
GGF Boston 2005 http://www.naradabrokering.org

Experiences with implementing

some WS-* specifications

Shrideep Pallickara

Community Grids Lab

Indiana University

spallick@indiana.edu

http://www.naradabrokering.org

Outline

Overview of some Web Service specifications

 Implementation strategy

Problems encountered

GGF Boston 2005 http://www.naradabrokering.org

PART – I

WS-Addressing

http://www.naradabrokering.org

WS-Addressing

Web Services Addressing (WSA) provides
transport-neutral mechanisms to address Web
services and messages.

WSA provides two very important constructs:

endpoint references (EPR) and

message information headers (MIH)

WSA is leveraged by several WS-* specifications

WS-ReliableMessaging, WS-Eventing and WS-
Notification.

http://www.naradabrokering.org

Endpoint References (EPR)

Endpoint references are a transport neutral way to

identify and describe service instances and

endpoints.

A typical scenario would involve a node sitting at the edge

of an organization, directing traffic to the right instance

based on the information maintained in the EPR.

EPRs are constructed and specified in the SOAP

message by the entity that is initiating the

communications

http://www.naradabrokering.org

EPRs – Structure

An address element which is a URI

A reference properties element which is a set of

properties required to identify a resource

A reference parameters element which is a set of

parameters associated with the endpoint that is

necessary for facilitating specific interactions.

http://www.naradabrokering.org

Message Information Headers (MIH)

The MIH enables the identification and location of

endpoints pertaining to an interaction.

The interactions include Request, Reply/Response, and

Faults.

http://www.naradabrokering.org

Message Information Headers - II

To (mandatory element): This specifies the

intended receiver of message.

From: This identifies the originator of a message.

ReplyTo: Specifies where replies to a message will

be sent to.

FaultTo: Specifies where faults, as a result of

processing the message, should be sent to.

http://www.naradabrokering.org

Message Information Headers III

 Action: This is a URI that identifies the semantics associated
with the message. WSA also specifies rules on the generation
of Action elements from the WSDL definition of a service.
 In the WSDL case this is generally a combination of [target

namespace]/[port type name]/[input/output name] . For e.g.
http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe is a valid
action element.

 MessageId: This is typically a UUID which uniquely
identifies a message. This is sometimes also used correlate
responses with previously issued requests..

 RelatesTo: This identifies how a message relates to a
previous message. This field typically contains the
messageId of a previously issued message

http://www.naradabrokering.org

WSA Rules

 Identifies how the EPR elements should be added

to the Header of the SOAP Message while targeting

an endpoint.

Has rules pertaining to the generation of responses

and faults.

Contents of the wsa:RelatesTo and/or the wsa:Action

field.

http://www.naradabrokering.org

WSA Rules

WSA also outlines the rules related to targeting of

replies and faults.

In the case of faults, it also outlines the content of the

wsa:Action element.

 It outlines rules related to the generation of the

wsa:RelatesTo element.

GGF Boston 2005 http://www.naradabrokering.org

Part -II

WS-Eventing

http://www.naradabrokering.org

Overview of Notifications

Entities communicate through the exchange of

messages.

A notification is a message encapsulating an

occurrence of interest to the entities.

Notification based systems are an instance of

messaging-based systems where entities have two

distinct roles viz. source and sink.

http://www.naradabrokering.org

SOURCE SINK

Register Interests

(Subscriptions)

Notificaions

http://www.naradabrokering.org

Routing Notifications from Source

 A sink first needs to register its interest in a situation, this

operation is generally referred to as a subscribe operation.

 The source first wraps occurrences into notification messages.

 Next, the source checks to see if the message satisfies the

constraints specified in the previously registered

subscriptions.

 If so, the source routes the message to the sink.

 This routing of the message from the source to the sink is referred

to as a notification.

http://www.naradabrokering.org

Loosely-coupled & Tightly-coupled

Systems

Depending on the nature of the underlying
frameworks the coupling between the sources and
sinks can vary.

 In loosely-coupled systems a source need not be
aware of the sinks.

The source generates events and an intermediary,
typically a messaging middleware, is responsible for
routing the message to appropriate sinks.

 In tightly-coupled systems there is no intermediary
between the source and the sink.

http://www.naradabrokering.org

WS-Eventing

WS-Eventing is an instance of a tightly-coupled

notification system.

There is no intermediary between the source and the

sink.

 The source is responsible for the routing of notifications to the

registered consumers.

