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Abstract. E-Science Semantic Grids can often be thought of as dynamic collec-
tion of semantic subgrids where each subgrid is a collection of modest number 
of services that assembled for specific tasks. We define a Gaggle as a modest 
number of managed and actively interacting Grid/Web Services, where services 
are put together for particular functionality. The information management re-
quirements in Gaggles include both the management of large amounts of rela-
tively static services and associated semantic information as well as the man-
agement of multiple dynamic regions (sessions or subgrids) where the semantic 
information is changing frequently. We design a hybrid, fault tolerant, and high 
performance Information Service supporting both the scalability of large 
amounts of relatively slowly varying data and a high performance rapidly up-
dated Information Service for dynamic regions. We use the two Web Service 
standards: Universal Description, Discovery, and Integration (UDDI) and Web 
Services Context (WS-Context). We evaluate our approach by applying various 
tests to investigate the performance and sustainability of the centralized version 
of our implementation that is applied to sensor and collaboration grids. The ex-
perimental study on system responsiveness of the proposed approach shows 
promising results. This study indicates that communication among services can 
be achieved with efficient centralized metadata strategies, with metadata com-
ing from more than two services. In contrast point-to-point methodologies pro-
vide service conversation with metadata only from the two services that ex-
change information. In addition, our performance indicates that efficient media-
tor services also allow us to perform collective operations such as queries on 
subsets of all available metadata in service conversation. 

1 Introduction 

E-Science Semantic Grids can often be thought of as dynamic collection of semantic 
subgrids where each subgrid is a collection of modest number of services that assem-
bled for specific tasks such as forecasting earthquakes [1] or managing an au-
dio/video collaboration session [3]. We term an actively interacting (collaborating) 
set of managed and modest number of services as a Gaggle where services are put 



together for particular functionality. A particular Semantic Grid may consist of sev-
eral Gaggles each featuring intense local activity with less intense inter-gaggle inter-
actions. Each Gaggle maintains the dynamic information which is the session related 
metadata generated as result of interactions among Grid/Web Services. Gaggles are 
also termed Grid Processes in the China National Grid [27]. They are sessions in the 
field of collaboration. An infrastructure for the Semantic Grid is discussed in [2] 
where Grid Processes may be defined as cooperative processes that support the defi-
nition, management and integration of business processes. We also note that Gaggles 
may be composed from other “sub” Gaggles hierarchically. 
 
Extensive metadata requirements of both the worldwide Grid and smaller sessions or 
“gaggles of grid services” that support local dynamic action may be investigated in 
diverse set of application domains such as sensor and collaboration grids. For exam-
ple, workflow-style Geographical Information Systems (GIS) Grids such as the Pat-
tern Informatics (PI) application [1] require information systems for storing both 
semi-static, stateless metadata and transitory metadata needed to describe distributed 
session state information. The PI application is an earthquake simulation and model-
ing code integrated with streaming data services as well as streaming map imaginary 
services for earthquake forecasting. Another example, collaborative streaming sys-
tems such as Global Multimedia Collaboration System (GlobalMMCS) [3] involve 
both large, mostly static information systems as well as much smaller, dynamic in-
formation systems. GlobalMMCS is a service-oriented collaboration system which 
integrates various services including videoconferencing, instant messaging and 
streaming, and is interoperable with multiple videoconferencing technologies. Zhuge 
defines Knowledge Grid in [30-31] as “an intelligent and sustainable interconnection 
environment that enables people and machines to effectively capture, publish, share 
and manage knowledge resources and that provides appropriate on-demand services 
to support scientific research, technological innovation, cooperative teamwork, prob-
lem solving, and decision making”. To this end, Gaggles may also be thought of as 
dynamic sub-components of the Knowledge Grid. Each Gaggle might be created in a 
dynamic fashion to support science and engineering applications of the Knowledge 
Grid.  
 
Figure 1 illustrates a model of building system hierarchy where services are aggre-
gated into atomic grids that perform basic functionalities.  The basic (atomic) grids 
include Geographical Information Systems (GIS), collaboration, sensor, compute or 
knowledge grid. Composite grids are built recursively from both atomic and other 
composite grids. In this picture, we need the core Grid Services at the bottom of fig-
ure with services like extended UDDI XML metadata service for static information 
and WS-Context XML metadata service for dynamic information. The atomic (basic) 
grids can be re-used in all critical infrastructure grids which in turn customized, com-
pared and overlaid with other grids for different critical infrastructure communities 
such as crisis grid, emergency response and so forth. As an example, PI grid applica-
tion can be built in composite fashion from basic grids, such as GIS and sensor grids. 
Given this picture, we expect that Grid of Grids concept [36] can be applied recur-



sively and dynamically to build grid applications with modest number of services 
gathered together at any one time to perform particular functionality. 
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Fig.1. Gaggles may be built in a dynamic fashion as Grids of Grids applications with 

modest number of services involved at any one time for particular functionality 
 
The Grid Information Services support discovery and handling of services through 
metadata and are vital components of Grids [4]. In this research, we are particularly 
interested in supporting discovery and handling of metadata for the Gaggles, i.e. one 
of the sub-grids of the whole Grid, where semantic information is changing fre-
quently. Handling information requirements of these applications requires high per-
formance, fault tolerant information systems. These information systems must be 
decentralized, relocate metadata to nearby locations of interested entities and provide 
efficient access, storage of the shared information, as the dynamic metadata needs to 
be delivered on tight time constraints within a Gaggle.  

1.1. Motivation 

We identify the following problems in Information Services supporting both tradi-
tional and Semantic Grids.  First, Grid Information Services need to be able to sup-
port dynamically assembled service collections gathered at any one time to solve a 
particular problem at hand such as calculating damages from disruptions at the time 
of a crisis. Most of the traditional Grid Information Services [5-6] however are not 
built along this model. Second, Information Services should scale in numbers and 
geographical area. Most existing solutions [5-6] however have centralized compo-
nents and do not address scalability and high performance issues. Third, Information 
Services need to be able to take into account user demand changes when making 
decisions on metadata access and storage. Fourth, Information Services need to be 
able to provide uniform interface for publishing and discovery of both dynamically 



generated and static information. Existing Grid Information Services however do not 
provide such capabilities. We therefore see this as an important area of investigation. 
This paper presents our design of an architecture and prototype to address the identi-
fied problems above. We describe a novel architecture for fault tolerant and high 
performance Information Services in order to manage distributed, dynamic session 
related metadata while providing consistent, uniform interface to both static and dy-
namic metadata. 

1.2. Requirements 

We design our architecture to meet the following requirements:  
 
Uniformity: The types and update frequency of information may vary in both tradi-
tional and Semantic Grids. This requires a hybrid Information Service providing a 
uniform interface to dynamic/static metadata and supporting both the scalability of 
large amounts of relatively slowly varying information and a high performance rap-
idly updated Information Service for dynamic regions.  
 
Interoperability: Information should be accessible by diverse set of consumer ser-
vices through standard interfaces to increase usability. This requires leveraging exist-
ing Web Service standards for service discovery and communication to enable Infor-
mation Services and consumer services to operate effectively together. 
 
Persistence: Archival of session metadata may provide a metadata management sys-
tem enabling session failure recovery or replay/playback capabilities for collaboration 
grids. This requires persistent metadata storage capability.  
 
Dynamism: Dynamic metadata, i.e. rapidly updated and short-lived information need 
to be supported in both traditional and Semantic Grids. Furthermore, metadata need 
to be reallocated based on changing user demands and locations. This requires Infor-
mation Services that can support metadata for dynamic regions and that can provide 
discovery of data-systems hosting the metadata under consideration in a dynamic 
fashion.   
 
Performance: The update frequency on short-lived metadata may vary based on 
applications. Here, the system is required to support dynamic changes with a fine 
granularity time delay for the systems with a modest number of involved services 
(say, up to thousand services per session). 

1.3. Contributions and Organization                        

The main contributions of this paper are two-fold.  First, we present a novel architec-
ture for a WS-Context [20] complaint metadata catalog service supporting distributed 



or centralized paradigms. We use an extended version of UDDI [21] for slowly vary-
ing metadata and present a uniform and consistent interface to both short-lived dy-
namic and slowly varying quasi-static metadata.  We explore the application of con-
text (session-related dynamic metadata) management in Grid systems to correlate 
activities in workflow-style applications, by providing a novel approach for manage-
ment of widely distributed, shared session-related dynamic metadata. We investigate 
the problem of distributed session management in Grid applications, by providing an 
approach for distributed event (session metadata) management system enabling ses-
sion failure recovery or replay/playback capabilities. We also address lack of search 
capabilities in Grid Information Services, by providing uniform search interface to 
both interaction independent and conversation-based metadata enabling service dis-
covery through events. 
 
