
Fault Tolerant High Performance Information Services
for Dynamic Collections of Grid and Web Services

Mehmet S. Aktas1, 2, Geoffrey C. Fox1, 2, 3, Marlon Pierce1

1 Community Grids Laboratory, Indiana University
501 N. Morton Suite 224, Bloomington, IN 47404
{maktas, gcf, mpierce}@cs.indiana.edu

 www.communitygrids.iu.edu
2 Computer Science Department, School of Informatics, Indiana University

3 Physics Department, College of Arts and Sciences, Indiana University

Abstract. E-Science Semantic Grids can often be thought of as dynamic collec-
tion of semantic subgrids where each subgrid is a collection of modest number
of services that assembled for specific tasks. We define a Gaggle as a modest
number of managed and actively interacting Grid/Web Services, where services
are put together for particular functionality. The information management re-
quirements in Gaggles include both the management of large amounts of rela-
tively static services and associated semantic information as well as the man-
agement of multiple dynamic regions (sessions or subgrids) where the semantic
information is changing frequently. We design a hybrid, fault tolerant, and high
performance Information Service supporting both the scalability of large
amounts of relatively slowly varying data and a high performance rapidly up-
dated Information Service for dynamic regions. We use the two Web Service
standards: Universal Description, Discovery, and Integration (UDDI) and Web
Services Context (WS-Context). We evaluate our approach by applying various
tests to investigate the performance and sustainability of the centralized version
of our implementation that is applied to sensor and collaboration grids. The ex-
perimental study on system responsiveness of the proposed approach shows
promising results. This study indicates that communication among services can
be achieved with efficient centralized metadata strategies, with metadata com-
ing from more than two services. In contrast point-to-point methodologies pro-
vide service conversation with metadata only from the two services that ex-
change information. In addition, our performance indicates that efficient media-
tor services also allow us to perform collective operations such as queries on
subsets of all available metadata in service conversation.

1 Introduction

E-Science Semantic Grids can often be thought of as dynamic collection of semantic
subgrids where each subgrid is a collection of modest number of services that assem-
bled for specific tasks such as forecasting earthquakes [1] or managing an au-
dio/video collaboration session [3]. We term an actively interacting (collaborating)
set of managed and modest number of services as a Gaggle where services are put

together for particular functionality. A particular Semantic Grid may consist of sev-
eral Gaggles each featuring intense local activity with less intense inter-gaggle inter-
actions. Each Gaggle maintains the dynamic information which is the session related
metadata generated as result of interactions among Grid/Web Services. Gaggles are
also termed Grid Processes in the China National Grid [27]. They are sessions in the
field of collaboration. An infrastructure for the Semantic Grid is discussed in [2]
where Grid Processes may be defined as cooperative processes that support the defi-
nition, management and integration of business processes. We also note that Gaggles
may be composed from other “sub” Gaggles hierarchically.

Extensive metadata requirements of both the worldwide Grid and smaller sessions or
“gaggles of grid services” that support local dynamic action may be investigated in
diverse set of application domains such as sensor and collaboration grids. For exam-
ple, workflow-style Geographical Information Systems (GIS) Grids such as the Pat-
tern Informatics (PI) application [1] require information systems for storing both
semi-static, stateless metadata and transitory metadata needed to describe distributed
session state information. The PI application is an earthquake simulation and model-
ing code integrated with streaming data services as well as streaming map imaginary
services for earthquake forecasting. Another example, collaborative streaming sys-
tems such as Global Multimedia Collaboration System (GlobalMMCS) [3] involve
both large, mostly static information systems as well as much smaller, dynamic in-
formation systems. GlobalMMCS is a service-oriented collaboration system which
integrates various services including videoconferencing, instant messaging and
streaming, and is interoperable with multiple videoconferencing technologies. Zhuge
defines Knowledge Grid in [30-31] as “an intelligent and sustainable interconnection
environment that enables people and machines to effectively capture, publish, share
and manage knowledge resources and that provides appropriate on-demand services
to support scientific research, technological innovation, cooperative teamwork, prob-
lem solving, and decision making”. To this end, Gaggles may also be thought of as
dynamic sub-components of the Knowledge Grid. Each Gaggle might be created in a
dynamic fashion to support science and engineering applications of the Knowledge
Grid.

Figure 1 illustrates a model of building system hierarchy where services are aggre-
gated into atomic grids that perform basic functionalities. The basic (atomic) grids
include Geographical Information Systems (GIS), collaboration, sensor, compute or
knowledge grid. Composite grids are built recursively from both atomic and other
composite grids. In this picture, we need the core Grid Services at the bottom of fig-
ure with services like extended UDDI XML metadata service for static information
and WS-Context XML metadata service for dynamic information. The atomic (basic)
grids can be re-used in all critical infrastructure grids which in turn customized, com-
pared and overlaid with other grids for different critical infrastructure communities
such as crisis grid, emergency response and so forth. As an example, PI grid applica-
tion can be built in composite fashion from basic grids, such as GIS and sensor grids.
Given this picture, we expect that Grid of Grids concept [36] can be applied recur-

sively and dynamically to build grid applications with modest number of services
gathered together at any one time to perform particular functionality.

Services: Power,
Gas, GPS Stations

and Filters

Physical Network

Extended UDDI
XML Metadata

Services: GPS
Stations

and Filters

Earthquake Prediction
Grid – PI Application

Energy Emergency
Response Grid

…………..

Data Access/Storage

Security WorkflowNotification Messaging

Portals Knowledge GridCollaboration Grid

Sensor Grid Compute GridGIS Grid

Core Grid Services
WS-Context XML

Metadata

Fig.1. Gaggles may be built in a dynamic fashion as Grids of Grids applications with

modest number of services involved at any one time for particular functionality

The Grid Information Services support discovery and handling of services through
metadata and are vital components of Grids [4]. In this research, we are particularly
interested in supporting discovery and handling of metadata for the Gaggles, i.e. one
of the sub-grids of the whole Grid, where semantic information is changing fre-
quently. Handling information requirements of these applications requires high per-
formance, fault tolerant information systems. These information systems must be
decentralized, relocate metadata to nearby locations of interested entities and provide
efficient access, storage of the shared information, as the dynamic metadata needs to
be delivered on tight time constraints within a Gaggle.

1.1. Motivation

We identify the following problems in Information Services supporting both tradi-
tional and Semantic Grids. First, Grid Information Services need to be able to sup-
port dynamically assembled service collections gathered at any one time to solve a
particular problem at hand such as calculating damages from disruptions at the time
of a crisis. Most of the traditional Grid Information Services [5-6] however are not
built along this model. Second, Information Services should scale in numbers and
geographical area. Most existing solutions [5-6] however have centralized compo-
nents and do not address scalability and high performance issues. Third, Information
Services need to be able to take into account user demand changes when making
decisions on metadata access and storage. Fourth, Information Services need to be
able to provide uniform interface for publishing and discovery of both dynamically

generated and static information. Existing Grid Information Services however do not
provide such capabilities. We therefore see this as an important area of investigation.
This paper presents our design of an architecture and prototype to address the identi-
fied problems above. We describe a novel architecture for fault tolerant and high
performance Information Services in order to manage distributed, dynamic session
related metadata while providing consistent, uniform interface to both static and dy-
namic metadata.

1.2. Requirements

We design our architecture to meet the following requirements:

Uniformity: The types and update frequency of information may vary in both tradi-
tional and Semantic Grids. This requires a hybrid Information Service providing a
uniform interface to dynamic/static metadata and supporting both the scalability of
large amounts of relatively slowly varying information and a high performance rap-
idly updated Information Service for dynamic regions.

Interoperability: Information should be accessible by diverse set of consumer ser-
vices through standard interfaces to increase usability. This requires leveraging exist-
ing Web Service standards for service discovery and communication to enable Infor-
mation Services and consumer services to operate effectively together.

Persistence: Archival of session metadata may provide a metadata management sys-
tem enabling session failure recovery or replay/playback capabilities for collaboration
grids. This requires persistent metadata storage capability.

Dynamism: Dynamic metadata, i.e. rapidly updated and short-lived information need
to be supported in both traditional and Semantic Grids. Furthermore, metadata need
to be reallocated based on changing user demands and locations. This requires Infor-
mation Services that can support metadata for dynamic regions and that can provide
discovery of data-systems hosting the metadata under consideration in a dynamic
fashion.

Performance: The update frequency on short-lived metadata may vary based on
applications. Here, the system is required to support dynamic changes with a fine
granularity time delay for the systems with a modest number of involved services
(say, up to thousand services per session).

1.3. Contributions and Organization

The main contributions of this paper are two-fold. First, we present a novel architec-
ture for a WS-Context [20] complaint metadata catalog service supporting distributed

or centralized paradigms. We use an extended version of UDDI [21] for slowly vary-
ing metadata and present a uniform and consistent interface to both short-lived dy-
namic and slowly varying quasi-static metadata. We explore the application of con-
text (session-related dynamic metadata) management in Grid systems to correlate
activities in workflow-style applications, by providing a novel approach for manage-
ment of widely distributed, shared session-related dynamic metadata. We investigate
the problem of distributed session management in Grid applications, by providing an
approach for distributed event (session metadata) management system enabling ses-
sion failure recovery or replay/playback capabilities. We also address lack of search
capabilities in Grid Information Services, by providing uniform search interface to
both interaction independent and conversation-based metadata enabling service dis-
covery through events.

Our second contribution is the application of topic-based publish/subscribe methods
to the problems of dynamic replication methodology to support dynamic metadata.
We utilize a multi-publisher, multicast communication middleware and a topic-based
publish/subscribe messaging system as a communication middleware to exchange
messages between peers.

This paper is organized as follows. Section 2 reviews the state of art in existing in-
formation services and replica hosting environments. Section 3 reviews our design for
information systems to support Gaggles paying particular attention to distributed data
management aspects of the system. We discuss the status of the system in section 4
and the evaluation of our prototype in Section 5. In Section 6, we summarize and
discuss future work.