WS-Eventing, however introduces another entity ─

the subscription manager ─ within the system.

http://www.naradabrokering.org

Subscriptions in WS-Eventing

 Subscriptions within WS-Eventing have an
identifier and expiration times associated with them.

The identifier uniquely identifies a specific subscription,
and is a UUID.

The expiration time corresponds to the time after which
the source will stop routing notifications corresponding
to the expired subscription.

Also specifies the dialect (XPath, Regular
expressions etc) and the constraint associated with
the subscription.

http://www.naradabrokering.org

Subscription Manager

A subscription manager is responsible for

operations related to the management of

subscriptions.

Every source has a subscription manager associated

with it.

The specification does not either prescribe or

prescribe the collocation of the source and the

subscription manager on the same machine.

http://www.naradabrokering.org

Subscription Manager Operations

 It enables sinks to retrieve the status of their

subscriptions. These subscriptions are the ones that

the sinks had previously registered with the source.

 It manages the renewals of the managed

subscriptions.

 It is responsible for processing unsubscribe requests

from the sinks.

http://www.naradabrokering.org

Source Sink
Subscription

Manager

Subscribe

Unsubscribe

Renew

getStatus

Subscription End

Notifications

WS-Eventing Entity Interactions I

http://www.naradabrokering.org

WS-Eventing Entity Interactions - II

 When the sink subscribes with the source, the source

includes information regarding the subscription manager in

its response.

 Subsequent operations –- such as getting the status of,

renewing and unsubscribing –- pertaining to previously

registered subscriptions are all directed to the subscription

manager.

 The source sends both notifications and a message

signifying the end of registered subscriptions to the sink.

GGF Boston 2005 http://www.naradabrokering.org

Part III

WS-ReliableMessaging

http://www.naradabrokering.org

WSRM

 WSRM describes a protocol that facilitates the reliable

delivery of messages between two web service endpoints in

the presence of component, system or network failures.

 WSRM facilitates the reliable delivery of messages from the

source (or originator) of messages to the sink (or

destination) of messages.

 The delivery (and ordering) guarantees are valid over a

group of messages, which is referred to as a sequence.

http://www.naradabrokering.org

Creation of Sequences

 In WSRM prior to ensuring reliable delivery of messages
between the endpoints, the source initiates an exchange
with the sink pertaining to the creation of a Sequence.

 This Sequence is intended to facilitate the grouping of a set
of related messages.

 This Sequence is identified by an identifier, typically a
UUID. Other information associated with the Sequence
include information regarding ─
 The source and the sink

 Policy information related to protocol constants such as
acknowledgement and retransmission intervals.

 Security related information if needed.

http://www.naradabrokering.org

WSRM Sequences

 In WSRM all messages issued by a source exist within the
context of a Sequence that was established prior to
communications.

 Once a source has determined that all messages within a
Sequence have been received at the sink, the source initiates
an exchange to terminate this sequence.

 The specification allows for a maximum of 264 -1 messages
within a Sequence.

 The specification places no limits on the number of
Sequences between a specific source and sink.
 However, it is expected that at any given time there is NO more

than 1 active Sequence between 2 specific endpoints.

http://www.naradabrokering.org

Publishing Messages in WSRM

Every message from the source contains two pieces
of information ─

The Sequence that this message is a part of and

A monotonically increasing Message Number within this
Sequence.

These Message Numbers enable the tracking of
problems, if any, in the intended message delivery at
a sink.

Message Numbers enable the determination of out of
order receipt of messages as well as message losses.

http://www.naradabrokering.org

Issuing Acknowledgments

 In WSRM a sink is expected to issue acknowledgements

back to the source upon receipt of messages.

 This acknowledgement contains information about

 The Sequence and

 The Message Numbers within this Sequence.

 An acknowledgement must be issued only after a certain

time ─ the acknowledgement interval ─ has elapsed since the

receipt of the first unacknowledged message.

 This acknowledgement may cover a single message or a

group of messages within a Sequence.

http://www.naradabrokering.org

Processing Acknowledgments

Upon receipt of this acknowledgement a source can

determine which messages might have been lost in

transit and proceed to retransmit the missed

messages.

Thus if a sink has acknowledged the receipt of

messages 1 ─ 10 and 13 ─ 18.