Our second contribution is the application of topic-based publish/subscribe methods 
to the problems of dynamic replication methodology to support dynamic metadata.  
We utilize a multi-publisher, multicast communication middleware and a topic-based 
publish/subscribe messaging system as a communication middleware to exchange 
messages between peers. 
 
This paper is organized as follows. Section 2 reviews the state of art in existing in-
formation services and replica hosting environments. Section 3 reviews our design for 
information systems to support Gaggles paying particular attention to distributed data 
management aspects of the system. We discuss the status of the system in section 4 
and the evaluation of our prototype in Section 5. In Section 6, we summarize and 
discuss future work. 

2 Background 

Peer-to-Peer (P2P) systems may broadly be categorized as pure and hybrid [32].  On 
one hand pure systems endeavor for total decentralization and self-organization, on 
the other hand hybrid systems have some form of centralized control such as a look-
up service [31]. In this paper, we focus our study on the Information Systems that 
adopt pure P2P networks which may further be categorized as a) structured and b) 
unstructured. In structured P2P architectures, system resource placement at peers is 
enforced with strict constraints which in turn create heavy overhead on the bootstrap 
of the network.  For an example, Globus Monitoring and Discovery System (MDS4) 
[5] has a structured architecture where there is a single top-level Information Service 
that presents a uniform interface to clients to access data, while the data is collected 
by lower-level information providers. Relational Grid Monitoring Architecture (R-
GMA) [6] presents a relational model where users query/store/access metadata cen-
trally and if information found directly connect to information providers to retrieve 
the data without intermediary nodes. Another example is the structured P2P systems 
where the nodes in the systems are equally enabled and controlled and service infor-
mation is disseminated to all nodes (CAN [7], Chord [8]). Unstructured P2P architec-
tures can be characterized as systems where there is complete lack of constraints on 



the placement of resources and the capabilities of the system nodes. An extensive 
survey on Grid Information Services can be found at [9, 35].  
Architectures with pure decentralized storage models have focused on the concept of 
distributed hash tables (DHT) [7, 8]. DHT approach assumes possession of an identi-
fier such as hash table that identifies the service that need to be discovered. Each 
node forwards the incoming query to a neighbor based on the calculations made on 
DHT. Although the DHT approach provides good performance on routing messages 
to corresponding nodes, it has various limitations such as primitive query capabilities 
on the database operations. Here, we design an architecture which can be defined as 
an unstructured P2P approach to P2P/Grid environment. We use multi-publisher 
message broadcasting through a topic-based publish/subscribe messaging system, 
which support access and storage decisions among distributed nodes. 
 
Well-defined descriptions of resources, services and data constitute metadata. Meta-
data can be represented using varying metadata models such as XML Schema or 
Semantic Web languages (RDF [28], OWL [29], etc.). Here, we are mainly concerned 
with managing the metadata and delivering to clients, not with knowledge processing. 
We presume the metadata models to be application-specific and not defined by us. To 
this end, we are concentrating on distributed computing problems of managing meta-
data in the Semantic Grid.  See Section 4 of this paper for more discussion. 
 
An approach to solve the problem of locating services of interests is the UDDI Speci-
fications [21] from OASIS (http://www.oasis-open.org). The UDDI is WS-I compati-
ble and offers users a unified and systematic way to find service providers through a 
centralized registry of services.  We identify the following limitations in UDDI Speci-
fications. First, UDDI introduces keyword-based retrieval mechanism. It does not 
allow advanced metadata-oriented query capabilities on the registry. Second, UDDI 
does not take into account the volatile behavior of services. So, there may be stale 
data in registry entries. Third, UDDI does not support extensive metadata require-
ments of rich interacting systems. For instance, services may require an Information 
Service to publish and discover session metadata generated by one or more services 
as a result of their interactions. Fourth, since UDDI is domain-independent, it does 
not provide domain-specific query capabilities such as geo-spatial queries.  
 
There have been some solutions introduced to provide better retrieval mechanism by 
extending existing UDDI Specifications. UDDI-M [10] and UDDIe [11] projects 
introduce the idea of associating metadata (name-value pairs) and lifetime with UDDI 
Registry. UDDI-MT [12-13] improves this approach in several ways such as improv-
ing the metadata representation from attribute name-value pairs into RDF triples to 
provide semantically rich service descriptions and relevant information. The Gri-
moires registry project (http://twiki.grimoires.org/bin/view/Grimoires/WebHome) 
extends the UDDI-MT to provide a registry which can support multiple service de-
scription models by taking into account robustness, efficiency and security issues. 
Another approach to leverage UDDI Specifications was introduced by METEOR-S 
[14] project which also utilizes semantic web languages when describing a service  



(such as data, functionality, quality of service and executions) in order to provide 
more expressiveness power and better service match-making process.  
 
In our design, we too extend UDDI information model by providing an extension 
where we associate metadata with service descriptions. We use (name, value) pairs to 
describe characteristics of services similar to the UDDI-M and UDDIe projects. We 
expand on the capabilities that are supported by these projects, by providing domain-
specific query capabilities. An example for domain-specific query capability could be 
XPATH queries on the auxiliary and domain-specific metadata files stored in the 
UDDI Registry. Another distinguishing aspect of our design is the support for session 
metadata. Our design supports not only quasi-static, stateless metadata, but also more 
extensive metadata requirements of interacting systems. UDDI-MT and METEOR-S 
projects are example projects that utilize semantic web languages to provide better 
service matchmaking in retrieval process.  This research has been definitely investi-
gated [12-14] and so not covered in our design. We view dynamic and domain-
specific metadata requirements of sensor/GIS and collaboration Grids as higher prior-
ity. 
 
We use replication, a well-known and commonly used technique to improve the qual-
ity of metadata hosting environments, in our architecture. Sivasubramanian et al. [15] 
give an extensive survey on reviewing research efforts on designing and developing 
World Wide Web replica hosting environments, as does Robinovich in [16], paying 
particular attention to dynamic replication. As the nature of our target data is dy-
namic, we focus on data hosting systems that are handling with dynamic data.  These 
systems can be discussed under following important design issues: a) distribution of 
client requests among data replicas b) selection of hosting environments for replica 
placement c) consistency enforcement.  
 
Distribution of client requests is the problem of redirecting a client to the most 
appropriate replica server. Most existing solutions to this problem are based on DNS-
Server such as in [17-18].  These solutions utilize a redirector/proxy server that ob-
tains physical location of collection of data-systems hosting a replica of the requested 
data, and choose one to redirect client’s request.  
 
Replica placement is another issue that deals with selecting data hosting environ-
ments for replica placement and deciding how many replicas to have in the system. 
Existing solutions, that apply dynamic replication, monitor various properties of the 
system when making replica placement decisions [18-19]. For instance, Radar [18] 
replicates/migrates dynamic content based on changing client demands. Spread [19] 
considers the path between the data-system and client and makes decisions to repli-
cate dynamic content on that path.  
 
The existing solutions to dynamic replication assume all data-hosting servers to be 
ready and available for replica placement and ignore “dynamism” in the network 
topology. In reality, data-systems can fail anytime and may present volatile behavior. 



We use a pure Peer-to-Peer approach, which is based on multi-publisher multicast 
mechanism, when distributing access and storage requests to data-systems. 
 
The consistency enforcement issue has to do with ensuring all replicas of the same 
data to be the same. Various techniques have been introduced in consistency man-
agement. For instance, the Akamai project [17] introduces versioning where a version 
number is encoded to document identifier, so that client would only fetch the updated 
data from the corresponding data hosting system. Radar [18] applies primary-copy 
approach where an update can be done only on the primary-copy of the data.  
 
In our design, we employ a strategy which suggests propagation of updates only if it 
is necessary.  Our main approach is to provide client-centric consistency which pro-
vides guarantees for a single client’s access to a replicated data store. We use Net-
work Time Protocol (NTP) clients to achieve synchronized timestamps to give labels, 
i.e. versions, to each context stored in the system.  
 
Our architecture differs from web replica hosting systems as the intended use of our 
architecture is not to be a web-scale hosting environment. The scale of our target 
systems is in the order of a few dozen to at most a thousand entities participating in a 
session. Our target domains range from collaboration systems such as GlobalMMCS 
project to geographical information systems such as Pattern Informatics GIS-Grid. 
The participant entities of these systems might dynamically generate metadata during 
a session. Such metadata can be expected to be small in size and big in the volume 
depending on the Grid application.  

