing (WSA) provides
transport-neutral mechanisms to address Web
services and messages.

WSA provides two very important constructs:

endpoint references (EPR) and

message information headers (MIH)

WSA is leveraged by several WS-* specifications

WS-ReliableMessaging, WS-Eventing and WS-
Notification.

http://www.naradabrokering.org

Endpoint References (EPR)

Endpoint references are a transport neutral way to

identify and describe service instances and

endpoints.

A typical scenario would involve a node sitting at the edge

of an organization, directing traffic to the right instance

based on the information maintained in the EPR.

EPRs are constructed and specified in the SOAP

message by the entity that is initiating the

communications

http://www.naradabrokering.org

EPRs – Structure

An address element which is a URI

A reference properties element which is a set of

properties required to identify a resource

A reference parameters element which is a set of

parameters associated with the endpoint that is

necessary for facilitating specific interactions.

http://www.naradabrokering.org

Message Information Headers (MIH)

The MIH enables the identification and location of

endpoints pertaining to an interaction.

The interactions include Request, Reply/Response, and

Faults.

http://www.naradabrokering.org

Message Information Headers - II

To (mandatory element): This specifies the

intended receiver of message.

From: This identifies the originator of a message.

ReplyTo: Specifies where replies to a message will

be sent to.

FaultTo: Specifies where faults, as a result of

processing the message, should be sent to.

http://www.naradabrokering.org

Message Information Headers III

 Action: This is a URI that identifies the semantics associated
with the message. WSA also specifies rules on the generation
of Action elements from the WSDL definition of a service.
 In the WSDL case this is generally a combination of [target

namespace]/[port type name]/[input/output name] . For e.g.
http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe is a valid
action element.

 MessageId: This is typically a UUID which uniquely
identifies a message. This is sometimes also used correlate
responses with previously issued requests..

 RelatesTo: This identifies how a message relates to a
previous message. This field typically contains the
messageId of a previously issued message

http://www.naradabrokering.org

WSA Rules

 Identifies how the EPR elements should be added

to the Header of the SOAP Message while targeting

an endpoint.

Has rules pertaining to the generation of responses

and faults.

Contents of the wsa:RelatesTo and/or the wsa:Action

field.

http://www.naradabrokering.org

WSA Rules

WSA also outlines the rules related to targeting of

replies and faults.

In the case of faults, it also outlines the content of the

wsa:Action element.

 It outlines rules related to the generation of the

wsa:RelatesTo element.

GGF Boston 2005 http://www.naradabrokering.org

Part -II

WS-Eventing

http://www.naradabrokering.org

Overview of Notifications

Entities communicate through the exchange of

messages.

A notification is a message encapsulating an

occurrence of interest to the entities.

Notification based systems are an instance of

messaging-based systems where entities have two

distinct roles viz. source and sink.

http://www.naradabrokering.org

SOURCE SINK

Register Interests

(Subscriptions)

Notificaions

http://www.naradabrokering.org

Routing Notifications from Source

 A sink first needs to register its interest in a situation, this

operation is generally referred to as a subscribe operation.

 The source first wraps occurrences into notification messages.

 Next, the source checks to see if the message satisfies the

constraints specified in the previously registered

subscriptions.

 If so, the source routes the message to the sink.

 This routing of the message from the source to the sink is referred

to as a notification.

http://www.naradabrokering.org

Loosely-coupled & Tightly-coupled

Systems

Depending on the nature of the underlying
frameworks the coupling between the sources and
sinks can vary.

 In loosely-coupled systems a source need not be
aware of the sinks.

The source generates events and an intermediary,
typically a messaging middleware, is responsible for
routing the message to appropriate sinks.

 In tightly-coupled systems there is no intermediary
between the source and the sink.

http://www.naradabrokering.org

WS-Eventing

WS-Eventing is an instance of a tightly-coupled

notification system.

There is no intermediary between the source and the

sink.

 The source is responsible for the routing of notifications to the

registered consumers.

WS-Eventing, however introduces another entity ─

the subscription manager ─ within the system.

http://www.naradabrokering.org

Subscriptions in WS-Eventing

 Subscriptions within WS-Eventing have an
identifier and expiration times associated with them.

The identifier uniquely identifies a specific subscription,
and is a UUID.