2 Background

Peer-to-Peer (P2P) systems may broadly be categorized as pure and hybrid [32]. On
one hand pure systems endeavor for total decentralization and self-organization, on
the other hand hybrid systems have some form of centralized control such as a look-
up service [31]. In this paper, we focus our study on the Information Systems that
adopt pure P2P networks which may further be categorized as a) structured and b)
unstructured. In structured P2P architectures, system resource placement at peers is
enforced with strict constraints which in turn create heavy overhead on the bootstrap
of the network. For an example, Globus Monitoring and Discovery System (MDS4)
[5] has a structured architecture where there is a single top-level Information Service
that presents a uniform interface to clients to access data, while the data is collected
by lower-level information providers. Relational Grid Monitoring Architecture (R-
GMA) [6] presents a relational model where users query/store/access metadata cen-
trally and if information found directly connect to information providers to retrieve
the data without intermediary nodes. Another example is the structured P2P systems
where the nodes in the systems are equally enabled and controlled and service infor-
mation is disseminated to all nodes (CAN [7], Chord [8]). Unstructured P2P architec-
tures can be characterized as systems where there is complete lack of constraints on

the placement of resources and the capabilities of the system nodes. An extensive
survey on Grid Information Services can be found at [9, 35].
Architectures with pure decentralized storage models have focused on the concept of
distributed hash tables (DHT) [7, 8]. DHT approach assumes possession of an identi-
fier such as hash table that identifies the service that need to be discovered. Each
node forwards the incoming query to a neighbor based on the calculations made on
DHT. Although the DHT approach provides good performance on routing messages
to corresponding nodes, it has various limitations such as primitive query capabilities
on the database operations. Here, we design an architecture which can be defined as
an unstructured P2P approach to P2P/Grid environment. We use multi-publisher
message broadcasting through a topic-based publish/subscribe messaging system,
which support access and storage decisions among distributed nodes.

Well-defined descriptions of resources, services and data constitute metadata. Meta-
data can be represented using varying metadata models such as XML Schema or
Semantic Web languages (RDF [28], OWL [29], etc.). Here, we are mainly concerned
with managing the metadata and delivering to clients, not with knowledge processing.
We presume the metadata models to be application-specific and not defined by us. To
this end, we are concentrating on distributed computing problems of managing meta-
data in the Semantic Grid. See Section 4 of this paper for more discussion.

An approach to solve the problem of locating services of interests is the UDDI Speci-
fications [21] from OASIS (http://www.oasis-open.org). The UDDI is WS-I compati-
ble and offers users a unified and systematic way to find service providers through a
centralized registry of services. We identify the following limitations in UDDI Speci-
fications. First, UDDI introduces keyword-based retrieval mechanism. It does not
allow advanced metadata-oriented query capabilities on the registry. Second, UDDI
does not take into account the volatile behavior of services. So, there may be stale
data in registry entries. Third, UDDI does not support extensive metadata require-
ments of rich interacting systems. For instance, services may require an Information
Service to publish and discover session metadata generated by one or more services
as a result of their interactions. Fourth, since UDDI is domain-independent, it does
not provide domain-specific query capabilities such as geo-spatial queries.

There have been some solutions introduced to provide better retrieval mechanism by
extending existing UDDI Specifications. UDDI-M [10] and UDDIe [11] projects
introduce the idea of associating metadata (name-value pairs) and lifetime with UDDI
Registry. UDDI-MT [12-13] improves this approach in several ways such as improv-
ing the metadata representation from attribute name-value pairs into RDF triples to
provide semantically rich service descriptions and relevant information. The Gri-
moires registry project (http://twiki.grimoires.org/bin/view/Grimoires/WebHome)
extends the UDDI-MT to provide a registry which can support multiple service de-
scription models by taking into account robustness, efficiency and security issues.
Another approach to leverage UDDI Specifications was introduced by METEOR-S
[14] project which also utilizes semantic web languages when describing a service

(such as data, functionality, quality of service and executions) in order to provide
more expressiveness power and better service match-making process.

In our design, we too extend UDDI information model by providing an extension
where we associate metadata with service descriptions. We use (name, value) pairs to
describe characteristics of services similar to the UDDI-M and UDDIe projects. We
expand on the capabilities that are supported by these projects, by providing domain-
specific query capabilities. An example for domain-specific query capability could be
XPATH queries on the auxiliary and domain-specific metadata files stored in the
UDDI Registry. Another distinguishing aspect of our design is the support for session
metadata. Our design supports not only quasi-static, stateless metadata, but also more
extensive metadata requirements of interacting systems. UDDI-MT and METEOR-S
projects are example projects that utilize semantic web languages to provide better
service matchmaking in retrieval process. This research has been definitely investi-
gated [12-14] and so not covered in our design. We view dynamic and domain-
specific metadata requirements of sensor/GIS and collaboration Grids as higher prior-
ity.

We use replication, a well-known and commonly used technique to improve the qual-
ity of metadata hosting environments, in our architecture. Sivasubramanian et al. [15]
give an extensive survey on reviewing research efforts on designing and developing
World Wide Web replica hosting environments, as does Robinovich in [16], paying
particular attention to dynamic replication. As the nature of our target data is dy-
namic, we focus on data hosting systems that are handling with dynamic data. These
systems can be discussed under following important design issues: a) distribution of
client requests among data replicas b) selection of hosting environments for replica
placement c) consistency enforcement.

Distribution of client requests is the problem of redirecting a client to the most
appropriate replica server. Most existing solutions to this problem are based on DNS-
Server such as in [17-18]. These solutions utilize a redirector/proxy server that ob-
tains physical location of collection of data-systems hosting a replica of the requested
data, and choose one to redirect client’s request.

Replica placement is another issue that deals with selecting data hosting environ-
ments for replica placement and deciding how many replicas to have in the system.
Existing solutions, that apply dynamic replication, monitor various properties of the
system when making replica placement decisions [18-19]. For instance, Radar [18]
replicates/migrates dynamic content based on changing client demands. Spread [19]
considers the path between the data-system and client and makes decisions to repli-
cate dynamic content on that path.

The existing solutions to dynamic replication assume all data-hosting servers to be
ready and available for replica placement and ignore “dynamism” in the network
topology. In reality, data-systems can fail anytime and may present volatile behavior.

We use a pure Peer-to-Peer approach, which is based on multi-publisher multicast
mechanism, when distributing access and storage requests to data-systems.

The consistency enforcement issue has to do with ensuring all replicas of the same
data to be the same. Various techniques have been introduced in consistency man-
agement. For instance, the Akamai project [17] introduces versioning where a version
number is encoded to document identifier, so that client would only fetch the updated
data from the corresponding data hosting system. Radar [18] applies primary-copy
approach where an update can be done only on the primary-copy of the data.

In our design, we employ a strategy which suggests propagation of updates only if it
is necessary. Our main approach is to provide client-centric consistency which pro-
vides guarantees for a single client’s access to a replicated data store. We use Net-
work Time Protocol (NTP) clients to achieve synchronized timestamps to give labels,
i.e. versions, to each context stored in the system.

Our architecture differs from web replica hosting systems as the intended use of our
architecture is not to be a web-scale hosting environment. The scale of our target
systems is in the order of a few dozen to at most a thousand entities participating in a
session. Our target domains range from collaboration systems such as GlobalMMCS
project to geographical information systems such as Pattern Informatics GIS-Grid.
The participant entities of these systems might dynamically generate metadata during
a session. Such metadata can be expected to be small in size and big in the volume
depending on the Grid application.

3 Information Services

We have designed a novel architecture to Information Services presenting a uniform
interface to support handling and discovery of not only quasi-static, stateless meta-
data, but also session related metadata. Our approach is to utilize the existing state-of-
art systems for handling and discovering static metadata and address the problems of
distributed management of dynamic metadata. In order to be compatible with existing
Grid/Web Service standards, we based the interface of our system on the WS-Context
[20] and UDDI [21] Specifications. We have extended and integrated both specifica-
tions to provide uniform and consistent service interface to both dynamic and static
metadata. A centralized version of our architecture is depicted in Figure 2. In our
design, we use replication technique to provide fault tolerance, load balancing, re-
duced access latency and bandwidth consumption. In order to enable communication
between replica hosting servers, we utilize a topic based publish-subscribe mecha-
nism to provide message-based communication as depicted in Figure 3. Figure 3
illustrates two clients interacting with an hybrid Information Service that provides a
uniform programming interface to both quasi-static and dynamic metadata. In this
scenario, on receiving the client requests, the system first extracts dynamic and static
portions of the query. The static portion of the query is simply forwarded to UDDI
XML metadata service, while the dynamic part is handled by the Information

Extended UDDI WSDL
Service Interface
Descriptions
uddi_extended.wsdl

HTTP

Hybrid FTHPIS-WSContext Service
interface combining Extended UDDI
and WS-Context WSDL Descriptions
uddi_wscontext.wsdl

Database

JDBC

Extended UDDI
Service

WSDL

HTTP(S)

WSDL

FTHPIS Client

WSDL

FTHPIS Client

WSDL WSDL

FTHPIS-WSContext
Service

Database

W
S

D
L

JDBC

Fig.2. Our design integrates both UDDI and WS-Context Web Service Interfaces to
provide a uniform programming interface to service metadata. This figure illustrates
the centralized version of FHTPIS-WSContext Service interacting with two clients.

The service also interacts with an external extended UDDI service when the incoming
inquiry requests require static metadata.

Service itself. If the query asks for external metadata, then the query is multicast to
available replicas through a topic-based publish-subscribe mechanism. On receiving
the responses from both dynamic and static metadata spaces, the system returns the
results to querying clients. In the following sub-sections, we discuss different aspects
of our architecture as following. First, we discuss the details of how we have ex-
tended and combined UDDI and WS-Context specifications. Then, we describe the
fault-tolerant aspects of our design in details. Next, we discuss the software multicast
communication mechanism followed by the architectural components of the proposed
system.

HTTP(S)

WSDL

FTHPIS Client

WSDL

FTHPIS Client

HTTP

Subscriber

Publisher

Database

JDBC

Extended UDDI
Service

WSDL

Database

WSDL

FTHPIS-WSContext
Service

JDBC

Database

WSDL

FTHPIS-WSContext
Service

JDBC

Topic Based Publish-Subscribe
Messaging System

Replica Server-1 Replica Server-N

WSDL WSDL

FTHPIS-WSContext
Service

Database

W
S

D
L

JDBC

Fig.3. This figure illustrates decentralized Fault Tolerant High Performance

Information Services (FTHPIS) from the perspective of a single FTHPIS-WSContext
Service interacting with two clients. The FTHPIS system uses a topic based publish

subscribe messaging system to enable communication between the services.