3 Information Services  

We have designed a novel architecture to Information Services presenting a uniform 
interface to support handling and discovery of not only quasi-static, stateless meta-
data, but also session related metadata. Our approach is to utilize the existing state-of-
art systems for handling and discovering static metadata and address the problems of 
distributed management of dynamic metadata. In order to be compatible with existing 
Grid/Web Service standards, we based the interface of our system on the WS-Context 
[20] and UDDI [21] Specifications. We have extended and integrated both specifica-
tions to provide uniform and consistent service interface to both dynamic and static 
metadata. A centralized version of our architecture is depicted in Figure 2. In our 
design, we use replication technique to provide fault tolerance, load balancing, re-
duced access latency and bandwidth consumption. In order to enable communication 
between replica hosting servers, we utilize a topic based publish-subscribe mecha-
nism to provide message-based communication as depicted in Figure 3. Figure 3 
illustrates two clients interacting with an hybrid Information Service that provides a 
uniform programming interface to both quasi-static and dynamic metadata. In this 
scenario, on receiving the client requests, the system first extracts dynamic and static 
portions of the query. The static portion of the query is simply forwarded to UDDI 
XML metadata service, while the dynamic part is handled by the Information  
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Fig.2. Our design integrates both UDDI and WS-Context Web Service Interfaces to 
provide a uniform programming interface to service metadata.  This figure illustrates 
the centralized version of FHTPIS-WSContext Service interacting with two clients. 

The service also interacts with an external extended UDDI service when the incoming 
inquiry requests require static metadata. 

 
Service itself. If the query asks for external metadata, then the query is multicast to 
available replicas through a topic-based publish-subscribe mechanism. On receiving 
the responses from both dynamic and static metadata spaces, the system returns the 
results to querying clients. In the following sub-sections, we discuss different aspects 
of our architecture as following. First, we discuss the details of how we have ex-
tended and combined UDDI and WS-Context specifications. Then, we describe the 
fault-tolerant aspects of our design in details. Next, we discuss the software multicast 
communication mechanism followed by the architectural components of the proposed 
system. 



HTTP(S)

WSDL

FTHPIS Client

WSDL

FTHPIS Client

HTTP

Subscriber

Publisher

Database

JDBC

Extended UDDI 
Service

WSDL

Database

WSDL

FTHPIS-WSContext  
Service

JDBC

Database

WSDL

FTHPIS-WSContext  
Service

JDBC

Topic Based Publish-Subscribe 
Messaging System

Replica Server-1 Replica Server-N

WSDL WSDL

FTHPIS-WSContext  
Service

Database

W
S

D
L

JDBC

 
Fig.3. This figure illustrates decentralized Fault Tolerant High Performance 

Information Services (FTHPIS) from the perspective of a single FTHPIS-WSContext 
Service interacting with two clients. The FTHPIS system uses a topic based publish 

subscribe messaging system to enable communication between the services.  

3.1. Extended UDDI XML Metadata Service 

We have extended existing UDDI Specifications to annotate service descriptions with 
metadata describing characteristics of services.  
 
We designed a data model for service metadata by extending UDDI Data Structure 
Schema. Detailed design documents can be found at http://www.opengrids.org/-
extendeduddi/index.html. Based on this model each service entry is associated with 
an XML tag called “metadataBag” which consists of one or more “serviceAttribute” 
sub-elements. Here, each “serviceAttribute” corresponds to a piece of metadata and it 
is simply expressed with (name, value) pairs. The value type of a “serviceAttribute” 
can either be string or integer. As an example, we can illustrate a “serviceAttribute” 
as in ((throughput, 0.9)). A “serviceAttribute” can be associated with a lifetime and 
categorized based on custom classification schemes. A simple classification could be 
whether the “serviceAttribute” is prescriptive or descriptive. In the aforementioned 
example, the “throughput” service attribute can be classified as descriptive. In some 
cases, a service attribute may correspond to a domain-specific metadata where service 
metadata could be directly related with functionality of the service. For instance; 
OGC compatible GIS services provide a “capabilities.xml” metadata file describing 



the data coverage of geo-spatial services. We use an “abstractAttributeData” element 
to represent such metadata and store/maintain these domain specific auxiliary files as-
is. Here, the abstract attribute data could simply be in any representation format such 
as XML or RDF. 

 
In order to support/integrate quasi-static stateless metadata in UDDI Registries, we 
also extended existing UDDI XML API Schema and implemented it as a web service. 
We introduced metadata-oriented publishing/discovery capabilities by expanding on 
existing UDDI API such as “save_service”, “find_service” and “get_serviceDetail”. 
We also introduced additional API to let third party users of services a) attach addi-
tional metadata and b) pose queries for particular metadata to already published ser-
vice entries. These additional API are “get_serviceAttributeDetail”, 
“save_serviceAttribute”, “find_service-Attribute” and “delete_serviceAttribute”. 
Further design documentation on XML APIs is available at 
http://www.opengrids.org/-extendeduddi/index.html. 
 
Our design may also support discovery of domain-specific prescriptive metadata as in 
the following scenario. A querying user constructs a query “metadataBag” consisting 
of a list of “serviceAttribute”s. Each “serviceAttribute” forms a search criterion. The 
constructed “metadataBag” is passed to UDDI Registry as an argument of the ex-
tended “find_service” function. We implement “find_service” functionality in a way 
to support XPATH query capabilities on the UDDI Registry. Say, in given a “ser-
viceAttribute” element, one could indicate a) XPATH query statement and b) name of 
the prescriptive metadata file. If the search criterion is a XPATH query, then the 
query is applied on the corresponding auxiliary file stored in the UDDI Registry.  The 
results will be a list of services that satisfy user’s query.  This way, we can apply 
domain-specific queries such as geo-spatial queries on the metadata services. 
 
Given all these capabilities, one can simply populate the registry with metadata as in 
following scenario. Say, a user publishes a new service into UDDI Registry. In this 
case, the user constructs a “metadataBag” filled with “serviceAttributes” where each 
“serviceAttribute” has (name, value) pairs. Each pair may describe one generic de-
scriptive characteristics of the service such as throughput, or usage cost. If a service 
metadata is domain-specific, we use an “abstractAttributeData” element and express 
the serviceAttribute as a (name, abstractAttributeData) pair. As the “metadataBag” is 
constructed, it can be attached to the new service entry which can then be published 
with extended “save_service” functionality that we introduced.  
 
As we research UDDI Specifications to integrate with our system, we have encoun-
tered various limitations in its capabilities which we address in a separate paper [22]. 
Our work on UDDI is for a specific type of metadata: semi-static and context-free.  
UDDI is appropriate for data that is long-lived (i.e. should be true for months or 
years) and that is independent of the client interaction (i.e. all clients issuing the same 
requests get the same responses).  We discuss the parts of our architecture that sup-
ports dynamic information in the short-lived service collections in the following sec-
tion. 



3.2. Extended WS-Context XML Metadata Service 

We have extended the WS-Context Specification [20] to manage session metadata 
between multiple participants in Web Service interactions.  
 
We designed a data model for managing dynamic metadata by extending existing 
WS-Context XML Schema. Detailed design documents can be found at 
http://www.opengrids.org/wscontext/index.html. Based on this model, we define 
session entity which may be considered an information holder; in other words, a di-
rectory where context with similar properties are stored.  Each session entry is associ-
ated with an XML tag called “contextBag” which consists of one or more “Context” 
sub-elements. Here, a context entity is used to represent dynamic metadata and “con-
textBag is considered as metadata collection associated with a session. Each context 
has both system-defined and user-defined identifiers. The uniqueness of the system-
defined identifier is ensured by the system itself, whereas, the user-defined identifier 
is simply used to enable users to manage their memory space in the context service. 
As an example, we can illustrate a “context” as in ((system-defined-uuid, user-
defined-uuid, “Job completed”)). A complete example of a context is given in the 
appendix A. The value of a context is stored as SQL BLOB type in the MySQL data-
base. A “context” can be also associated with service entity and it has a lifetime. 
 
Contexts may be arranged in parent-child relationships. One can create a hierarchical 
session tree where each branch can be used as an information holder for contexts with 
similar characteristics. This enables the system to be queried for contexts associated 
to a session under consideration. Each session entity has a “session-directory-
metadata”.   Session directory metadata describes the child and parent nodes of a 
session.  This enables the system to track the associations between sessions.  
 
In order to support/integrate dynamic metadata, we also extended existing WS-
Context XML API and implement it as a web service. We introduced various addi-
tional publishing/discovery capabilities to enable the system to track the associations 
between sessions and contexts by expanding on primary functionalities of WS-
Context XML API such as “setContext” and “getContext”. Here each context is 
stored and retrieved associated with a session. The additional XML API is designed 
to let third party users a) to locate/retrieve/save/delete contexts associated to a session 
and b) to locate/retrieve/save/delete particular sessions with given contexts and/or 
participating session-entities. Extended version of WS-Context XML API include 
“find_context”, “get_contextDetail”, “save_context”, “delete_context”, 
“find_session”, “get_sessionDetail”, “save_session”, and “delete_session”. Further 
design documentation on WS-Context XML API is available at 
http://www.opengrids.org/-wscontext/index.html. 