The expiration time corresponds to the time after which
the source will stop routing notifications corresponding
to the expired subscription.

Also specifies the dialect (XPath, Regular
expressions etc) and the constraint associated with
the subscription.

http://www.naradabrokering.org

Subscription Manager

A subscription manager is responsible for

operations related to the management of

subscriptions.

Every source has a subscription manager associated

with it.

The specification does not either prescribe or

prescribe the collocation of the source and the

subscription manager on the same machine.

http://www.naradabrokering.org

Subscription Manager Operations

 It enables sinks to retrieve the status of their

subscriptions. These subscriptions are the ones that

the sinks had previously registered with the source.

 It manages the renewals of the managed

subscriptions.

 It is responsible for processing unsubscribe requests

from the sinks.

http://www.naradabrokering.org

Source Sink
Subscription

Manager

Subscribe

Unsubscribe

Renew

getStatus

Subscription End

Notifications

WS-Eventing Entity Interactions I

http://www.naradabrokering.org

WS-Eventing Entity Interactions - II

 When the sink subscribes with the source, the source

includes information regarding the subscription manager in

its response.

 Subsequent operations –- such as getting the status of,

renewing and unsubscribing –- pertaining to previously

registered subscriptions are all directed to the subscription

manager.

 The source sends both notifications and a message

signifying the end of registered subscriptions to the sink.

GGF Boston 2005 http://www.naradabrokering.org

Part III

WS-ReliableMessaging

http://www.naradabrokering.org

WSRM

 WSRM describes a protocol that facilitates the reliable

delivery of messages between two web service endpoints in

the presence of component, system or network failures.

 WSRM facilitates the reliable delivery of messages from the

source (or originator) of messages to the sink (or

destination) of messages.

 The delivery (and ordering) guarantees are valid over a

group of messages, which is referred to as a sequence.

http://www.naradabrokering.org

Creation of Sequences

 In WSRM prior to ensuring reliable delivery of messages
between the endpoints, the source initiates an exchange
with the sink pertaining to the creation of a Sequence.

 This Sequence is intended to facilitate the grouping of a set
of related messages.

 This Sequence is identified by an identifier, typically a
UUID. Other information associated with the Sequence
include information regarding ─
 The source and the sink

 Policy information related to protocol constants such as
acknowledgement and retransmission intervals.

 Security related information if needed.

http://www.naradabrokering.org

WSRM Sequences

 In WSRM all messages issued by a source exist within the
context of a Sequence that was established prior to
communications.

 Once a source has determined that all messages within a
Sequence have been received at the sink, the source initiates
an exchange to terminate this sequence.

 The specification allows for a maximum of 264 -1 messages
within a Sequence.

 The specification places no limits on the number of
Sequences between a specific source and sink.
 However, it is expected that at any given time there is NO more

than 1 active Sequence between 2 specific endpoints.

http://www.naradabrokering.org

Publishing Messages in WSRM

Every message from the source contains two pieces
of information ─

The Sequence that this message is a part of and

A monotonically increasing Message Number within this
Sequence.

These Message Numbers enable the tracking of
problems, if any, in the intended message delivery at
a sink.

Message Numbers enable the determination of out of
order receipt of messages as well as message losses.

http://www.naradabrokering.org

Issuing Acknowledgments

 In WSRM a sink is expected to issue acknowledgements

back to the source upon receipt of messages.

 This acknowledgement contains information about

 The Sequence and

 The Message Numbers within this Sequence.

 An acknowledgement must be issued only after a certain

time ─ the acknowledgement interval ─ has elapsed since the

receipt of the first unacknowledged message.

 This acknowledgement may cover a single message or a

group of messages within a Sequence.

http://www.naradabrokering.org

Processing Acknowledgments

Upon receipt of this acknowledgement a source can

determine which messages might have been lost in

transit and proceed to retransmit the missed

messages.

Thus if a sink has acknowledged the receipt of

messages 1 ─ 10 and 13 ─ 18.

The source can conclude that messages with Message

Numbers 11 and 12 were lost en route to the sink and

proceed to retransmit these messages.

http://www.naradabrokering.org

Retransmissions and Error Corrections

 A source may also pro-actively initiate the retransmission of a
message for which that an acknowledgement has not been
received within a specified time ─ the retransmission interval ─
after which it was issued.