3.1. Extended UDDI XML Metadata Service

We have extended existing UDDI Specifications to annotate service descriptions with
metadata describing characteristics of services.

We designed a data model for service metadata by extending UDDI Data Structure
Schema. Detailed design documents can be found at http://www.opengrids.org/-
extendeduddi/index.html. Based on this model each service entry is associated with
an XML tag called “metadataBag” which consists of one or more “serviceAttribute”
sub-elements. Here, each “serviceAttribute” corresponds to a piece of metadata and it
is simply expressed with (name, value) pairs. The value type of a “serviceAttribute”
can either be string or integer. As an example, we can illustrate a “serviceAttribute”
as in ((throughput, 0.9)). A “serviceAttribute” can be associated with a lifetime and
categorized based on custom classification schemes. A simple classification could be
whether the “serviceAttribute” is prescriptive or descriptive. In the aforementioned
example, the “throughput” service attribute can be classified as descriptive. In some
cases, a service attribute may correspond to a domain-specific metadata where service
metadata could be directly related with functionality of the service. For instance;
OGC compatible GIS services provide a “capabilities.xml” metadata file describing

the data coverage of geo-spatial services. We use an “abstractAttributeData” element
to represent such metadata and store/maintain these domain specific auxiliary files as-
is. Here, the abstract attribute data could simply be in any representation format such
as XML or RDF.

In order to support/integrate quasi-static stateless metadata in UDDI Registries, we
also extended existing UDDI XML API Schema and implemented it as a web service.
We introduced metadata-oriented publishing/discovery capabilities by expanding on
existing UDDI API such as “save_service”, “find_service” and “get_serviceDetail”.
We also introduced additional API to let third party users of services a) attach addi-
tional metadata and b) pose queries for particular metadata to already published ser-
vice entries. These additional API are “get_serviceAttributeDetail”,
“save_serviceAttribute”, “find_service-Attribute” and “delete_serviceAttribute”.
Further design documentation on XML APIs is available at
http://www.opengrids.org/-extendeduddi/index.html.

Our design may also support discovery of domain-specific prescriptive metadata as in
the following scenario. A querying user constructs a query “metadataBag” consisting
of a list of “serviceAttribute”s. Each “serviceAttribute” forms a search criterion. The
constructed “metadataBag” is passed to UDDI Registry as an argument of the ex-
tended “find_service” function. We implement “find_service” functionality in a way
to support XPATH query capabilities on the UDDI Registry. Say, in given a “ser-
viceAttribute” element, one could indicate a) XPATH query statement and b) name of
the prescriptive metadata file. If the search criterion is a XPATH query, then the
query is applied on the corresponding auxiliary file stored in the UDDI Registry. The
results will be a list of services that satisfy user’s query. This way, we can apply
domain-specific queries such as geo-spatial queries on the metadata services.

Given all these capabilities, one can simply populate the registry with metadata as in
following scenario. Say, a user publishes a new service into UDDI Registry. In this
case, the user constructs a “metadataBag” filled with “serviceAttributes” where each
“serviceAttribute” has (name, value) pairs. Each pair may describe one generic de-
scriptive characteristics of the service such as throughput, or usage cost. If a service
metadata is domain-specific, we use an “abstractAttributeData” element and express
the serviceAttribute as a (name, abstractAttributeData) pair. As the “metadataBag” is
constructed, it can be attached to the new service entry which can then be published
with extended “save_service” functionality that we introduced.

As we research UDDI Specifications to integrate with our system, we have encoun-
tered various limitations in its capabilities which we address in a separate paper [22].
Our work on UDDI is for a specific type of metadata: semi-static and context-free.
UDDI is appropriate for data that is long-lived (i.e. should be true for months or
years) and that is independent of the client interaction (i.e. all clients issuing the same
requests get the same responses). We discuss the parts of our architecture that sup-
ports dynamic information in the short-lived service collections in the following sec-
tion.

3.2. Extended WS-Context XML Metadata Service

We have extended the WS-Context Specification [20] to manage session metadata
between multiple participants in Web Service interactions.

We designed a data model for managing dynamic metadata by extending existing
WS-Context XML Schema. Detailed design documents can be found at
http://www.opengrids.org/wscontext/index.html. Based on this model, we define
session entity which may be considered an information holder; in other words, a di-
rectory where context with similar properties are stored. Each session entry is associ-
ated with an XML tag called “contextBag” which consists of one or more “Context”
sub-elements. Here, a context entity is used to represent dynamic metadata and “con-
textBag is considered as metadata collection associated with a session. Each context
has both system-defined and user-defined identifiers. The uniqueness of the system-
defined identifier is ensured by the system itself, whereas, the user-defined identifier
is simply used to enable users to manage their memory space in the context service.
As an example, we can illustrate a “context” as in ((system-defined-uuid, user-
defined-uuid, “Job completed”)). A complete example of a context is given in the
appendix A. The value of a context is stored as SQL BLOB type in the MySQL data-
base. A “context” can be also associated with service entity and it has a lifetime.

Contexts may be arranged in parent-child relationships. One can create a hierarchical
session tree where each branch can be used as an information holder for contexts with
similar characteristics. This enables the system to be queried for contexts associated
to a session under consideration. Each session entity has a “session-directory-
metadata”. Session directory metadata describes the child and parent nodes of a
session. This enables the system to track the associations between sessions.

In order to support/integrate dynamic metadata, we also extended existing WS-
Context XML API and implement it as a web service. We introduced various addi-
tional publishing/discovery capabilities to enable the system to track the associations
between sessions and contexts by expanding on primary functionalities of WS-
Context XML API such as “setContext” and “getContext”. Here each context is
stored and retrieved associated with a session. The additional XML API is designed
to let third party users a) to locate/retrieve/save/delete contexts associated to a session
and b) to locate/retrieve/save/delete particular sessions with given contexts and/or
participating session-entities. Extended version of WS-Context XML API include
“find_context”, “get_contextDetail”, “save_context”, “delete_context”,
“find_session”, “get_sessionDetail”, “save_session”, and “delete_session”. Further
design documentation on WS-Context XML API is available at
http://www.opengrids.org/-wscontext/index.html.

3.3. An hybrid Information Service interface combining both extended UDDI
and WS-Context functionalities

We combine both extended UDDI and WS-Context implementations within a hybrid
service. Our aim is to provide a uniform service interface to service metadata. To this
end, we introduced hybrid publishing/discovery capabilities, such as “save_service”,
“find_service”, “delete_service” and “get_serviceDetail”, supporting both dynamic
and quasi-static, stateless service metadata.

Given these capabilities, one can simply populate this hybrid information service with
service metadata as in the following scenario. Say, a user publishes a new service into
the system. In this case, the user constructs both “metadataBag” filled with “ser-
viceAttributes” and “contextBag” filled with “contexts” where each context describes
the sessions that this service will be participating. As both the “metadataBag” and
“contextBag” is constructed, they can be attached to a new “service” element which
can then be published with extended “save_service” functionality of the hybrid In-
formation Service. On receiving publishing service metadata request, the system
applies following steps to process service metadata. First, the system separates the
dynamic and static portions of the metadata. Then, the system delegates the task of
handling discovery of static portion (“metadataBag”) to extended UDDI service.
Next, the system itself provides handling and discovery using dynamic portions of the
metadata in the metadata replica hosting environment. Further design documentation
on hybrid Information Service XML API is available at http://www.opengrids.org/-
extendeduddi/index.html.

The intended use of our approach is to support information in dynamically assembled
Semantic Grids where “real-time” decisions are being made on which services to tie
together in a dynamic workflow to solve a particular problem. One may think of WS-
Context complaint Information Services as the metadata catalog for semantic meta-
data as in an RDF triple store. The semantic metadata expresses the relationships
between resources, while the applications that access the metadata catalog deduct
further (inferred) information. In our design, the distinctive semantic richness comes
from the highly dynamic architecture with metadata from more than two services (in
contrast WS-Transfer, WS-Metadata Exchange Specifications that only easily get
semantic enhancement from the two services that exchange metadata). We discuss
various research issues in building Information Services for dynamically assembled
Semantic Grids in the following section.

3.4. Fault Tolerant High Performance Information Services

We have considered two application domains from collaboration and sensor/GIS
grids to demonstrate the use of our system: GlobalMMCS and PI GIS-Grid.
GlobalMMCS is a peer to peer collaboration environment where videoconferencing
sessions can take place. Any number of widely distributed services can attend to a
collaboration session. GlobalMMCS requires persistent archival of session metadata

to provide replay/playback and session failure recovery capabilities. The PI GIS-Grid
is a workflow-style Grid application which requires storage of transitory metadata
needed to correlate activities of participant entities. Both application domains require
a decentralized metadata hosting environment which can support both scalability (of
large amounts of information) and performance requirements (of rapidly updated
dynamic information). To this end, we identify two important research issues that
need to be answered in our design: fault tolerance and high performance.

We use replication technique to provide fault tolerance, which improves the quality of
our data hosting environment. If one of the redundant storage elements goes down, it
automatically consults remaining elements to restore itself. The replication technique
can also lead into high performance by reducing a) bandwidth consumption and b)
the time between a client issuing a request and receiving the corresponding response.

One approach to replication is replicating context in every node in the distributed
system architecture. This full-replication method could surely provide best fault-
tolerance in terms of availability. However, this approach doesn’t scale. The more
replicas need to be kept consistent, the higher quantity of exchanged messages and
time required. The other approach is partial-replication which suggests replication of
contexts only if it is necessary to minimize the cost needed to keep replicas consis-
tent. So, we choose partial-replication over full-replication.