3.3. An hybrid Information Service interface combining both extended UDDI 
and WS-Context functionalities 

We combine both extended UDDI and WS-Context implementations within a hybrid 
service. Our aim is to provide a uniform service interface to service metadata. To this 
end, we introduced hybrid publishing/discovery capabilities, such as “save_service”, 
“find_service”, “delete_service” and “get_serviceDetail”, supporting both dynamic 
and quasi-static, stateless service metadata.  
 
Given these capabilities, one can simply populate this hybrid information service with 
service metadata as in the following scenario. Say, a user publishes a new service into 
the system. In this case, the user constructs both “metadataBag” filled with “ser-
viceAttributes” and “contextBag” filled with “contexts” where each context describes 
the sessions that this service will be participating. As both the “metadataBag” and 
“contextBag” is constructed, they can be attached to a new “service” element which 
can then be published with extended “save_service” functionality of the hybrid In-
formation Service. On receiving publishing service metadata request, the system 
applies following steps to process service metadata. First, the system separates the 
dynamic and static portions of the metadata. Then, the system delegates the task of 
handling discovery of static portion (“metadataBag”) to extended UDDI service. 
Next, the system itself provides handling and discovery using dynamic portions of the 
metadata in the metadata replica hosting environment. Further design documentation 
on hybrid Information Service XML API is available at http://www.opengrids.org/-
extendeduddi/index.html. 
 
The intended use of our approach is to support information in dynamically assembled 
Semantic Grids where “real-time” decisions are being made on which services to tie 
together in a dynamic workflow to solve a particular problem. One may think of WS-
Context complaint Information Services as the metadata catalog for semantic meta-
data as in an RDF triple store. The semantic metadata expresses the relationships 
between resources, while the applications that access the metadata catalog deduct 
further (inferred) information. In our design, the distinctive semantic richness comes 
from the highly dynamic architecture with metadata from more than two services (in 
contrast WS-Transfer, WS-Metadata Exchange Specifications that only easily get 
semantic enhancement from the two services that exchange metadata).  We discuss 
various research issues in building Information Services for dynamically assembled 
Semantic Grids in the following section. 

3.4. Fault Tolerant High Performance Information Services 

We have considered two application domains from collaboration and sensor/GIS 
grids to demonstrate the use of our system: GlobalMMCS and PI GIS-Grid. 
GlobalMMCS is a peer to peer collaboration environment where videoconferencing 
sessions can take place. Any number of widely distributed services can attend to a 
collaboration session. GlobalMMCS requires persistent archival of session metadata 



to provide replay/playback and session failure recovery capabilities. The PI GIS-Grid 
is a workflow-style Grid application which requires storage of transitory metadata 
needed to correlate activities of participant entities. Both application domains require 
a decentralized metadata hosting environment which can support both scalability (of 
large amounts of information) and performance requirements (of rapidly updated 
dynamic information). To this end, we identify two important research issues that 
need to be answered in our design: fault tolerance and high performance. 
 
We use replication technique to provide fault tolerance, which improves the quality of 
our data hosting environment. If one of the redundant storage elements goes down, it 
automatically consults remaining elements to restore itself. The replication technique 
can also lead into high performance by reducing a) bandwidth consumption and b) 
the time between a client issuing a request and receiving the corresponding response.  
 
One approach to replication is replicating context in every node in the distributed 
system architecture. This full-replication method could surely provide best fault-
tolerance in terms of availability. However, this approach doesn’t scale. The more 
replicas need to be kept consistent, the higher quantity of exchanged messages and 
time required. The other approach is partial-replication which suggests replication of 
contexts only if it is necessary to minimize the cost needed to keep replicas consis-
tent. So, we choose partial-replication over full-replication.  
  
Replication can also be categorized by the manner in which the replicas are created 
and managed. On one hand, static replication suggests a strategy where replicas are to 
be manually created and managed. In a dynamically assembled Gaggle environment, 
it is not feasible to manually replicate dynamically generated metadata. On the other 
hand, dynamic replication suggests replication of contexts based on changing user 
behavior. To this end, as the nature of our data is very dynamic, we use dynamic data 
replication technique, where data replicas may be created, deleted, or migrated among 
hosting data-systems based on changing user demands [16].  
 
An example of 11-node based FTHPIS replica hosting environment is depicted in 
Figure 4 where dynamic metadata (contexts ranging from A to O) replicated on the 
FTHPIS nodes ranging from 1 to 11. Our main interest in dynamic replication is to 
place context replicas in the proximity of requesting clients by taking into account 
changing demand patterns to minimize the response latency. The number and the 
placement of replicas may change due to demand changes. In the example, the quan-
tity of context replicas D, E and F is shown more than the quantity of others because 
of high demand for these replicas. Our aim is not to replicate the context space, but 
the individual contexts based on their demands. Next, we discuss the two important 
aspects of dynamic replication are access and storage algorithms. 
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Fig.4. An eleven-node based FTHPIS replica hosting environment. Numbered callout 
shapes represent replica servers. Letters ranging from A to O correspond to contexts 

replicated on the replica servers ranging from 1 to 11. 

3.5. Access Algorithm 

The access algorithm distributes client requests to appropriate replica hosting data-
systems. Our model is based on pure Peer-to-Peer approach where each node can 
probe all other nodes in the network to look up metadata. A primary role of the access 
algorithm is the discovery of one or more data-systems hosting the requested meta-
data. This discovery process consists of two steps: data-system discovery and access. 
The first step concerns with selection of data-systems that can answer the client re-
quests. The second step is to inform the data-system that is most appropriate for han-
dling the request. In the first step, to find metadata, a node sends a probe message to 
all other nodes through a software multicast mechanism; target data-systems that host 
the metadata matching the probe send a response directly to requestor node. Here, 
response message consists of information regarding how well the data-system can 
handle this query. For instance, such information may include proximity information 
between the client and the data-system. On receiving response messages, the re-
questor node chooses the most appropriate data-system that can handle the request. In 
the second step, the requestor node sends the client request to the chosen data-system 
particularly asking to handle the request.  



3.6. Storage Algorithm 

Storage algorithm selects data-systems for replica placement and decides how many 
replicas to have in the system. In our design, storage decisions are made autono-
mously at each node without any knowledge of other replicas of the same metadata. 
The storage decision is made based on the client requests served by that node. Storage 
process consists of two separate steps such as metadata placement and metadata crea-
tion. The first step has to do with selection of data-systems that should hold the rep-
lica and the second step has to do with metadata replica creation. In the first step, 
each node (data-system) runs the storage algorithm which defines client request 
thresholds for replica creation and deletion. If a metadata entry is in high demand 
which is above a pre-defined threshold, then the metadata is replicated. If a metadata 
entry is in low demand which is below a pre-defined threshold, it will be deleted. To 
replicate metadata, a node sends a “storage” message to all other nodes through a 
software multicast mechanism; target data-systems, that have available space, send a 
respond to directly requestor node. Here, the response message consists of various 
decision metrics such as client proximity information. On receiving the response 
messages, replica placement algorithm chooses the most appropriate data-system to 
replicate the metadata. In the second step, the requestor node sends a replica creation 
message directly to the chosen data-system asking to store a replica of metadata in 
consideration. This process creates a dynamic metadata storage in which metadata is 
moved based on changing client demands.  

3.7. Multi-publisher Multicasting Communication Middleware 

An importing aspect of our system is that we utilize software multicasting capability 
which is an important communication medium supporting the ability to send out ac-
cess and storage requests to the nodes of the system. Any node can publish and sub-
scribe to topics which in turn create a multi-publisher multicast broker network as 
communication middleware. Here, the publisher does not need to know the location 
and identities of receivers. It publishes a message to a topic to which all nodes sub-
scribe.  
 
The architectural design of the proposed system is built on top such publish/ sub-
scribe based multicast broker network system as depicted in Figure 5. In this illustra-
tion, each peer runs a FTHPIS-WSContext Information Service whose detailed archi-
tecture is also given in Figure 5. We use NaradaBrokering (NB) [23] pub-
lish/subscribe system as a communication middleware for message exchanges be-
tween peers. NaradaBrokering establishes a hierarchy structure at the network, where 
a peer is part of a cluster that is a part of a super-cluster which is in turn part of a 
super-super-cluster and so on.  
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Fig.5. An example eleven-node based FTHPIS replica hosting environment where 
each node is connected with publish-subscribe based overlay network. Numbered 

squares represent nodes running FTHPIS-WSContext Service (see figure 2 for cen-
tralized version of the service) whose detailed architecture is also illustrated in the 

figure. The tick lines on the figure are used to show different message delivery routes 
between peers 2 and 7. 