 In WSRM error corrections can also be initiated at the sink;
this is done through the use of negative acknowledgements.

Negative acknowledgments identify the message numbers that
have not been received at a sink.

 Message Numbers increase monotonically. If Message
Numbers 1,2,3,4 and 8 within a specific Sequence have been
received at a sink.

This sink can easily conclude that it has not received messages
with message numbers 5,6 and 7 from the source.

http://www.naradabrokering.org

Notification of Errors

 WSRM provides for notification of errors in processing

between the endpoints involved in reliable delivery.

 These are routed back as SOAP Faults.

 The range of errors can vary from an inability to decipher a

message’s content to complex errors pertaining to

violations in implied agreements between the interacting

source and sink.

 All errors are reported as faults with the appropriate

wsa:Action attribute, and encapsulated in WSRM fault

elements.

GGF Boston 2005 http://www.naradabrokering.org

Part IV

Reflections on Implementing

WS-* specifications

http://www.naradabrokering.org

Some quick observations about WS-*

 Typically addresses core areas or those where the demand is

substantial enough to eschew proprietary ad hoc solutions.

 In some cases common issues across various WS-*

specifications mandate additional WS-* specifications.

 Exemplars include WS-Addressing, WS-Policy.

 Various specifications are intended to incrementally

augment capabilities at an endpoint.

 For e.g. if you need reliable messaging capabilities simply plug in a

WSRM module. If you need notification capability plug in WS-

Eventing or WS-Notification.

http://www.naradabrokering.org

Some quick observations about WS-*

Functionality of specifications encapsulated within

stand-alone SOAP messages.

They typically also include a WSDL definitions of

operations, but all functionality is encapsulated in SOAP

messages.

Primary interaction model is one-way,

asynchronous SOAP messaging.

Lot of these specifications are also intended to be

stackable.

http://www.naradabrokering.org

WS-*

WS-Eventing

WS-RM

WS-Security

SOAP Rules

WS-Addressing

WS-Policy

XML Schema

http://www.naradabrokering.org

Typical implementation strategy

 Develop strategy for processing the XML Schema
associated with the specification.
 This would allow you to process the XML messages from Java (or

language of choice).

 XML generated over the wire should be conformant to the relevant
schemas.
 This allows one to interact with other implementations.

 Develop Processor to enforce rules and processing
associated with the specification.
 This would include performing actions, issuing requests/responses

and faults.

 Ensure that rules and processing related to leveraged
specifications are enforced.

http://www.naradabrokering.org

Processing XML Schemas

 We were looking for a solution that allowed us to

process XML from within the Java domain.

There are 4 choices

Develop Java classes ourselves

Use wsdl2java to do this

Use the JAXB Data Binding Framework

Use a schema compiler such as Castor or XMLBeans

http://www.naradabrokering.org

Writing one’s own classes

Approach used by Apache’s Sandesha project.

Implementation of WSRM

Error prone and quite difficult

Increasingly the developer has to deal with several other

specifications.

Another approach is to just process messages based

on DOM.

Quite difficult to do. No examples that we are currently

aware of.

http://www.naradabrokering.org

WSDL2Java Problems

 Issues (in version 1.2) related to this tool’s support

for schemas have been documented in

http://www-

106.ibm.com/developerworks/webservices/library

/ws-castor/ .

 Specifically, the problems relate to insufficient (and

in some cases incorrect) support for complex

schema types, XML validation and serialization

issues.

http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/

http://www.naradabrokering.org

JAXB Issues

 JAXB is a specification from Sun to deal with XML and
Java data-bindings.

 JAXB though better than what is generated using Axis’
wsdl2java still does not provide complete support for the
XML Schema.

 JSR 31 expert group decided NOT to attempt full compatibility
with the XML Schema standard.

 You may run into situations where you may find an inaccessible
data inside your schema.

 We looked at both the JAXB reference implementation
from Sun and JaxMe from Apache (which is an open source
implementation of the JAXB Framework).

http://www.naradabrokering.org

Rationale for the choice of XMLBeans

 We settled on XMLBeans because of two reasons.
 It is an open source effort. Originally developed by BEA it was

contributed by BEA to the Apache Software Foundation.

 In our opinion, it provides the best and most complete support for
the XML schema of all the tools currently available.