Replication can also be categorized by the manner in which the replicas are created
and managed. On one hand, static replication suggests a strategy where replicas are to
be manually created and managed. In a dynamically assembled Gaggle environment,
it is not feasible to manually replicate dynamically generated metadata. On the other
hand, dynamic replication suggests replication of contexts based on changing user
behavior. To this end, as the nature of our data is very dynamic, we use dynamic data
replication technique, where data replicas may be created, deleted, or migrated among
hosting data-systems based on changing user demands [16].

An example of 11-node based FTHPIS replica hosting environment is depicted in
Figure 4 where dynamic metadata (contexts ranging from A to O) replicated on the
FTHPIS nodes ranging from 1 to 11. Our main interest in dynamic replication is to
place context replicas in the proximity of requesting clients by taking into account
changing demand patterns to minimize the response latency. The number and the
placement of replicas may change due to demand changes. In the example, the quan-
tity of context replicas D, E and F is shown more than the quantity of others because
of high demand for these replicas. Our aim is not to replicate the context space, but
the individual contexts based on their demands. Next, we discuss the two important
aspects of dynamic replication are access and storage algorithms.

1

2

Gaggle
Boundary

3

4

5

6

7

8

9

10

11

A

B C

A

B C
D

E F

G

H I
J

K L

D

E F

D

E F

A

B C
J

K L

G

H K J

K L

M

N O
J

K L

M

N O

M

N O
D

E F

Fig.4. An eleven-node based FTHPIS replica hosting environment. Numbered callout
shapes represent replica servers. Letters ranging from A to O correspond to contexts

replicated on the replica servers ranging from 1 to 11.

3.5. Access Algorithm

The access algorithm distributes client requests to appropriate replica hosting data-
systems. Our model is based on pure Peer-to-Peer approach where each node can
probe all other nodes in the network to look up metadata. A primary role of the access
algorithm is the discovery of one or more data-systems hosting the requested meta-
data. This discovery process consists of two steps: data-system discovery and access.
The first step concerns with selection of data-systems that can answer the client re-
quests. The second step is to inform the data-system that is most appropriate for han-
dling the request. In the first step, to find metadata, a node sends a probe message to
all other nodes through a software multicast mechanism; target data-systems that host
the metadata matching the probe send a response directly to requestor node. Here,
response message consists of information regarding how well the data-system can
handle this query. For instance, such information may include proximity information
between the client and the data-system. On receiving response messages, the re-
questor node chooses the most appropriate data-system that can handle the request. In
the second step, the requestor node sends the client request to the chosen data-system
particularly asking to handle the request.

3.6. Storage Algorithm

Storage algorithm selects data-systems for replica placement and decides how many
replicas to have in the system. In our design, storage decisions are made autono-
mously at each node without any knowledge of other replicas of the same metadata.
The storage decision is made based on the client requests served by that node. Storage
process consists of two separate steps such as metadata placement and metadata crea-
tion. The first step has to do with selection of data-systems that should hold the rep-
lica and the second step has to do with metadata replica creation. In the first step,
each node (data-system) runs the storage algorithm which defines client request
thresholds for replica creation and deletion. If a metadata entry is in high demand
which is above a pre-defined threshold, then the metadata is replicated. If a metadata
entry is in low demand which is below a pre-defined threshold, it will be deleted. To
replicate metadata, a node sends a “storage” message to all other nodes through a
software multicast mechanism; target data-systems, that have available space, send a
respond to directly requestor node. Here, the response message consists of various
decision metrics such as client proximity information. On receiving the response
messages, replica placement algorithm chooses the most appropriate data-system to
replicate the metadata. In the second step, the requestor node sends a replica creation
message directly to the chosen data-system asking to store a replica of metadata in
consideration. This process creates a dynamic metadata storage in which metadata is
moved based on changing client demands.

3.7. Multi-publisher Multicasting Communication Middleware

An importing aspect of our system is that we utilize software multicasting capability
which is an important communication medium supporting the ability to send out ac-
cess and storage requests to the nodes of the system. Any node can publish and sub-
scribe to topics which in turn create a multi-publisher multicast broker network as
communication middleware. Here, the publisher does not need to know the location
and identities of receivers. It publishes a message to a topic to which all nodes sub-
scribe.

The architectural design of the proposed system is built on top such publish/ sub-
scribe based multicast broker network system as depicted in Figure 5. In this illustra-
tion, each peer runs a FTHPIS-WSContext Information Service whose detailed archi-
tecture is also given in Figure 5. We use NaradaBrokering (NB) [23] pub-
lish/subscribe system as a communication middleware for message exchanges be-
tween peers. NaradaBrokering establishes a hierarchy structure at the network, where
a peer is part of a cluster that is a part of a super-cluster which is in turn part of a
super-super-cluster and so on.

HTTP(S)

WSDL

Extended
UDDI Registry

Service

Client
WSDL

HTTP(S)

Storage

Access
Database

WSDL

JDBC

Expeditor

WSDL

Querying

Publishing
and Sequencer

Publisher
Subscriber
Client

1

2
3

4

5

6

7
8

9

10

11

Gaggle
Boundary

Detailed architecture of a FTHPIS

Fig.5. An example eleven-node based FTHPIS replica hosting environment where
each node is connected with publish-subscribe based overlay network. Numbered

squares represent nodes running FTHPIS-WSContext Service (see figure 2 for cen-
tralized version of the service) whose detailed architecture is also illustrated in the

figure. The tick lines on the figure are used to show different message delivery routes
between peers 2 and 7.

The organization scheme of this scenario is small world network [37, 38] where the
communication between peers increases logarithmically with geometric increase in
network size, as opposed to exponential increase in uncontrolled settings [23]. We
particularly use NaradaBrokering software in our design, since it provides efficient
message delivery to the targeted peer en route to intended clients. For example, in
figure 5, we observe various message delivery routes from peer-2 to peer-7. The
NaradaBrokering software is able to make decision to choose most efficient message
delivery route, i.e., 2-6-7, as opposed to inefficient delivery routes such as 2-3-5-6-7
or 2-3-4-10-9-8-6-7. Here, every peer, either targeted or en route to one, computes to
shortest path to reach target destinations.

3.8. System Components

Our proposed architecture consists of various modules such as Query and Publishing,
Expeditor, Access, Storage and Sequencer Modules. Architectural design of our sys-
tem is illustrated in the upper-left corner of the Figure 5.

3.8.1. Context Query and Publishing Modules: These modules receive client re-
quests through a uniform service interface for publishing/discovering dynamic and
static metadata. The client query/publishing requests are processed and dynamic
metadata parts of the queries are extracted. Then, the request is forwarded to Expedi-
tor Module to find the results. Likewise, static metadata portion of the requests is
relayed to external UDDI Service to publish/discover services through static meta-
data.

3.8.2. Expediter Module: This is a generalized caching mechanism. Each node has a
particular expediter. One consults the expediter to find how to get (or set) information
about a dataset in an optimal fashion. The expediter is roughly equivalent to replica
catalog in classic Grids. Expeditor forms a built-in memory and it maintains Context
metadata objects in Context Spaces. A Context Space is an implementation of Tuple-
Spaces concept [24]. Context Spaces allow us to apply space based programming to
provide mutual exclusive access, associative lookup and persistence.

3.8.3. Access Module: This module runs the access algorithm mentioned above. It
support request distribution by publishing messages to topics in NB network. It also
receives messages (in respond to client request) coming from other peers and forward
these query messages to Expediter Module. The Access Module locates the nodes that
are closest in terms of network distance with lowest load balance from the node re-
questing access to the communal node in question. It also takes into account the load
balance of each responding data-system when choosing the right data-system.

3.8.4. Storage Module: This module runs the storage algorithm. It interacts with the
Expediter Module and applies the storage algorithm to all local Context metadata. If
the metadata is decided to be replicated, then the storage module advertises this repli-
cation by multicasting it to available peers through NB publish/subscribe mechanism.
The storage module also interacts with the Sequencer module in order to label each
incoming metadata with a time stamp.

3.8.5. Sequencer Module: This module ensures that an order is imposed on ac-
tions/events that take place in a session. The Sequencer Module interacts with the
Storage Module and labels each metadata which will be replicated in this replicated
metadata hosting environment. The Sequencer Module interacts with Network Time
Protocol (NTP) clients to achieve synchronized timestamps among the distributed
nodes.

When receiving a query, the Query Module first processes the query and extracts the
dynamic metadata portion of the query. Then, the Query Module forwards the query

to Expediter, where the Expeditor Module checks whether the requested data is in
Context Spaces. If the Expeditor Module can not find the result in Context Space or if
the requested metadata is expired, then the query is forwarded to the JDBC Handler
to query the data in local database. If the query asks for external metadata, then the
Expediter will forward the query to Access Module, where the Access Module multi-
cast a probe message to available Information Services through NB and communi-
cates with the Information Services that are the original data sources for this query.
The query is responded by an Information Service which may be the best qualified
Information Service is to handle this query.

4 System Status

Extended UDDI XML Metadata Services: We have implemented extended UDDI
XML Metadata Services [25] handling and discovery of static metadata based on the
WS-I standard Uniform Description, Discovery, and Integration (UDDI) Specifica-
tions. We base our implementation on jUDDI (version 0.9r3), a free, open source,
and java implementation of the specification. (More at http://www.juddi.org). jUDDI
has been architected to act as the UDDI front-end on top of existing databases.

In our design, we only use a portion of the jUDDI library as UDDI-front end in order
to implement extended version of UDDI XML API. We have discarded jUDDI serv-
let-based architecture and implemented Grid/Web Services interfaces as front access
to UDDI Registries. We have enhanced jUDDI in the following ways. First, we ex-
panded on UDDI XML Data Structure and implemented extensions to UDDI XML
API to associate metadata with service entries. Second, we implemented a leasing
capability. This solves a problem with UDDI repositories: information can become
outdated, so we automatically clean up entries by assigning them an expiration date.
Leases on metadata may be extended. Third, we implemented GIS-specific taxono-
mies to describe Open GIS Consortium (OGC) compatible services such as Web
Feature Services and their capabilities files. The “capabilities.xml” file is (in effect)
the standard metadata description of OGC services. Finally, we implemented a more
general purpose extension to the UDDI data model that allows us to insert arbitrary
XML metadata into the repository. This may be searched using XPATH queries, a
standard way for searching XML documents (http://www.w3.org/TR/xpath). This
allows us to support other XML-based metadata descriptions developed for other
classes of services besides GIS. The Web Services Resource Framework (WSRF), a
Globus/IBM-led effort, is an important example. Our approach allows users to insert
both user-defined and arbitrary metadata into the UDDI XML metadata repository.