 
The organization scheme of this scenario is small world network [37, 38] where the 
communication between peers increases logarithmically with geometric increase in 
network size, as opposed to exponential increase in uncontrolled settings [23].  We 
particularly use NaradaBrokering software in our design, since it provides efficient 
message delivery to the targeted peer en route to intended clients. For example, in 
figure 5, we observe various message delivery routes from peer-2 to peer-7. The 
NaradaBrokering software is able to make decision to choose most efficient message 
delivery route, i.e., 2-6-7, as opposed to inefficient delivery routes such as 2-3-5-6-7 
or 2-3-4-10-9-8-6-7. Here, every peer, either targeted or en route to one, computes to 
shortest path to reach target destinations. 



3.8. System Components 

Our proposed architecture consists of various modules such as Query and Publishing, 
Expeditor, Access, Storage and Sequencer Modules. Architectural design of our sys-
tem is illustrated in the upper-left corner of the Figure 5. 
 
3.8.1. Context Query and Publishing Modules: These modules receive client re-
quests through a uniform service interface for publishing/discovering dynamic and 
static metadata. The client query/publishing requests are processed and dynamic 
metadata parts of the queries are extracted. Then, the request is forwarded to Expedi-
tor Module to find the results. Likewise, static metadata portion of the requests is 
relayed to external UDDI Service to publish/discover services through static meta-
data. 
 
3.8.2. Expediter Module: This is a generalized caching mechanism. Each node has a 
particular expediter. One consults the expediter to find how to get (or set) information 
about a dataset in an optimal fashion. The expediter is roughly equivalent to replica 
catalog in classic Grids. Expeditor forms a built-in memory and it maintains Context 
metadata objects in Context Spaces. A Context Space is an implementation of Tuple-
Spaces concept [24].  Context Spaces allow us to apply space based programming to 
provide mutual exclusive access, associative lookup and persistence. 
 
3.8.3. Access Module: This module runs the access algorithm mentioned above. It 
support request distribution by publishing messages to topics in NB network. It also 
receives messages (in respond to client request) coming from other peers and forward 
these query messages to Expediter Module. The Access Module locates the nodes that 
are closest in terms of network distance with lowest load balance from the node re-
questing access to the communal node in question. It also takes into account the load 
balance of each responding data-system when choosing the right data-system. 

 
3.8.4. Storage Module: This module runs the storage algorithm. It interacts with the 
Expediter Module and applies the storage algorithm to all local Context metadata. If 
the metadata is decided to be replicated, then the storage module advertises this repli-
cation by multicasting it to available peers through NB publish/subscribe mechanism. 
The storage module also interacts with the Sequencer module in order to label each 
incoming metadata with a time stamp. 
 
3.8.5. Sequencer Module: This module ensures that an order is imposed on ac-
tions/events that take place in a session. The Sequencer Module interacts with the 
Storage Module and labels each metadata which will be replicated in this replicated 
metadata hosting environment. The Sequencer Module interacts with Network Time 
Protocol (NTP) clients to achieve synchronized timestamps among the distributed 
nodes. 
 
When receiving a query, the Query Module first processes the query and extracts the 
dynamic metadata portion of the query. Then, the Query Module forwards the query 



to Expediter, where the Expeditor Module checks whether the requested data is in 
Context Spaces. If the Expeditor Module can not find the result in Context Space or if 
the requested metadata is expired, then the query is forwarded to the JDBC Handler 
to query the data in local database. If the query asks for external metadata, then the 
Expediter will forward the query to Access Module, where the Access Module multi-
cast a probe message to available Information Services through NB and communi-
cates with the Information Services that are the original data sources for this query. 
The query is responded by an Information Service which may be the best qualified 
Information Service is to handle this query. 

4 System Status 

Extended UDDI XML Metadata Services: We have implemented extended UDDI 
XML Metadata Services [25] handling and discovery of static metadata based on the 
WS-I standard Uniform Description, Discovery, and Integration (UDDI) Specifica-
tions.  We base our implementation on jUDDI (version 0.9r3), a free, open source, 
and java implementation of the specification. (More at http://www.juddi.org). jUDDI 
has been architected to act as the UDDI front-end on top of existing databases.  
 
In our design, we only use a portion of the jUDDI library as UDDI-front end in order 
to implement extended version of UDDI XML API. We have discarded jUDDI serv-
let-based architecture and implemented Grid/Web Services interfaces as front access 
to UDDI Registries. We have enhanced jUDDI in the following ways. First, we ex-
panded on UDDI XML Data Structure and implemented extensions to UDDI XML 
API to associate metadata with service entries. Second, we implemented a leasing 
capability. This solves a problem with UDDI repositories: information can become 
outdated, so we automatically clean up entries by assigning them an expiration date.  
Leases on metadata may be extended. Third, we implemented GIS-specific taxono-
mies to describe Open GIS Consortium (OGC) compatible services such as Web 
Feature Services and their capabilities files.  The “capabilities.xml” file is (in effect) 
the standard metadata description of OGC services. Finally, we implemented a more 
general purpose extension to the UDDI data model that allows us to insert arbitrary 
XML metadata into the repository.  This may be searched using XPATH queries, a 
standard way for searching XML documents (http://www.w3.org/TR/xpath).   This 
allows us to support other XML-based metadata descriptions developed for other 
classes of services besides GIS.  The Web Services Resource Framework (WSRF), a 
Globus/IBM-led effort, is an important example. Our approach allows users to insert 
both user-defined and arbitrary metadata into the UDDI XML metadata repository.  
 
WS-Context complaint XML Metadata Services: We have implemented a centralized 
version of WS-Context complaint XML Metadata Services [25] handling discovery 
of dynamic, session related metadata. Here, session related metadata is short-lived 
and dependent on the client [26]. The WS-Context metadata service keeps track of 
context information shared between multiple participants in Web Service interactions.  
The context here has information such as unique ID and shared data. It allows a col-



lection of action to take place for a common outcome. We utilize WS-Context Speci-
fication to maintain user profiles and preferences, application specific metadata, in-
formation regarding sessions and their participating entities. Each session is started 
by the coordinator of an activity. The coordinator service publishes the session meta-
data to Information Service and gets a unique identifier in return. The uniqueness of 
the session-id is ensured by the Information Service. Sessions can obviously be com-
posed from other “sub” sessions hierarchically. Here, each session is associated with 
the participant services of that session. Dynamic session information, i.e. context, 
travels within the SOAP header blocks among the participant entities within the same 
activity. Our implementations of UDDI and WS-Context Metadata Services do not 
use XML databases but for efficiency convert the XML to SQL and store in MySQL 
database.  
 
Hybrid Information Service Interface combining extended UDDI and WS-Context 
functionalities: We assume a range of applications which may be interested in inte-
grated results from two different metadata spaces; UDDI and WS-Context. When 
combining the functionalities of these two technologies in one hybrid service, we may 
enable uniform query capabilities on context (service metadata) catalog. To this end, 
we have implemented a uniform programming interface, i.e. a hybrid information 
service combining both extended UDDI and WS-Context.  On receiving service-
metadata publishing/inquiry requests, the hybrid service simply delegates the task of 
handling metadata to appropriate end.  

5 System Evaluation 

We designed various experiments to investigate the performance of the centralized 
version of the FTHPIS-WS-Context Information Service. In the system evaluation 
section, we are particularly addressing following research questions:  
 

• What is the baseline performance of the FTHPIS implementation for given 
standard operations?  

• What is the effect of the network latency on the baseline performance of the 
system?  

• What is the performance degradation of the system for standard operations 
when processing more users/transactions simultaneously at various loads?  

• What is the performance of the system in a testing environment that is de-
signed based on targeted application use domains where there are both mul-
tiple clients and providers running simultaneously at various loads?  

• What is the effect of Operating System CPU thread scheduling interference 
on the system performance?   

 
To evaluate the performance of the system, we used response time as the performance 
metric. The response time is the average time from the point a client sends off a query 
till the point the client receives a complete response. Although, there is much func-



tionality introduced by the FTHPIS- WS-Context Service system, we focus our ex-
periments on the publication and inquiry capabilities. We test the performance of our 
implementation with respect to response time at both the querying client and publish-
ing provider applications. In the following section, we give details of the environment 
of our experiments.  