The source can conclude that messages with Message

Numbers 11 and 12 were lost en route to the sink and

proceed to retransmit these messages.

http://www.naradabrokering.org

Retransmissions and Error Corrections

 A source may also pro-actively initiate the retransmission of a
message for which that an acknowledgement has not been
received within a specified time ─ the retransmission interval ─
after which it was issued.

 In WSRM error corrections can also be initiated at the sink;
this is done through the use of negative acknowledgements.

Negative acknowledgments identify the message numbers that
have not been received at a sink.

 Message Numbers increase monotonically. If Message
Numbers 1,2,3,4 and 8 within a specific Sequence have been
received at a sink.

This sink can easily conclude that it has not received messages
with message numbers 5,6 and 7 from the source.

http://www.naradabrokering.org

Notification of Errors

 WSRM provides for notification of errors in processing

between the endpoints involved in reliable delivery.

 These are routed back as SOAP Faults.

 The range of errors can vary from an inability to decipher a

message’s content to complex errors pertaining to

violations in implied agreements between the interacting

source and sink.

 All errors are reported as faults with the appropriate

wsa:Action attribute, and encapsulated in WSRM fault

elements.

GGF Boston 2005 http://www.naradabrokering.org

Part IV

Reflections on Implementing

WS-* specifications

http://www.naradabrokering.org

Some quick observations about WS-*

 Typically addresses core areas or those where the demand is

substantial enough to eschew proprietary ad hoc solutions.

 In some cases common issues across various WS-*

specifications mandate additional WS-* specifications.

 Exemplars include WS-Addressing, WS-Policy.

 Various specifications are intended to incrementally

augment capabilities at an endpoint.

 For e.g. if you need reliable messaging capabilities simply plug in a

WSRM module. If you need notification capability plug in WS-

Eventing or WS-Notification.

http://www.naradabrokering.org

Some quick observations about WS-*

Functionality of specifications encapsulated within

stand-alone SOAP messages.

They typically also include a WSDL definitions of

operations, but all functionality is encapsulated in SOAP

messages.

Primary interaction model is one-way,

asynchronous SOAP messaging.

Lot of these specifications are also intended to be

stackable.

http://www.naradabrokering.org

WS-*

WS-Eventing

WS-RM

WS-Security

SOAP Rules

WS-Addressing

WS-Policy

XML Schema

http://www.naradabrokering.org

Typical implementation strategy

 Develop strategy for processing the XML Schema
associated with the specification.
 This would allow you to process the XML messages from Java (or

language of choice).

 XML generated over the wire should be conformant to the relevant
schemas.
 This allows one to interact with other implementations.

 Develop Processor to enforce rules and processing
associated with the specification.
 This would include performing actions, issuing requests/responses

and faults.

 Ensure that rules and processing related to leveraged
specifications are enforced.

http://www.naradabrokering.org

Processing XML Schemas

 We were looking for a solution that allowed us to

process XML from within the Java domain.

There are 4 choices

Develop Java classes ourselves

Use wsdl2java to do this

Use the JAXB Data Binding Framework

Use a schema compiler such as Castor or XMLBeans

http://www.naradabrokering.org

Writing one’s own classes

Approach used by Apache’s Sandesha project.

Implementation of WSRM

Error prone and quite difficult

Increasingly the developer has to deal with several other

specifications.

Another approach is to just process messages based

on DOM.

Quite difficult to do. No examples that we are currently

aware of.

http://www.naradabrokering.org

WSDL2Java Problems

 Issues (in version 1.2) related to this tool’s support

for schemas have been documented in

http://www-

106.ibm.com/developerworks/webservices/library

/ws-castor/ .

 Specifically, the problems relate to insufficient (and

in some cases incorrect) support for complex

schema types, XML validation and serialization

issues.

http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/

http://www.naradabrokering.org

JAXB Issues

 JAXB is a specification from Sun to deal with XML and
Java data-bindings.

 JAXB though better than what is generated using Axis’
wsdl2java still does not provide complete support for the
XML Schema.

 JSR 31 expert group decided NOT to attempt full compatibility
with the XML Schema standard.

 You may run into situations where you may find an inaccessible
data inside your schema.

 We looked at both the JAXB reference implementation
from Sun and JaxMe from Apache (which is an open source
implementation of the JAXB Framework).

http://www.naradabrokering.org

Rationale for the choice of XMLBeans

 We settled on XMLBeans because of two reasons.
 It is an open source effort. Originally developed by BEA it was

contributed by BEA to the Apache Software Foundation.