WS-Context complaint XML Metadata Services: We have implemented a centralized
version of WS-Context complaint XML Metadata Services [25] handling discovery
of dynamic, session related metadata. Here, session related metadata is short-lived
and dependent on the client [26]. The WS-Context metadata service keeps track of
context information shared between multiple participants in Web Service interactions.
The context here has information such as unique ID and shared data. It allows a col-

lection of action to take place for a common outcome. We utilize WS-Context Speci-
fication to maintain user profiles and preferences, application specific metadata, in-
formation regarding sessions and their participating entities. Each session is started
by the coordinator of an activity. The coordinator service publishes the session meta-
data to Information Service and gets a unique identifier in return. The uniqueness of
the session-id is ensured by the Information Service. Sessions can obviously be com-
posed from other “sub” sessions hierarchically. Here, each session is associated with
the participant services of that session. Dynamic session information, i.e. context,
travels within the SOAP header blocks among the participant entities within the same
activity. Our implementations of UDDI and WS-Context Metadata Services do not
use XML databases but for efficiency convert the XML to SQL and store in MySQL
database.

Hybrid Information Service Interface combining extended UDDI and WS-Context
functionalities: We assume a range of applications which may be interested in inte-
grated results from two different metadata spaces; UDDI and WS-Context. When
combining the functionalities of these two technologies in one hybrid service, we may
enable uniform query capabilities on context (service metadata) catalog. To this end,
we have implemented a uniform programming interface, i.e. a hybrid information
service combining both extended UDDI and WS-Context. On receiving service-
metadata publishing/inquiry requests, the hybrid service simply delegates the task of
handling metadata to appropriate end.

5 System Evaluation

We designed various experiments to investigate the performance of the centralized
version of the FTHPIS-WS-Context Information Service. In the system evaluation
section, we are particularly addressing following research questions:

• What is the baseline performance of the FTHPIS implementation for given
standard operations?

• What is the effect of the network latency on the baseline performance of the
system?

• What is the performance degradation of the system for standard operations
when processing more users/transactions simultaneously at various loads?

• What is the performance of the system in a testing environment that is de-
signed based on targeted application use domains where there are both mul-
tiple clients and providers running simultaneously at various loads?

• What is the effect of Operating System CPU thread scheduling interference
on the system performance?

To evaluate the performance of the system, we used response time as the performance
metric. The response time is the average time from the point a client sends off a query
till the point the client receives a complete response. Although, there is much func-

tionality introduced by the FTHPIS- WS-Context Service system, we focus our ex-
periments on the publication and inquiry capabilities. We test the performance of our
implementation with respect to response time at both the querying client and publish-
ing provider applications. In the following section, we give details of the environment
of our experiments.

5.1. Environment

We tested our code using various nodes of a cluster located at the Community Grids
Laboratory of Indiana University. This cluster consists of eight Linux machines that
have been setup for experimental usage. In addition to these nodes, we also used a
desktop machine (kilimanjaro.ucs.indiana.edu) where we ran our client application.
The cluster computers were equipped with Intel® Xeon™ CPU (2.40GHz) and 2 GB
RAM. Each of the machines ran Linux kernel 2.4.22. The desktop machine ran Win-
dows XP and was equipped with Intel Pentium 4 CPU (3.4 GHz) and 1 GB RAM.
The network bandwidth between these machines was 900 Mbits/sec.1

We tested the performance of the FTHPIS with a client program called WSCon-
textClient (a program for sending queries to WS-Context Service) and a provider
program WSContextProvider (a program for publishing context to FTHPIS). Both
WSContextClient and WSContextProvider are multithreaded programs. These appli-
cations take following arguments: a) the number of threads, b) the number of que-
ries/publications to be executed, and c) the time to wait after each transaction. When
creating multiple threads we use a barrier to stop the threads until a specific number
of threads is at hold. Then the threads are released and can continue. This allowed us
to simulate concurrent querying/publishing accesses to the server. We illustrate tim-
ing methodology in the pseudo code below.

1 The bandwith measurements were taken with Iperf tool for measuring TCP and UDP band-

width performance. (http://dast.nlanr.net/Projects/Iperf)

In the experiments, the FTHPIS was running on cluster node-6, while the WSCon-
textClient was running on kilimanjaro.ucs.indiana.edu. We ran the WSCon-
textProvider applications across the cluster nodes 1 to 5. One should keep in mind
that given client/server architecture, with all machines on the same network, is setup
to measure an approximation of the optimal system performance. We expect that the
results measured in this environment will be the optimal upper-bound of the system
performance.

In the experiments, we used metadata samples (which were actually used in afore-
mentioned Pattern-Informatics application use domain) with a fixed size of 1.2KB.
We illustrate the WS-Context and UDDI XML metadata samples in appendix A and
B respectively. In this work, we assumed XML metadata as flat contexts, i.e. no par-
ent-child relationships existed between contexts stored in the system. We wrote all
our code in Java, using the Java 2 Standard Edition compiler with version 1.4.2. In
the experiments, we used Tomcat Apache Server with version 5.5.8 and Axis soft-
ware with version 1.2beta3 as a container for deployment of WS-Context Service.
The Tomcat Apache Server uses multiple threads to handle concurrent requests. In
the experiments, we increased the default value for maximum number of threads from
150 to 500 to be able to test the system behavior for high number of concurrent cli-
ents. We choose to use getTimeMicroseconds() function which is provided by Na-
radaBrokering [23] software because of its high resolution. As backend storage, we
use MySQL database with version 4.1.

5.2. Experiment 1- Responsiveness Experiment

Our primary interest in doing this experiment is to understand the baseline perform-
ance of the implementation of FTHPIS- WS-Context Service. We also investigated
the effect of network latency on the system performance. We evaluated the perform-

 SET the number of threads to N
 SET the number of transaction to be executed to T
 SET the time to wait after each transaction to S

 CREATE N number of threats
 STOP the threads until N threads is created and ready

 FOR X = 1 to T
 SET start to 0, stop to 0
 SET start to getTimeMicroseconds()
 saveContext(…) or getContext(…)
 SET stop to getTimeMicroseconds()
 PRINT (stop – start)
 IF S is set THEN
 WAIT for S time interval before next transaction
 END IF

 END FOR

ance of the service for inquiry and publication functions under normal conditions, i.e.,
when there is no additional traffic.

In this experiment, we investigated four different testing cases: a) a single client
sends queries to a FTHPIS node where there is cache hit in the Expeditor module
(which is explained in sub-section 3.8.2), b) a single client sends queries to a FTHPIS
node where there is cache miss and the query is responded with database access, c) a
client sends queries to a UDDI, and d) a client sends queries to a dummy service
where the round trip message is extracted to and from container but no processing is
applied. The dummy service receives the query/publication request message that is
used in previous testing cases and then sends it back to the client without processing
it. This test is done to measure the pure network latency of a given operation. At each
testing case the client sends 100 sequential queries and average response time was
recorded. We repeated same testing cases for publication function as well. In this
experiment, we investigated the system performance compared with UDDI registry
for given standard operations. In evaluating the UDDI performance, we used the
jUDDI registry with following exception. We have discarded jUDDI servlet-based
architecture and implemented a Web Service WSDL interface as front-end access to
investigate UDDI in similar set up to WS-Context for basic performance. We assume
that the underlying structure of jUDDI is similar to any other UDDI registry imple-
mentation as they all are implementing the same specification. We tested UDDI in-
quiry/publication functionalities with an XML metadata size of 1.2 KB which is the
same message size used in WS-Context testing cases. The designs of these experi-
ments are depicted in Figures 6-7. Figures 8 and 9 illustrate the system performance
when the WS-Context inquiry function was executed, while Figures 11 and 12 illus-
trate the same when the WS-Context publication function was executed 120 times
sequentially. The detailed statistics corresponding to these tests are listed in Table 1
and Table 2 respectively. When we investigated the resulting round trip times, we
observed two working modes: startup and initialized. We note that both inquiry and
publication functions require more cost at the startup mode. To this end, we only took
into account the initialized mode in calculating the average response time for each
function. Here, we measured the average response time by considering last hundred
observation time samples. We repeated these tests in five different test sets.

Test A. FTHPIS-WSContext inquiry without database access

W
S

D
L

single
threaded W

S
D

L

WS-Context Client

1 user/100
transactions

FTHPIS Server
1.2 KB

Publishing
Querying
Module

Test C. jUDDI based UDDI inquiry

W
S

D
L

single
threaded W

S
D

L

UDDI Client

1 user/100
transactions

UDDI Server
1.2 KB

jUDDI Registry
Server
Engine

Test D. Dummy Server inquiry

W
S

D
L

single
threaded

W
S

D
L

Client

1 user/100
transactions

Dummy Server
1.2 KB

Dummy
Server

W
S

D
L

single
threaded W

S
D

L

WS-Context Client

1 user/100
transactions

FTHPIS Server
1.2 KB

Publishing
Querying
Module

Test B. FTHPIS-WSContext inquiry with database access

Fig.6. Testing cases of responsiveness experiment for inquiry functionality

Results of the Responsiveness Experiment: Figures 10 shows the performance results
of inquiry function, while Figure 13 shows the performance results of publication
function. It was anticipated that the memory built-in caching mechanism (the Expedi-
tor Module) would improve the performance of the inquiry and publication functions.
The empirical results shows that a) for inquiry function, we gain around 18% per-
formance increase (in average) and b) for publication function, we gain around 22%
performance increase (in average) by employing a cache mechanism in our design.
We observe that UDDI inquiry function executed at an average of 39 milliseconds. A
similar performance baseline test has been applied on jUDDI registry for inquiry
function in [33] in which the average responsiveness of the inquiry function was
measured around 40 milliseconds which in turn helps validating our findings. Based
on the experiments performed, we note that cache-enabled WS-Context inquiry func-
tion performed with 21% performance increase compared to UDDI-inquiry function.
Likewise, cache-enabled WS-Context publication function performed with 30% per-
formance increase compared to UDDI-publication function.