5.1. Environment 

We tested our code using various nodes of a cluster located at the Community Grids 
Laboratory of Indiana University. This cluster consists of eight Linux machines that 
have been setup for experimental usage. In addition to these nodes, we also used a 
desktop machine (kilimanjaro.ucs.indiana.edu) where we ran our client application. 
The cluster computers were equipped with Intel® Xeon™ CPU (2.40GHz) and 2 GB 
RAM. Each of the machines ran Linux kernel 2.4.22. The desktop machine ran Win-
dows XP and was equipped with Intel Pentium 4 CPU (3.4 GHz) and 1 GB RAM. 
The network bandwidth between these machines was 900 Mbits/sec.1   
 
We tested the performance of the FTHPIS with a client program called WSCon-
textClient (a program for sending queries to WS-Context Service) and a provider 
program WSContextProvider (a program for publishing context to FTHPIS).  Both 
WSContextClient and WSContextProvider are multithreaded programs. These appli-
cations take following arguments: a) the number of threads, b) the number of que-
ries/publications to be executed, and c) the time to wait after each transaction. When 
creating multiple threads we use a barrier to stop the threads until a specific number 
of threads is at hold. Then the threads are released and can continue. This allowed us 
to simulate concurrent querying/publishing accesses to the server. We illustrate tim-
ing methodology in the pseudo code below.  

                                                           
1 The bandwith measurements were taken with Iperf tool for measuring TCP and UDP band-

width performance. (http://dast.nlanr.net/Projects/Iperf)  



 
In the experiments, the FTHPIS was running on cluster node-6, while the WSCon-
textClient was running on kilimanjaro.ucs.indiana.edu. We ran the WSCon-
textProvider applications across the cluster nodes 1 to 5. One should keep in mind 
that given client/server architecture, with all machines on the same network, is setup 
to measure an approximation of the optimal system performance. We expect that the 
results measured in this environment will be the optimal upper-bound of the system 
performance.  
 
In the experiments, we used metadata samples (which were actually used in afore-
mentioned Pattern-Informatics application use domain) with a fixed size of 1.2KB. 
We illustrate the WS-Context and UDDI XML metadata samples in appendix A and 
B respectively. In this work, we assumed XML metadata as flat contexts, i.e. no par-
ent-child relationships existed between contexts stored in the system. We wrote all 
our code in Java, using the Java 2 Standard Edition compiler with version 1.4.2. In 
the experiments, we used Tomcat Apache Server with version 5.5.8 and Axis soft-
ware with version 1.2beta3 as a container for deployment of WS-Context Service. 
The Tomcat Apache Server uses multiple threads to handle concurrent requests. In 
the experiments, we increased the default value for maximum number of threads from 
150 to 500 to be able to test the system behavior for high number of concurrent cli-
ents. We choose to use getTimeMicroseconds() function which is provided by Na-
radaBrokering [23] software because of its high resolution. As backend storage, we 
use MySQL database with version 4.1. 

5.2. Experiment 1- Responsiveness Experiment 

Our primary interest in doing this experiment is to understand the baseline perform-
ance of the implementation of FTHPIS- WS-Context Service. We also investigated 
the effect of network latency on the system performance. We evaluated the perform-

       SET the number of threads to N 
       SET the number of transaction to be executed to T 
       SET the time to wait after each transaction to S 
        
       CREATE N number of threats 
       STOP the threads until N threads is created and ready       
         
       FOR X = 1 to T  
            SET start to 0, stop to 0 
            SET start to getTimeMicroseconds() 
            saveContext(…) or getContext(…) 
            SET stop to getTimeMicroseconds() 
            PRINT  (stop – start)           
             IF S is set THEN  
                 WAIT for S time interval before next transaction 
             END IF 

   END FOR 



ance of the service for inquiry and publication functions under normal conditions, i.e., 
when there is no additional traffic.  
 
In this experiment, we investigated four different testing cases: a) a single client 
sends queries to a FTHPIS node where there is cache hit in the Expeditor module 
(which is explained in sub-section 3.8.2), b) a single client sends queries to a FTHPIS 
node where there is cache miss and the query is responded with database access, c) a 
client sends queries to a UDDI, and d) a client sends queries to a dummy service 
where the round trip message is extracted to and from container but no processing is 
applied. The dummy service receives the query/publication request message that is 
used in previous testing cases and then sends it back to the client without processing 
it. This test is done to measure the pure network latency of a given operation. At each 
testing case the client sends 100 sequential queries and average response time was 
recorded. We repeated same testing cases for publication function as well.  In this 
experiment, we investigated the system performance compared with UDDI registry 
for given standard operations. In evaluating the UDDI performance, we used the 
jUDDI registry with following exception. We have discarded jUDDI servlet-based 
architecture and implemented a Web Service WSDL interface as front-end access to 
investigate UDDI in similar set up to WS-Context for basic performance. We assume 
that the underlying structure of jUDDI is similar to any other UDDI registry imple-
mentation as they all are implementing the same specification. We tested UDDI in-
quiry/publication functionalities with an XML metadata size of 1.2 KB which is the 
same message size used in WS-Context testing cases. The designs of these experi-
ments are depicted in Figures 6-7. Figures 8 and 9 illustrate the system performance 
when the WS-Context inquiry function was executed, while Figures 11 and 12 illus-
trate the same when the WS-Context publication function was executed 120 times 
sequentially. The detailed statistics corresponding to these tests are listed in Table 1 
and Table 2 respectively. When we investigated the resulting round trip times, we 
observed two working modes: startup and initialized. We note that both inquiry and 
publication functions require more cost at the startup mode. To this end, we only took 
into account the initialized mode in calculating the average response time for each 
function. Here, we measured the average response time by considering last hundred 
observation time samples. We repeated these tests in five different test sets. 
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Fig.6. Testing cases of responsiveness experiment for inquiry functionality 

 
Results of the Responsiveness Experiment: Figures 10 shows the performance results 
of inquiry function, while Figure 13 shows the performance results of publication 
function. It was anticipated that the memory built-in caching mechanism (the Expedi-
tor Module) would improve the performance of the inquiry and publication functions. 
The empirical results shows that a) for inquiry function, we gain around 18% per-
formance increase (in average) and b) for publication function, we gain around 22% 
performance increase (in average) by employing a cache mechanism in our design. 
We observe that UDDI inquiry function executed at an average of 39 milliseconds. A 
similar performance baseline test has been applied on jUDDI registry for inquiry 
function in [33] in which the average responsiveness of the inquiry function was 
measured around 40 milliseconds which in turn helps validating our findings. Based 
on the experiments performed, we note that cache-enabled WS-Context inquiry func-
tion performed with 21% performance increase compared to UDDI-inquiry function. 
Likewise, cache-enabled WS-Context publication function performed with 30% per-
formance increase compared to UDDI-publication function.  
 
By comparing the results of test case a) for inquiry and publication functions, we 
observe that publication function requires more time compared to inquiry function. 
(As mentioned earlier in sub-section 3.8.2, we implemented the cache based on Tu-
ple-spaces paradigm [24].) This is because while the “read” operation can return the 
value of the context while the context is in the Expeditor module, an update to Expe-
ditor module entry requires a process to look up for context, physically remove the 
entry, modify its value, and place the copy back into the Expeditor. This in turn in-
creases the time for publication. Likewise, by comparing the results of test case b) for 
inquiry and publication functions, we observe that publication requires more time 



because of the database commit that must take place. By comparing test case d) and 
test case a) of inquiry function, we note that the network latency costs more than 
actual time needed to complete the operation in the server-end. One should keep in 
mind that the performance measurement taken on a tight cluster. However, in a wide 
area network, one could expect the single server solution to be a bottle-neck for sys-
tem performance. So, we determined that that network latency may have a significant 
impact on the centralized version of FTHPIS-WSContext system performance. We 
conclude that having a built-in caching mechanism provides significant performance 
increase for given standard operations.  

Test B. FTHPIS-WSContext publication with database access
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Fig.7. Testing cases of responsiveness experiment for publication functionality 

 
 

  Fig.8. FTHPIS-WSContext inquiry           Fig.9. FTHPIS-WSContext inquiry  
 without database access                                     with database access 
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  Statistics (milliseconds) Figure 8  Figure 9 
Maximum 38.185 45.241 
* Average 30.659 38.073 
Minimum 24.348 30.824 
Standard Deviation 3.191 9.315 

           
         Table.1. Statistics for initialized mode of inquiry requests 
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                            Fig.10. Round Trip Time Chart for Inquiry Requests 

 

 
 
  Fig.11. FTHPIS-WSContext publication     Fig.12. FTHPIS-WSContext publication  
    without database access                                     with database access 
 
 

Statistics for initialized mode of the publication performance  
 Statistics (milliseconds) Figure 11  Figure 12 
Maximum 41.204 56.51 
* Average 34.789 45.304 
Minimum 29.968 38.925 
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Standard Deviation 3.009 3.613 
 
                     Table.2. Statistics for initialized mode of publication requests 
 
 
 

Round Trip Time Chart for Publication Requests with message size of 1.2 KB 
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       Fig.13. Round Trip Time Chart for Publication Requests 
 
 
 
 
 

5.3. Experiment 2 - Overloading Experiment:  

In the second experiment, we want to determine how well the number of users antici-
pated can be supported by the system for constant loads. Our goal is to quantify the 
degradation in response time at various levels of simultaneous users. In order to un-
derstand such performance degradation, we evaluate standard FTHPIS-WSContext 
Service functionalities with additional concurrent traffic. One should keep in mind 
that we want to test sustainability of the system under the worst case which is the 
testing of the system by sending queries at the same time from concurrent users with 
a constant load.  
 