 In our opinion, it provides the best and most complete support for
the XML schema of all the tools currently available.

 XMLBeans allows us to validate instance documents and
also facilitates simple but sophisticated navigation through
XML documents.

 The XML generated by the corresponding Java classes is
true XML which conforms to (and can be validated against)
the original schema.

http://www.naradabrokering.org

Developing WS-* Processors

 In some cases there would be more than one role associated
with a specification. Ensure that processing related to each
role is done.

 E.g. WSRM and WSE.

 Processing the SOAP Messages

 Direction of the message is important.

 Messages processed differently depending on whether it was received
over the network or from application.

 When problems are encountered the processor needs to
throw exceptions and/or issue faults.

 Faults need to conform to rules outlined in both SOAP and WS-
Addressing.

http://www.naradabrokering.org

Common Problems

 Schemas seem to change quite often.

WS-* specifications typically leverage other

specifications.

 Changes in the schemas of these specifications can

affect the one being implemented.

Container problems

http://www.naradabrokering.org

WS-* specs have compatibility issues

 Every new version has a new target namespace.

 This ensures that an implementation of a specific version of
a specification will ONLY work with other
implementations of the same version.

 This is the equivalent of having a new package name for
every class every time you release a new version of your
software.

 Applications developed using the old class names will not work
without major updates.

 You can generate classes for every version of the spec.

 Lots and lots of duplicate classes. Code re-use and manageability is
sacrificed.

http://www.naradabrokering.org

A General comment on Web Service

Containers
 It is based on supporting the RPC model which is out-of-

sync with several new WS specifications.
 Every message needs to be a request (invocation of a remote

method) or the corresponding response.

 Focal point is WSDL not SOAP.
 Similar to IDL-centric CORBA approach.

 SOAP 1.2 clearly states primary purpose is one-way messaging
NOT the carrying of RPC invocations.

 Problems
 It is difficult to fit the RPC model for say WS-Eventing
 Where would a RPC request (notification) be made? There are multiple

destinations that the message needs to be sent to.

 Forcing every exchange, ACKs/Retransmissions to be based on the
RPC request/response model is very limiting.

http://www.naradabrokering.org

The Handler Approach

 A handler is a module that can reside in the processing path of
SOAP messages as they traverse between service endpoints.

 A handler may be configured to reside in the paths associated
with the message exchanges such as requests, responses or
faults

 Handlers facilitate the incremental addition of capabilities to
services.

 No need to change service implementations themselves.

 Handlers are autonomous entities

 A given handler has complete access to the entire SOAP message.
Read, Write, and Replace.

 Handlers can be cascaded to form Handler chains

http://www.naradabrokering.org

Handlers: Problems

 Handlers are statically pre-configured.

No dynamic re-configuration of the handler-chain.

 Handlers cannot pro-actively inject messages into the
processing path between the service endpoints.

 In WSRM, a node needs to issue acknowledgements or initiate
retransmissions at regular intervals.

 Sometimes, a given SOAP message may result in multiple
SOAP messages being forked off.
 In WS-Eventing a message may need to routed to multiple interested

consumers for that message.

The current handler model precludes us from easily
supporting these scenarios.

 The handler model in the proposed JAX RPC 2.0
specification does not address these issues.

We hope Axis will incorporate support for richer interactions.

http://www.naradabrokering.org

Handlers: What they should support

 Injecting messages

A given notification message may spawn multiple copies
of the message being routed to consumers.

In WSRM, this would facilitate retransmissions and
responses.

Ability to generate responses and stop message
processing

Some messages need not be propagated to application at
all. For e.g. an application need not know about WSRM
acks or naks.

http://www.naradabrokering.org

 In WS-Eventing: You do not want a notification message to traverse H1, H2, H3.

In WSRM you do not wish for retransmissions to be processed by H1, H2, H3.

 But messages need to traverse H5 and H6.

H1

H2

H3

OMII

Handler

H5

H6

Security policies

for a given

domain may be

enforced by H6.

Decryption/

Verification

H1

H2

H3

OMII

Handler

H5

H6

Security policies

for a given domain

may be enforced

by H6.

Encryption/Signing

Direct

transfer will

violate

domain

policies.

http://www.naradabrokering.org

Final Comments

WS-* specifications still have some way to go.

Stability and compatibility

WS Containers need some changes

Better support for the one-way messaging model

Handler/Filter model needs to be richer.