By comparing the results of test case a) for inquiry and publication functions, we
observe that publication function requires more time compared to inquiry function.
(As mentioned earlier in sub-section 3.8.2, we implemented the cache based on Tu-
ple-spaces paradigm [24].) This is because while the “read” operation can return the
value of the context while the context is in the Expeditor module, an update to Expe-
ditor module entry requires a process to look up for context, physically remove the
entry, modify its value, and place the copy back into the Expeditor. This in turn in-
creases the time for publication. Likewise, by comparing the results of test case b) for
inquiry and publication functions, we observe that publication requires more time

because of the database commit that must take place. By comparing test case d) and
test case a) of inquiry function, we note that the network latency costs more than
actual time needed to complete the operation in the server-end. One should keep in
mind that the performance measurement taken on a tight cluster. However, in a wide
area network, one could expect the single server solution to be a bottle-neck for sys-
tem performance. So, we determined that that network latency may have a significant
impact on the centralized version of FTHPIS-WSContext system performance. We
conclude that having a built-in caching mechanism provides significant performance
increase for given standard operations.

Test B. FTHPIS-WSContext publication with database access

W
S

D
L

single
threaded

W
S

D
L

WS-Context Client

1 user/100
transactions

FTHPIS Server

1.2 KB

Publishing
Querying
Module

Test A. FTHPIS-WSContext publication without database access

W
S

D
L

single
threaded

W
S

D
L

WS-Context Client

1 user/100
transactions

FTHPIS Server

1.2 KB

Publishing
Querying
Module

Test C. jUDDI based UDDI publication

W
S

D
L

single
threaded

W
S

D
L

UDDI Client

1 user/100
transactions

UDDI Server

1.2 KB

jUDDI Registry
Server
Engine

Test D. Dummy Server publication

W
S

D
L

single
threaded

W
S

D
L

Client

1 user/100
transactions

Dummy Server

1.2 KB

Dummy
Server

Fig.7. Testing cases of responsiveness experiment for publication functionality

 Fig.8. FTHPIS-WSContext inquiry Fig.9. FTHPIS-WSContext inquiry
 without database access with database access

Statistics for initialized mode of the inquiry performance

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110 120

Run

Ti
m

es
 (m

se
c)

Observed times

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110 120

Run

Ti
m

es
 (m

se
c)

Observed times

 Statistics (milliseconds) Figure 8 Figure 9
Maximum 38.185 45.241
* Average 30.659 38.073
Minimum 24.348 30.824
Standard Deviation 3.191 9.315

 Table.1. Statistics for initialized mode of inquiry requests

Round Trip Time Chart for Inquiry Requests with message size of 1.2 KB

STD: 3.73STD: 5.34STD: 3.63STD: 3.54STD: 3.19

STD: 3.94 STD: 3.14 STD: 3.89 STD: 3.63 STD: 3.76

STD: 3.09 STD: 2.79 STD: 2.79 STD: 2.68 STD: 2.7

STD: 8.40STD: 8.41STD: 9.43STD: 9.84STD:9.17

10

15

20

25

30

35

40

45

set1 set2 set3 set4 set5

Each test set represents 100 iterations

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

se
c)

 p
er

 re
qu

es
t

WS-Context inquiry %100
cache hit
WS-Context inquiry with
%100 cache miss
Dummy Service inquiry

UDDI inquiry - jUDDI with
web service front end

 Fig.10. Round Trip Time Chart for Inquiry Requests

 Fig.11. FTHPIS-WSContext publication Fig.12. FTHPIS-WSContext publication
 without database access with database access

Statistics for initialized mode of the publication performance
 Statistics (milliseconds) Figure 11 Figure 12
Maximum 41.204 56.51
* Average 34.789 45.304
Minimum 29.968 38.925

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110 120

Run

Ti
m

es
 (m

se
c)

Observed times

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110 120

Run

Ti
m

es
 (m

se
c)

Observed times

Standard Deviation 3.009 3.613

 Table.2. Statistics for initialized mode of publication requests

Round Trip Time Chart for Publication Requests with message size of 1.2 KB

STD: 4.18STD: 4.14STD: 3.75STD: 3.89
STD: 3.009

STD: 2.7STD: 2.68STD: 2.79STD: 2.79STD: 3.09

STD: 4.12STD: 3.65STD: 2.85
STD: 4.23STD: 3.61

STD: 15.28STD:17.16
STD:15.25

STD:17.87

STD: 16.309

10

15

20

25

30

35

40

45

50

55

set1 set2 set3 set4 set5

Each test set represents 100 iterations

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

se
c)

 p
er

 re
qu

es
t

WS-Context publication
without database access
Dummy Service publication

WS-Context publication with
database access
UDDI publication - jUDDI with
web service front end

 Fig.13. Round Trip Time Chart for Publication Requests

5.3. Experiment 2 - Overloading Experiment:

In the second experiment, we want to determine how well the number of users antici-
pated can be supported by the system for constant loads. Our goal is to quantify the
degradation in response time at various levels of simultaneous users. In order to un-
derstand such performance degradation, we evaluate standard FTHPIS-WSContext
Service functionalities with additional concurrent traffic. One should keep in mind
that we want to test sustainability of the system under the worst case which is the
testing of the system by sending queries at the same time from concurrent users with
a constant load.

We have done this by gradually ramping-up the number of querying WSContextCli-
ents until the system response time degrades. In this experiment, the inquiry function
was executed with constant frequency (5 sequential inquires per second) by each
client and average service time is recorded at various levels of simultaneous clients.
We applied the same testing methodology for publication function to investigate
system performance against simultaneous publication requests. The design of this
experiment is depicted in Figure 14, while the results are depicted in Figures 15-16.

W
S

D
L

Thread
Pool W

S
D

L

WS-Context Client

5 transactions
by each client

FTHPIS Server
1.2 KB

Publishing
Querying
Module

2, 4, 6, 8, 10, 50, 100, 150 simultaneous clients

Test A. FTHPIS-WSContext inquiry at various levels of
simultaneous clients

2, 4, 6, 8, 10, 50, 100, 150 simultaneous providers

W
S

D
LW

S
D

L

WS-Context Provider

1.2 KB

Publishing
Querying
Module

5 transactions
by each provider

Thread
Pool

FTHPIS Server

Test B. FTHPIS-WSContext publication at various levels of simultaneous
providers

Fig.14. Testing cases of overloading experiment

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Number of simultanous WS-ContextClients with fixed rate of 5 req/sec

av
g

re
sp

on
se

 ti
m

e
(m

se
c)

 p
er

 r
eq

ue
st

Average Response Time
Error bars

Fig.15. Average WS-Context Inquiry Response Time Chart -
 making constant load of 5 requests/second by each client

of simultaneous users 2 4 6 8
fail status no fail no fail no fail no fail
Statistics (milliseconds)
Maximum 59.196 140.099 183.847 288.999
*Average 46.039 88.547 115.309 157.766
Minimum 31.268 41.477 47.711 48.999
Standard Deviation 9.894 35.048 40.344 59.699

of simultaneous users 10 50 100 150
fail status no fail no fail no fail no fail
Statistics (milliseconds)
Maximum 465.483 1647.908 1788.579 3100.219
*Average 221.417 704.325 1263.355 1821.024
Minimum 49.042 265.762 821.708 1070.225
Standard Deviation 116.029 179.784 187.987 306.738

Table.3. Statistics of the experiment depicted in Figure 15. These measurements were

taken with FTHPIS-WSContext Service without database access. Performance of
single client is given in Table 1.

Results of the Overloading Experiment: Based on the results depicted in Figure 15
and Table 3, we determine that the large number of concurrent inquiry requests may
well be responded without any error by the system and do not cause significant over-
head on the performance. However, we observe that after 100 concurrent users, re-
sponse time degradation becomes noticeable. We applied the same testing methodol-
ogy to publication function under two conditions: a) concurrent publishers send their
requests when request is handled in Expeditor module (explained in sub-section
3.8.2) without database access, and b) concurrent publishers send their requests when
request was handled with database access. Having too many concurrent queries on
MySQL typically decreases response times for all users [34]. It reduces overall sys-
tem performance by making disk access more random, by making CPU and file
caches less efficient, and so forth. To this end, we executed testing case a), depicted
in figure 14, with database access to identify the system limits for optimal number of
concurrent queries when using MySQL database as primary storage.

We observed that when we have more than two concurrent publication requests aim-
ing to update same context, the system fails to satisfy 23% publication requests. The
results for the first test condition are shown in Table 4. These results indicated sig-
nificant increase in system performance as well as high failure rate. This lead us to do
the test case a) again, when we grant publication request within the cache, as the
primary storage, without having database access. Here, we stored the updated con-
texts offline, i.e. outside of the time-interval during which the query is executed, into
the MySQL database (as the secondary storage). Based on the results depicted in

Figure 16 and Table 5, we determine that the large number of concurrent publication
requests may also well be responded without any error by the system, when the sys-
tem does not require database access in granting the concurrent requests. The meas-
urements presented here were taken on local area network. One should also keep in
mind that the large number of concurrent inquiry or publication requests is less likely
to happen and exceptional cases in a real-life grid application deployed on a wide
area network from the perspective of network latency, message delivery failures and
data-loss.

of simultaneous users 1 2 3 4 5
fail status no fail no fail 23% fail 30% fail 34% fail
Statistics (milliseconds)
Maximum 67.871 497.097 646.622 563.133 621.713
* Average 59.689 135.779 150.843 173.894 178.494
Minimum 54.407 47.785 50.689 64.796 66.604
Standard Deviation 4.906 152.009 152.316 135.169 139.115

Table.4. Statistics for the condition where concurrent publishers send their requests

to FTHPIS-WSContext Service with database access

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Number of simultanous WS-ContextProviders with fixed rate of 5 pub/sec

av
g

re
sp

on
se

 ti
m

e
(m

se
c)

 p
er

 r
eq

ue
st

Average Response Time
Error bar

Fig.16. Average WS-Context Publication Response Time Chart - making 5
publication request/second by each context provider

of simultaneous users 2 4 6 8
fail status no fail no fail no fail no fail
Statistics (milliseconds)

Maximum 53.999 123.238 289.952 715.851
* Average 46.844 88.391 122.864 170.131
Minimum 40.867 46.097 47.361 65.008
Standard Deviation 4.459 21.009 53.344 114.401

of simultaneous users 10 50 100 150
fail status no fail no fail no fail no fail
Statistics (milliseconds)
Maximum 890.162 1960.656 4248.285 10880.92
* Average 231.808 835.487 1788.542 2725.265
Minimum 55.63 217.192 298.702 66.184
Standard Deviation 144.815 310.215 886.146 1675.578

Table.5. Statistics of the experiment depicted in Figure 16. These measurements were
taken with FTHPIS-WSContext Service without database access. Performance of the

single provider is given in Table 2.