We have done this by gradually ramping-up the number of querying WSContextCli-
ents until the system response time degrades. In this experiment, the inquiry function 
was executed with constant frequency (5 sequential inquires per second) by each 
client and average service time is recorded at various levels of simultaneous clients. 
We applied the same testing methodology for publication function to investigate 
system performance against simultaneous publication requests. The design of this 
experiment is depicted in Figure 14, while the results are depicted in Figures 15-16. 



 
 

W
S

D
L

Thread
Pool W

S
D

L

WS-Context Client

5 transactions 
by each client

FTHPIS Server
1.2 KB

Publishing
Querying
Module

2, 4, 6, 8, 10, 50, 100, 150 simultaneous clients

Test A. FTHPIS-WSContext inquiry at various levels of 
simultaneous clients

2, 4, 6, 8, 10, 50, 100, 150 simultaneous   providers

W
S

D
LW

S
D

L

WS-Context Provider

1.2 KB

Publishing
Querying
Module

5 transactions 
by each provider

Thread
Pool

FTHPIS Server

Test B. FTHPIS-WSContext publication at various levels of simultaneous 
providers

 
Fig.14. Testing cases of overloading experiment 
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Fig.15. Average WS-Context Inquiry Response Time Chart -  
         making constant load of 5 requests/second by each client  



 
# of simultaneous users 2 4 6 8 
fail status no fail no fail no fail no fail 
Statistics (milliseconds)     
Maximum 59.196 140.099 183.847 288.999 
*Average 46.039 88.547 115.309 157.766 
Minimum 31.268 41.477 47.711 48.999 
Standard Deviation 9.894 35.048 40.344 59.699 

 
# of simultaneous users 10 50 100 150 
fail status no fail no fail no fail no fail 
Statistics (milliseconds)     
Maximum 465.483 1647.908 1788.579 3100.219 
*Average 221.417 704.325 1263.355 1821.024 
Minimum 49.042 265.762 821.708 1070.225 
Standard Deviation 116.029 179.784 187.987 306.738 

                      
Table.3. Statistics of the experiment depicted in Figure 15. These measurements were 

taken with FTHPIS-WSContext Service without database access. Performance of 
single client is given in Table 1. 

 
Results of the Overloading Experiment: Based on the results depicted in Figure 15 
and Table 3, we determine that the large number of concurrent inquiry requests may 
well be responded without any error by the system and do not cause significant over-
head on the performance. However, we observe that after 100 concurrent users, re-
sponse time degradation becomes noticeable. We applied the same testing methodol-
ogy to publication function under two conditions: a) concurrent publishers send their 
requests when request is handled in Expeditor module (explained in sub-section 
3.8.2) without database access, and b) concurrent publishers send their requests when 
request was handled with database access. Having too many concurrent queries on 
MySQL typically decreases response times for all users [34]. It reduces overall sys-
tem performance by making disk access more random, by making CPU and file 
caches less efficient, and so forth. To this end, we executed testing case a), depicted 
in figure 14, with database access to identify the system limits for optimal number of 
concurrent queries when using MySQL database as primary storage. 
 
We observed that when we have more than two concurrent publication requests aim-
ing to update same context, the system fails to satisfy 23% publication requests. The 
results for the first test condition are shown in Table 4. These results indicated sig-
nificant increase in system performance as well as high failure rate. This lead us to do 
the test case a) again, when we grant publication request within the cache, as the 
primary storage, without having database access. Here, we stored the updated con-
texts offline, i.e. outside of the time-interval during which the query is executed, into 
the MySQL database (as the secondary storage). Based on the results depicted in 



Figure 16 and Table 5, we determine that the large number of concurrent publication 
requests may also well be responded without any error by the system, when the sys-
tem does not require database access in granting the concurrent requests.  The meas-
urements presented here were taken on local area network. One should also keep in 
mind that the large number of concurrent inquiry or publication requests is less likely 
to happen and exceptional cases in a real-life grid application deployed on a wide 
area network from the perspective of network latency, message delivery failures and 
data-loss.  
 

# of simultaneous users 1 2 3 4 5 
fail status no fail no fail 23% fail 30% fail 34% fail 
Statistics (milliseconds)      
Maximum 67.871 497.097 646.622 563.133 621.713 
* Average 59.689 135.779 150.843 173.894 178.494 
Minimum 54.407 47.785 50.689 64.796 66.604 
Standard Deviation 4.906 152.009 152.316 135.169 139.115 

 
Table.4. Statistics for the condition where concurrent publishers send their requests 

to FTHPIS-WSContext Service with database access 
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Fig.16. Average WS-Context Publication Response Time Chart - making 5 
publication request/second by each context provider 

 
# of simultaneous users 2 4 6 8 
fail status no fail no fail no fail no fail 
Statistics (milliseconds)     



Maximum  53.999 123.238 289.952 715.851 
* Average  46.844 88.391 122.864 170.131 
Minimum  40.867 46.097 47.361 65.008 
Standard Deviation  4.459 21.009 53.344 114.401 

 
# of simultaneous users 10 50 100 150 
fail status no fail no fail no fail no fail 
Statistics (milliseconds)     
Maximum  890.162 1960.656 4248.285 10880.92 
* Average  231.808 835.487 1788.542 2725.265 
Minimum  55.63 217.192 298.702 66.184 
Standard Deviation  144.815 310.215 886.146 1675.578 

                    
Table.5. Statistics of the experiment depicted in Figure 16. These measurements were 
taken with FTHPIS-WSContext Service without database access. Performance of the 

single provider is given in Table 2. 
 
 
 
 
5.4. Experiment 3 –Experiment designed based on application use case scenar-
ios:  
 
The main goal of this experiment is to investigate how the system performs in a real 
application case scenario such as Patten Informatics workflow-style GIS application 
[1].  In this motivating scenario: GPS, Fault, and Seismic data bases, wrapped by 
OpenGIS web services, filtering and geo-processing services are distributed across 
various institutions.  All these services interact with each other within a dynamically 
generic workflow to produce a common goal such as predicting an earthquake. The 
Pattern Informatics worklow-style grid application requires a session metadata man-
ager to manage activities of the workflow. A session metadata manager is used to 
provide access/storage/search interface to metadata generated by the participating 
entities of the session. Here, we investigate the applicability of the FTHPIS-
WSContext Information Service as a session metadata manager in Pattern Informatics 
domain.  
 
In this motivating scenario, an example state-metadata might have information about 
the state of the workflow, such as “executing”, “completed” and so forth. We expect 
the size of shared state-metadata to be around 1.2 KB. We illustrate such context 
example in appendix A. As the session-state metadata is shared and highly updated, it 
has both multiple readers and writers. To this end, we expect concurrent publication 
requests as well as concurrent inquiry requests. We consider an example workflow 
session where there are numerous client web services (ranging from 50 to 100) poll-
ing information, while context provider web services (ranging from 1 to 25) publish 
the state changes of the workflow with varying frequencies. 



 
We set up an environment where we have multiple-readers and multiple-writers 
which communicate through the FTHPIS system.  We investigate the performance of 
the FTHPIS-Context Service implementation under both light and heavy loads with 
varying concurrent publication and inquiry requests. In this picture, there are 
WSContextProviders (corresponding to a context provider) and WSContextClients 
(corresponding to a context client) that have access to shared data containing statistics 
for up to 20 contexts where each context has multiple-reader/single writer access. The 
design of this experiment is depicted in Figure 17. 
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Fig.17. Experiments with varying number of concurrent clients and providers at vari-
ous loads. 

 
We performed two separate testing cases in this experiment: we measure the perform-
ance of the FTHPIS system from the WSContextClient perspective under a) light and 
b) heavy loads. For case a), we look at the performance of the system with 50 query 
threads each issuing 10 queries to the FTHPIS node. We timed the complete round 
trip of all 500 queries issues by the WSContextClient for varying WSContextPublish-
ers (1, 5, 10, 15, 20, and 25) each issuing one update requests per second.  
 