 XMLBeans allows us to validate instance documents and
also facilitates simple but sophisticated navigation through
XML documents.

 The XML generated by the corresponding Java classes is
true XML which conforms to (and can be validated against)
the original schema.

http://www.naradabrokering.org

Developing WS-* Processors

 In some cases there would be more than one role associated
with a specification. Ensure that processing related to each
role is done.

 E.g. WSRM and WSE.

 Processing the SOAP Messages

 Direction of the message is important.

 Messages processed differently depending on whether it was received
over the network or from application.

 When problems are encountered the processor needs to
throw exceptions and/or issue faults.

 Faults need to conform to rules outlined in both SOAP and WS-
Addressing.

http://www.naradabrokering.org

Common Problems

 Schemas seem to change quite often.

WS-* specifications typically leverage other

specifications.

 Changes in the schemas of these specifications can

affect the one being implemented.

Container problems

http://www.naradabrokering.org

WS-* specs have compatibility issues

 Every new version has a new target namespace.

 This ensures that an implementation of a specific version of
a specification will ONLY work with other
implementations of the same version.

 This is the equivalent of having a new package name for
every class every time you release a new version of your
software.

 Applications developed using the old class names will not work
without major updates.

 You can generate classes for every version of the spec.

 Lots and lots of duplicate classes. Code re-use and manageability is
sacrificed.

http://www.naradabrokering.org

A General comment on Web Service

Containers
 It is based on supporting the RPC model which is out-of-

sync with several new WS specifications.
 Every message needs to be a request (invocation of a remote

method) or the corresponding response.

 Focal point is WSDL not SOAP.
 Similar to IDL-centric CORBA approach.

 SOAP 1.2 clearly states primary purpose is one-way messaging
NOT the carrying of RPC invocations.

 Problems
 It is difficult to fit the RPC model for say WS-Eventing
 Where would a RPC request (notification) be made? There are multiple

destinations that the message needs to be sent to.

 Forcing every exchange, ACKs/Retransmissions to be based on the
RPC request/response model is very limiting.

http://www.naradabrokering.org

The Handler Approach

 A handler is a module that can reside in the processing path of
SOAP messages as they traverse between service endpoints.

 A handler may be configured to reside in the paths associated
with the message exchanges such as requests, responses or
faults

 Handlers facilitate the incremental addition of capabilities to
services.

 No need to change service implementations themselves.

 Handlers are autonomous entities

 A given handler has complete access to the entire SOAP message.
Read, Write, and Replace.

 Handlers can be cascaded to form Handler chains

http://www.naradabrokering.org

Handlers: Problems

 Handlers are statically pre-configured.

No dynamic re-configuration of the handler-chain.

 Handlers cannot pro-actively inject messages into the
processing path between the service endpoints.

 In WSRM, a node needs to issue acknowledgements or initiate
retransmissions at regular intervals.

 Sometimes, a given SOAP message may result in multiple
SOAP messages being forked off.
 In WS-Eventing a message may need to routed to multiple interested

consumers for that message.

The current handler model precludes us from easily
supporting these scenarios.

 The handler model in the proposed JAX RPC 2.0
specification does not address these issues.

We hope Axis will incorporate support for richer interactions.

http://www.naradabrokering.org

Handlers: What they should support

 Injecting messages

A given notification message may spawn multiple copies
of the message being routed to consumers.

In WSRM, this would facilitate retransmissions and
responses.

Ability to generate responses and stop message
processing

Some messages need not be propagated to application at
all. For e.g. an application need not know about WSRM
acks or naks.

http://www.naradabrokering.org

 In WS-Eventing: You do not want a notification message to traverse H1, H2, H3.

In WSRM you do not wish for retransmissions to be processed by H1, H2, H3.

 But messages need to traverse H5 and H6.

H1

H2

H3

OMII

Handler

H5

H6

Security policies

for a given

domain may be

enforced by H6.

Decryption/

Verification

H1

H2

H3

OMII

Handler

H5

H6

Security policies

for a given domain

may be enforced

by H6.

Encryption/Signing

Direct

transfer will

violate

domain

policies.

http://www.naradabrokering.org

Final Comments

WS-* specifications still have some way to go.

Stability and compatibility

WS Containers need some changes

Better support for the one-way messaging model

Handler/Filter model needs to be richer.