5.4. Experiment 3 –Experiment designed based on application use case scenar-
ios:

The main goal of this experiment is to investigate how the system performs in a real
application case scenario such as Patten Informatics workflow-style GIS application
[1]. In this motivating scenario: GPS, Fault, and Seismic data bases, wrapped by
OpenGIS web services, filtering and geo-processing services are distributed across
various institutions. All these services interact with each other within a dynamically
generic workflow to produce a common goal such as predicting an earthquake. The
Pattern Informatics worklow-style grid application requires a session metadata man-
ager to manage activities of the workflow. A session metadata manager is used to
provide access/storage/search interface to metadata generated by the participating
entities of the session. Here, we investigate the applicability of the FTHPIS-
WSContext Information Service as a session metadata manager in Pattern Informatics
domain.

In this motivating scenario, an example state-metadata might have information about
the state of the workflow, such as “executing”, “completed” and so forth. We expect
the size of shared state-metadata to be around 1.2 KB. We illustrate such context
example in appendix A. As the session-state metadata is shared and highly updated, it
has both multiple readers and writers. To this end, we expect concurrent publication
requests as well as concurrent inquiry requests. We consider an example workflow
session where there are numerous client web services (ranging from 50 to 100) poll-
ing information, while context provider web services (ranging from 1 to 25) publish
the state changes of the workflow with varying frequencies.

We set up an environment where we have multiple-readers and multiple-writers
which communicate through the FTHPIS system. We investigate the performance of
the FTHPIS-Context Service implementation under both light and heavy loads with
varying concurrent publication and inquiry requests. In this picture, there are
WSContextProviders (corresponding to a context provider) and WSContextClients
(corresponding to a context client) that have access to shared data containing statistics
for up to 20 contexts where each context has multiple-reader/single writer access. The
design of this experiment is depicted in Figure 17.

100 WS-Context Clients

W
S

D
L

W
S

D
L

1.2 KB

Publishing
Querying
Module

10 transactions
by each client

1, 5, 10, 15, 20, 25 WS-Context
Providers

Thread
Pool

FTHPIS Server

Test B. FTHPIS-WSContext performance test bed under heavy loaded
scenario

W
S

D
L

W
S

D
L

1.2 KB

Publishing
Querying
Module
W

S
D

L
1.2 KB

W
S

D
L

W
S

D
L

1.2 KB

Publishing
Querying
Module

10 transactions
by each client

1, 5, 10, 15, 20, 25 WS-Context
Providers

Thread
Pool

FTHPIS Server

Test A. FTHPIS-WSContext performance test bed under light loaded
scenario

W
S

D
L

W
S

D
L

1.2 KB

Publishing
Querying
Module

W
S

D
L

1.2 KB

50 WS-Context Clients

1 transaction/sec
by each provider

5 transaction/sec
by each provider

Fig.17. Experiments with varying number of concurrent clients and providers at vari-
ous loads.

We performed two separate testing cases in this experiment: we measure the perform-
ance of the FTHPIS system from the WSContextClient perspective under a) light and
b) heavy loads. For case a), we look at the performance of the system with 50 query
threads each issuing 10 queries to the FTHPIS node. We timed the complete round
trip of all 500 queries issues by the WSContextClient for varying WSContextPublish-
ers (1, 5, 10, 15, 20, and 25) each issuing one update requests per second.

For case b), we measure the system performance under heavier loads. We increase the
number of querying threads to 100 and had each issue 10 queries. We also increased
the frequency of updates to five per second for each WSContextPublisher. The aver-

age response time for light and heavy load with 1, 5, 10, 15, 20 and 25 publishers is
presented in Figure 18.

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25
Number of WS-Context Providers

av
g

re
sp

on
se

 ti
m

e
(m

se
c)

 p
er

 re
qu

es
t

Light load

Heavy Load

Error bar for
heavy load
Error bar for
light load

Fig.18. Average WSContext Client Round Trip Time (RTT) Chart for Light and
Heavy Load

Results of the Experiment 3: As anticipated, the system showed better response times
under light load compared with the system being under heavy load. It should be noted
that the standard solution to multiple-reader/single-writer access at both levels of
synchronization gives the readers priority. In severe cases the writes can suffer from
starvation. We observe this reader-bias behavior in the results, as the number of que-
rying clients increased, the system presents noticeable performance degradation.
Based on the results, we conclude that the FTHPIS-WSContext Service is an applica-
ble session manager service for work-flow style grid applications that are tolerable to
a) average response times ranging between 100 and 160 milliseconds under light
loads and b) average response times ranging between 0.5 to 1 seconds under heavy
loads.

5.5. Experiment 4 –CPU thread scheduling latency experiment

In order to have better understanding of the system performance without effect of the
time spent for CPU thread scheduling interference, we measure the actual CPU proc-
essing time for varying transactions. We performed two separate testing cases in this
experiment: we measure the actual CPU processing time and average turn around
time for a) inquiry and b) publication functions over varying transactions. Whereas in
previous experiments we started our times just before sending off a query and stop-
ping it once a complete response was received from the server, we now measured just
the time necessary to query or write context into the server. Here, we wanted to de-
termine what the actual performance of the system independent from network latency.
We used a commercial profiler program called “OptimizeIt” (more at

www.borland.com/optimizeit) to measure the actual CPU processing time. We use
the exact same testing case as it is depicted in test case a) in Figure 6 for inquiry func-
tion and again testing case a) in Figure 7 for publication function with the following
exceptions. For case a) and b) we measure the average turn around time and CPU
latency with 50, 200, 400, 600, 800 and 1000 transactions. In this experiment, we ran
the FTHPIS server on the lightly loaded windows XP machine (kiliman-
jaro.ucs.indiana.edu), while the client application was running on cluster node-5. The
results of the experiment for inquiry and publication functions are depicted in figures
19 and 20 respectively.

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000

number of transactions per user

tim
es

 (m
se

c)

avg turnaround time per transaction
avg actual CPU processing time per transaction
avg CPU thread scheduling overhead per transaction

Fig.19. Measuring CPU Scheduling Latency spent in internal sub-activities of WS-

Context inquiry function for 1 querying client under varying loads

Results of the Experiment 4: Based on the results, we observe two working modes:
startup mode and initialized mode. The histogram of the average turnaround time, i.e.
the time difference between the method entry and exit, is the sum of the other two
histograms: actual CPU processing time and CPU thread scheduling latency. We
note that the CPU thread latency is not an actual overhead for inquiry function of the
system and the latency decreases in average as the number of transactions get in-
creased. However, we observe a noticeable startup CPU scheduling latency (8.5 mil-
liseconds) for the publication function. We also note that the CPU latency decreases
in average for publication function as the number of transactions get increased. We
conclude that CPU latency impact factor on system performance might be negligible
if the system is in initialized mode.

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800 900 1000
number of transactions per user

tim
es

 (m
se

c)

avg turnaround time per transaction
avg actual CPU processing time per transaction
avg CPU thread scheduling overhead per transaction

Fig.20. Measuring CPU Scheduling Latency spent in internal sub-activities of WS-
Context publication function for 1 publishing client under varying loads

6 Conclusions and Future Work

In this paper, we have identified an important gap in Information Services for Grids
that is lack of support for dynamic information in dynamically assembled traditional
and Semantic Grids. We have presented an architecture that addresses key issues of
managing dynamic metadata such as a) providing an efficient metadata access and
storage methodology by taking into account changes in user demands and b) provid-
ing a P2P approach for access/storage request distribution among the peers of the
system to capture the dynamic behavior both in metadata and the network topology.
We perform an extensive set of experiments to evaluate the performance of the cen-
tralized version of the FTHPIS-WSContext Information. The performance results
show the FTHPIS architecture can provide performance improvement over 18% for
inquiry function and 22% for publication function by employing an expeditor module
in its internal architecture. The promising low response latency results of experimen-
tal study on responsiveness indicates that high performance service conversation can
be achieved with centralized metadata strategies with metadata coming from more
than two services as opposed to service conversation with metadata only from the two
services that exchange metadata. In addition, the performance indicates that efficient
mediator services also allow us to perform collective operations such as queries on
subsets of all available metadata.

The experimental studies on sustainability of the system shows that the large number
of concurrent operations may well be responded without any error by the system. By
comparing the results form studies conducted on latencies, we determine that CPU
thread scheduling latency impact factor on system performance might be negligible if
the system is in initialized mode, while the network latency may have a significant
impact on the centralized version of FTHPIS-WSContext system performance.

We have discussed status of our implementation and report performance results from
a prototype that is applied to sensor and collaboration grids.

Work remains to further develop a distributed metadata hosting environment by em-
ploying novel dynamic replication techniques and to evaluate the system as whole
through extensive performance tests.

Acknowledgement: This work is supported by the Advanced Information Systems
Technology Program of NASA's Earth-Sun System Technology Office.

References

1. Galip Aydin, Mehmet S. Aktas, Geoffrey C. Fox, Harshawardhan Gadgil, Marlon Pierce,
Ahmet Sayar. SERVOGrid Complexity Computational Environments(CCE) Integrated
Performance Analysis, Accepted as poster and short paper in Grid2005, Seattle, USA

2. H. Zhuge. Semantic Grid: Scientific Issues, Infrastructure, and Methodology, Communi-
cations of the ACM. 48 (4) (2005)117-119.