For case b), we measure the system performance under heavier loads. We increase the 
number of querying threads to 100 and had each issue 10 queries. We also increased 
the frequency of updates to five per second for each WSContextPublisher. The aver-



age response time for light and heavy load with 1, 5, 10, 15, 20 and 25 publishers is 
presented in Figure 18.   
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Fig.18. Average WSContext Client Round Trip Time (RTT) Chart for Light and 
Heavy Load 

 
Results of the Experiment 3: As anticipated, the system showed better response times 
under light load compared with the system being under heavy load. It should be noted 
that the standard solution to multiple-reader/single-writer access at both levels of 
synchronization gives the readers priority. In severe cases the writes can suffer from 
starvation. We observe this reader-bias behavior in the results, as the number of que-
rying clients increased, the system presents noticeable performance degradation. 
Based on the results, we conclude that the FTHPIS-WSContext Service is an applica-
ble session manager service for work-flow style grid applications that are tolerable to 
a ) average response times ranging between 100 and 160 milliseconds under light 
loads and b) average response times ranging between 0.5 to 1 seconds under heavy 
loads. 
  
5.5. Experiment 4 –CPU thread scheduling latency experiment 
 
In order to have better understanding of the system performance without effect of the 
time spent for CPU thread scheduling interference, we measure the actual CPU proc-
essing time for varying transactions. We performed two separate testing cases in this 
experiment: we measure the actual CPU processing time and average turn around 
time for a) inquiry and b) publication functions over varying transactions. Whereas in 
previous experiments we started our times just before sending off a query and stop-
ping it once a complete response was received from the server, we now measured just 
the time necessary to query or write context into the server. Here, we wanted to de-
termine what the actual performance of the system independent from network latency. 
We used a commercial profiler program called “OptimizeIt” (more at 



www.borland.com/optimizeit) to measure the actual CPU processing time. We use 
the exact same testing case as it is depicted in test case a) in Figure 6 for inquiry func-
tion and again testing case a) in Figure 7 for publication function with the following 
exceptions. For case a) and b) we measure the average turn around time and CPU 
latency with 50, 200, 400, 600, 800 and 1000 transactions. In this experiment, we ran 
the FTHPIS server on the lightly loaded windows XP machine (kiliman-
jaro.ucs.indiana.edu), while the client application was running on cluster node-5. The 
results of the experiment for inquiry and publication functions are depicted in figures 
19 and 20 respectively.   
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Fig.19. Measuring CPU Scheduling Latency spent in internal sub-activities of WS-

Context inquiry function for 1 querying client under varying loads 
 
Results of the Experiment 4: Based on the results, we observe two working modes: 
startup mode and initialized mode. The histogram of the average turnaround time, i.e. 
the time difference between the method entry and exit, is the sum of the other two 
histograms: actual CPU processing time and CPU thread scheduling latency.  We 
note that the CPU thread latency is not an actual overhead for inquiry function of the 
system and the latency decreases in average as the number of transactions get in-
creased. However, we observe a noticeable startup CPU scheduling latency (8.5 mil-
liseconds) for the publication function. We also note that the CPU latency decreases 
in average for publication function as the number of transactions get increased. We 
conclude that CPU latency impact factor on system performance might be negligible 
if the system is in initialized mode. 
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Fig.20. Measuring CPU Scheduling Latency spent in internal sub-activities of WS-
Context publication function for 1 publishing client under varying loads 

6 Conclusions and Future Work 

In this paper, we have identified an important gap in Information Services for Grids 
that is lack of support for dynamic information in dynamically assembled traditional 
and Semantic Grids. We have presented an architecture that addresses key issues of 
managing dynamic metadata such as a) providing an efficient metadata access and 
storage methodology by taking into account changes in user demands and b) provid-
ing a P2P approach for access/storage request distribution among the peers of the 
system to capture the dynamic behavior both in metadata and the network topology.  
We perform an extensive set of experiments to evaluate the performance of the cen-
tralized version of the FTHPIS-WSContext Information. The performance results 
show the FTHPIS architecture can provide performance improvement over 18% for 
inquiry function and 22% for publication function by employing an expeditor module 
in its internal architecture. The promising low response latency results of experimen-
tal study on responsiveness indicates that high performance service conversation can 
be achieved with centralized metadata strategies with metadata coming from more 
than two services as opposed to service conversation with metadata only from the two 
services that exchange metadata. In addition, the performance indicates that efficient 
mediator services also allow us to perform collective operations such as queries on 
subsets of all available metadata. 
 



The experimental studies on sustainability of the system shows that the large number 
of concurrent operations may well be responded without any error by the system. By 
comparing the results form studies conducted on latencies, we determine that CPU 
thread scheduling latency impact factor on system performance might be negligible if 
the system is in initialized mode, while the network latency may have a significant 
impact on the centralized version of FTHPIS-WSContext system performance. 

 
We have discussed status of our implementation and report performance results from 
a prototype that is applied to sensor and collaboration grids.  

 
Work remains to further develop a distributed metadata hosting environment by em-
ploying novel dynamic replication techniques and to evaluate the system as whole 
through extensive performance tests. 
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Appendix: 

A. Sample Context XML metadata: 

<?xml version="1.0" encoding="UTF-8"?> 
<uddi_wsctx:context  
 xmlns:uddi_wsctx="http://WSCTX.services.axis.cgl/uddi_wsctx_schema"  
 xmlns:wsctx="http://WSCTX.services.axis.cgl/wsctx_schema"  
 xmlns:uddi_ext="http://uddi.services.axis.cgl/uddi_ext_schema"  
 xmlns:uddi="http://uddi.services.axis.cgl/uddi_schema"  
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

              <uddi_wsctx:contextKey> 
  uuid:ABCCE800-AB35-11DA-A4FC-C80C5880CB18-1141445798958 
              </uddi_wsctx:contextKey> 

 <uddi_wsctx:sessionKey> 
uuid:ABCCE544-CX35-11EA-BVFC-C34C7789CB33-1414457987978 

            </uddi_wsctx:sessionKey> 
 <uddi:name> 
          <value> 

context://GIS/PI/ABCCE544-CX35-11EA-BVFC-C34C7789CB33 
  </value> 

</uddi:name> 
 <uddi_wsctx:value>COMPLETED</uddi_wsctx:value> 
 <uddi_wsctx:accessRightInfo> 
 <uddi_wsctx:others> 
  <uddi_wsctx:readAccess>true</uddi_wsctx:readAccess> 
  <uddi_wsctx:writeAccess>false</uddi_wsctx:writeAccess> 
 </uddi_wsctx:others> 
 </uddi_wsctx:accessRightInfo> 
 <uddi_ext:lease> 
  <timeout>1000</timeout> 
  <isInfinite>false</isInfinite> 
 </uddi_ext:lease> 
 <uddi_wsctx:version>1</uddi_wsctx:version> 
</uddi_wsctx:context> 

 
 
 

 
 
 
 



B. Sample UDDI XML metadata: 

<?xml version="1.0" encoding="UTF-8"?> 
<uddi:businessService  

xmlns:uddi="http://uddi.services.axis.cgl/uddi_schema
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

 <serviceKey> 
uuid:12114460-B4B6-11DA-A1DD-C2341CB5D80D 
</serviceKey> 

 <businessKey> 
uuid:7115B940-A95E-11DA-B940-CB4E3E38D62F 
</businessKey> 

 <uddi:name> 
  <value>Sample Service</value> 
 </uddi:name> 
 <uddi:description> 
  <value>Service Description</value> 
 </uddi:description>   
 <value>String</value> 
 <uddi:bindingTemplates> 
 <uddi:bindingTemplate> 
 <bindingKey> 

uuid:129679F0-B4B6-11DA-A1DD-E719F6E12358 
</bindingKey> 

 <serviceKey> 
uuid:12114460-B4B6-11DA-A1DD-C2341CB5D80D 

</serviceKey> 
 <uddi:accessPoint> 
 <value> 

http://gf7.ucs.indiana.edu:8092/wfs-streaming-service/services/wfs 
</value> 

 <useType>research</useType> 
 </uddi:accessPoint> 
 </uddi:bindingTemplate> 
 </uddi:bindingTemplates> 
 <uddi:categoryBag> 
 <uddi:keyedReference> 
  <uddi:tModelKey> 

uuid:6D712AF0-4ADA-11DA-BC65-C767C07EBBEA 
</uddi:tModelKey> 

  <uddi:keyName>ServiceCategory</uddi:keyName> 
  <uddi:keyValue>GIS-WFS</uddi:keyValue> 
 </uddi:keyedReference> 
 <uddi:categoryBag>  
</uddi:businessService> 

 