3. Wenjun Wu, Geoffrey Fox, Hasan Bulut, Ahmet Uyar, Harun Altay “Design and Imple-
mentation of A Collaboration Web-services system”, Journal of Neural, Parallel & Scien-
tific Computations (NPSC), Volume 12, 2004.

4. B. Plale, P. Dinda, and G. Von Laszewski. Key Concepts and Services of a Grid Informa-
tion Service. In Proceedings of the 15th International Conference on Parallel and Distrib-
uted Computing Systems (PDCS 2002), 2002.

5. Monitoring & Discovery System (MDS4) Web Site is available at http://www.globus.org-
/toolkit/mds

6. A. Cooke, A.Gray, L. Ma, W. Nutt, J. Magowan, P. Taylor, R. Byrom, L. Field, S. Hicks,
and J. Leake. R-GMA: An Information Integration System for Grid Monitoring. Proceed-
ings of the 11th International Conference on Cooperative Information Systems, 2003.

7. Ratnasamy, Sylvia et al. A Scalable Content-Addressable Network. Proc. ACM
SIGCOMM, pp 161-172, August 2001.

8. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Protocol for Internet Applications. IEEE/ACM Trans. on
Networking, 11 (1): 17-32, February 2003.

9. Serafeim Zanikolas and Rizos Sakellariou. A Taxonomy of Grid Monitoring Systems.
Future Generation Computer Systems, 21(1), January 2005, pp. 163--188.

10. V. Dialani. UDDI-M Version 1.0 API Specification. University of Southampton – UK. 02.
11. Ali ShaikhAli, Omer Rana, Rashid Al-Ali and David W. Walker. UDDIe: An Extended

Registry for Web Services. Proceedings of the Service Oriented Computing: Models, Ar-
chitectures and Applications, SAINT-2003 IEEE Computer Society Press. Orlando Flor-
ida, USA, January 2003.

12. Simon Miles, Juri Papay, Terry Payne, Keith Decker, and Luc Moreau. Towards a Proto-
col for the Attachment of Semantic Descriptions to Grid Services. In The Second Euro-
pean across Grids Conference, Nicosia, Cyprus, pages 10, January 2004.

13. Miles, S., Papay, J., Dialani, V., Luck, M., Decker, K., Payne, T., and Moreau, L. Person-
alized Grid Service Discovery. Nineteenth Annual UK Performance Engineering Work-
shop (UKPEW'03), University of Warwick, Coventry, England, 2003.

14. Verma, K., Sivashanmugam, K. , Sheth, A., Patil, A., Oundhakar, S. and Miller, J.
METEOR–S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication
and Discovery of Web Services, Journal of Information Technology and Management.

15. Sivansubramanian S., Szymaniak M., Pierre G., Steen M.V. Replication for Web Hosting
Systems. ACM Computing Surveys. Vol. 6, No. 3, September 2004, pp. 291-334.

16. M. Rabinovich. Issues in Web Content Replication. Bulleting of the IEEE Computer
Society Technical Committee on Data Engineering, 1998.

17. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B. Globally dis-
tributed content delivery. IEEE Internet Computing 6, 5 (Sept.), 50-58. 2002

18. M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal. A Dynamic Object Repli-
cation and Migration Protocol for an Internet Hosting Service. Proc. 19th Int'l Conf. Dis-
tributed Computing Systems, pp. 101-113, June 1999.

19. P. Rodriguez, and S. Sibal. SPREAD: Scalable Platform for Reliable and Efficient Auto-
mated Distribution Computer Networks, vol. 33, nos. 1-6, pp. 33-49, June 2000.

20. Bunting, B., Chapman, M., Hurley, O., Little M,, Mischinkinky, J., Newcomer, E., Web-
ber, J., and Swenson, K. Web Services Context (WS-Context), available from
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf

21. Bellwood, T., Clement, L., and von Riegen, C. UDDI Version 3.0.1: UDDI Spec Techni-
cal Committee Specification. Available from http://uddi.org/pubs/uddi-v3.0.1-
20031014.htm.

22. Mehmet S. Aktas, Galip Aydin, Geoffrey C. Fox, Harshawardhan Gadgil, Marlon Pierce,
Ahmet Sayar, Information Services for Grid/Web Service Oriented Architecture (SOA)
Based Geospatial Applications, Technical Report, June, 2005

23. Shrideep Pallickara and Geoffrey Fox NaradaBrokering: A Distributed Middleware
Framework and Architecture for Enabling Durable Peer-to-Peer Grids in Proceedings of
ACM/IFIP/USENIX International Middleware Conference Middleware-2003, Rio Janeiro,
Brazil June 2003. See also: http://www.naradabrokering.org

24. N. Carriero and D. Gelernter. Linda in Context. Commun. ACM, 32(4): 444-458, 1989.
25. Extended UDDI and Fault Tolerant and High Performance Context Service Research is

available at http://www.opengrids.org
26. Mehmet S. Aktas, Geoffrey C. Fox and Marlon Pierce. Managing Dynamic Metadata as

Context. The 2005 Istanbul International Computational Science and Engineering Confer-
ence (ICCSE2005), Istanbul, Turkey.

27. China National Grid Project Web Site is available at http://www.cngrid.org/en_index.htm
28. Deborah L. McGuinness and Frank van Harmelen , OWL Web Ontology Language Over-

view, Editors, W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-owl-features-20040210/ . Latest version available at
http://www.w3.org/TR/owl-features/.

29. Graham Klyne and Jeremy J. Carroll, Resource Description Framework (RDF): Concepts
and Abstract Syntax, W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ . Latest version available at
http://www.w3.org/TR/rdf-concepts/.

30. H.Zhuge, The Knowledge Grid, World Scientific Publishing Co., 2004.
31. H.Zhuge, Semantics, Resource and Grid, Future Generation Computer Systems,

20(1)(2004) 1-5.

32. Milojicic, Dejan S., et al. Peer-to-Peer Computing. HP Labs Technical Report HPL-2002-
57, 2002

33. Georgina Saez, Amy Sliva, M. Brian Blake, Web Services-Based Data Management:
Evaluating the Performance of UDDI Registries, ICWS 2004: 830-831

34. MySQL 3.23, 4.0, 4.1 Reference Manual avalible at http://dev.mysql.com/doc/refman/-
4.1/en/index.html

35. M. Gerndt, R. Wismüller, Z. Balaton, G. Gombás, P. Kacsuk, Zs. Németh, N. Podhorszki,
H-L. Truong, T. Fahringer, M. Bubak, E. Laure, T. Margalef: Performance Tools for the
Grid: State of the Art and Future. White paper. Shaker Verlag, 2004.

36. Geoffrey Fox Grids of Grids of Simple Services for CISE Magazine July/August 2004
37. D.J. Watts and S.H. Strogatz., Collective Dynamics of Small-World Networks, Nature.

393:440. 1998.
38. R. Albert, H. Jeong and A. Barabasi., Diameter of the World Wide Web, Nature. 401:130.

1999.

Appendix:

A. Sample Context XML metadata:

<?xml version="1.0" encoding="UTF-8"?>
<uddi_wsctx:context
 xmlns:uddi_wsctx="http://WSCTX.services.axis.cgl/uddi_wsctx_schema"
 xmlns:wsctx="http://WSCTX.services.axis.cgl/wsctx_schema"
 xmlns:uddi_ext="http://uddi.services.axis.cgl/uddi_ext_schema"
 xmlns:uddi="http://uddi.services.axis.cgl/uddi_schema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <uddi_wsctx:contextKey>
 uuid:ABCCE800-AB35-11DA-A4FC-C80C5880CB18-1141445798958
 </uddi_wsctx:contextKey>

 <uddi_wsctx:sessionKey>
uuid:ABCCE544-CX35-11EA-BVFC-C34C7789CB33-1414457987978

 </uddi_wsctx:sessionKey>
 <uddi:name>
 <value>

context://GIS/PI/ABCCE544-CX35-11EA-BVFC-C34C7789CB33
 </value>

</uddi:name>
 <uddi_wsctx:value>COMPLETED</uddi_wsctx:value>
 <uddi_wsctx:accessRightInfo>
 <uddi_wsctx:others>
 <uddi_wsctx:readAccess>true</uddi_wsctx:readAccess>
 <uddi_wsctx:writeAccess>false</uddi_wsctx:writeAccess>
 </uddi_wsctx:others>
 </uddi_wsctx:accessRightInfo>
 <uddi_ext:lease>
 <timeout>1000</timeout>
 <isInfinite>false</isInfinite>
 </uddi_ext:lease>
 <uddi_wsctx:version>1</uddi_wsctx:version>
</uddi_wsctx:context>

B. Sample UDDI XML metadata:

<?xml version="1.0" encoding="UTF-8"?>
<uddi:businessService

xmlns:uddi="http://uddi.services.axis.cgl/uddi_schema
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <serviceKey>
uuid:12114460-B4B6-11DA-A1DD-C2341CB5D80D
</serviceKey>

 <businessKey>
uuid:7115B940-A95E-11DA-B940-CB4E3E38D62F
</businessKey>

 <uddi:name>
 <value>Sample Service</value>
 </uddi:name>
 <uddi:description>
 <value>Service Description</value>
 </uddi:description>
 <value>String</value>
 <uddi:bindingTemplates>
 <uddi:bindingTemplate>
 <bindingKey>

uuid:129679F0-B4B6-11DA-A1DD-E719F6E12358
</bindingKey>

 <serviceKey>
uuid:12114460-B4B6-11DA-A1DD-C2341CB5D80D

</serviceKey>
 <uddi:accessPoint>
 <value>

http://gf7.ucs.indiana.edu:8092/wfs-streaming-service/services/wfs
</value>

 <useType>research</useType>
 </uddi:accessPoint>
 </uddi:bindingTemplate>
 </uddi:bindingTemplates>
 <uddi:categoryBag>
 <uddi:keyedReference>
 <uddi:tModelKey>

uuid:6D712AF0-4ADA-11DA-BC65-C767C07EBBEA
</uddi:tModelKey>

 <uddi:keyName>ServiceCategory</uddi:keyName>
 <uddi:keyValue>GIS-WFS</uddi:keyValue>
 </uddi:keyedReference>
 <uddi:categoryBag>
</uddi:businessService>

