FG Resource Report

Release 0.4

Hyungro Lee Gregor von Laszewski Fugang Wang Geoffrey C. Fox

CONTENTS

1	Summary Report (All)	3
	1.1 Wall Hours by Clusters (Total, monthly)	4
	1.2 VM Count by Clusters (Total, monthly)	6
	1.3 Users Count by Clusters (Total, monthly)	8
2	Usage Report sierra	11
	2.1 Histogram	12
	2.2 Distribution	16
	2.3 System information	24
3	Usage Report india	27
	3.1 Histogram	28
	3.2 Distribution	32
	3.3 System information	40
4	Usage Report hotel	43
	4.1 Histogram	44
	4.2 Distribution	48
	4.3 System information	55
5	Usage Report alamo	57
	5.1 Histogram	58
	5.2 Distribution	62
	5.3 System information	67
6	Usage Report foxtrot	69
	6.1 Histogram	70
	6.2 Distribution	74
	6.3 System information	78
7	User table (Cloud)	81
8	User table (HPC)	83

Date Created: Wed, 19 Jun 2013

CONTENTS 1

2 CONTENTS

SUMMARY REPORT (ALL)

- Period: April 01 June 30, 2012
- Cloud(india.futuregrid.org): eucalyptus, openstack
- Cloud(sierra.futuregrid.org): eucalyptus, nimbus
- Cloud(hotel.futuregrid.org): nimbus
- Cloud(alamo.futuregrid.org): nimbus
- Cloud(foxtrot.futuregrid.org): nimbus
- Metrics: VMs count, Users count, Wall hours, Distribution by Wall Hours, Project, Project Leader, and Institution, and Systems

1.1 Wall Hours by Clusters (Total, monthly)

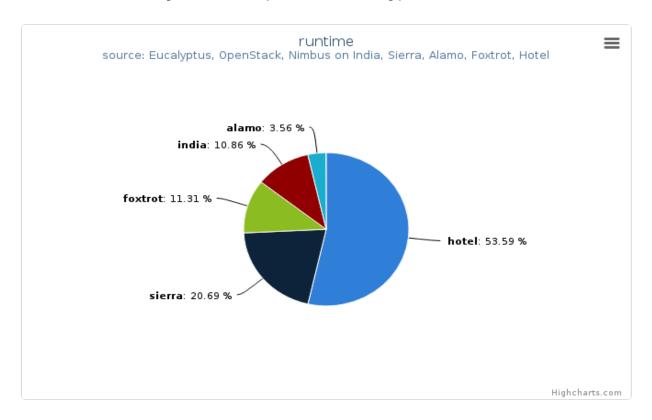


Figure 1. Wall time (hours) by Clusters This chart represents overall usage of wall time (hours).

• Period: April 01 – June 30, 2012

• Cloud:

- india: Eucalyptus, Openstack

- sierra: Eucalyptus, Nimbus

hotel: Nimbusalamo: Nimbus

- foxtrot: Nimbus

Table 1.1: Wall time (hours) by Clusters

Total	Value
hotel	190746.0
sierra	73631.0
foxtrot	40261.0
india	38640.0
alamo	12668.0

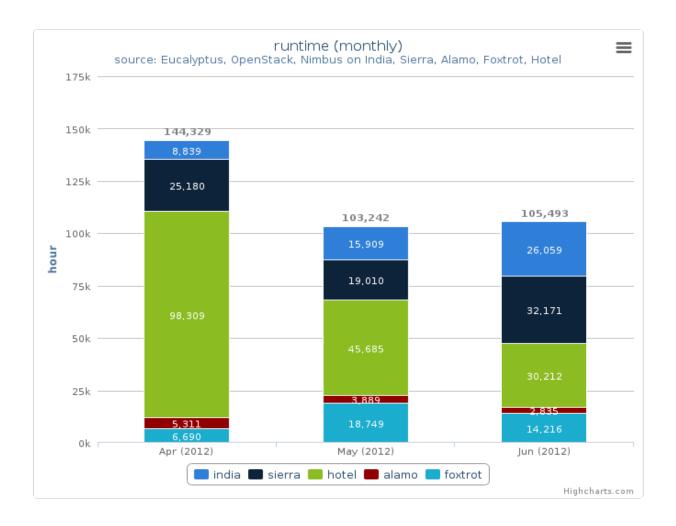


Figure 2. Wall time (hours) by Clusters (monthly)

This stacked column chart represents average monthly usage of wall time (hours).

• Period: April 01 – June 30, 2012

• Cloud:

- india: Eucalyptus, Openstack

- sierra: Eucalyptus, Nimbus

hotel: Nimbusalamo: Nimbus

- foxtrot: Nimbus

1.2 VM Count by Clusters (Total, monthly)

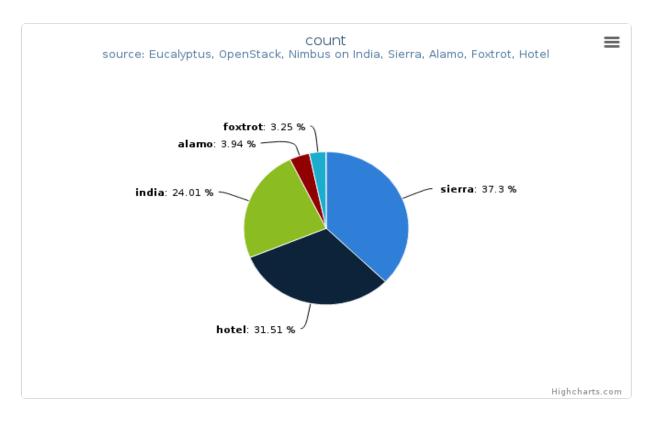


Figure 3. VMs count by Clusters
This chart represents overall VM instances count during the period.

• Period: April 01 – June 30, 2012

• Cloud:

- india: Eucalyptus, Openstack

- sierra: Eucalyptus, Nimbus

hotel: Nimbusalamo: Nimbusfoxtrot: Nimbus

Table 1.2: VM instance count by Clusters

Total	Value
sierra	20191
hotel	17059
india	12997
alamo	2131
foxtrot	1759

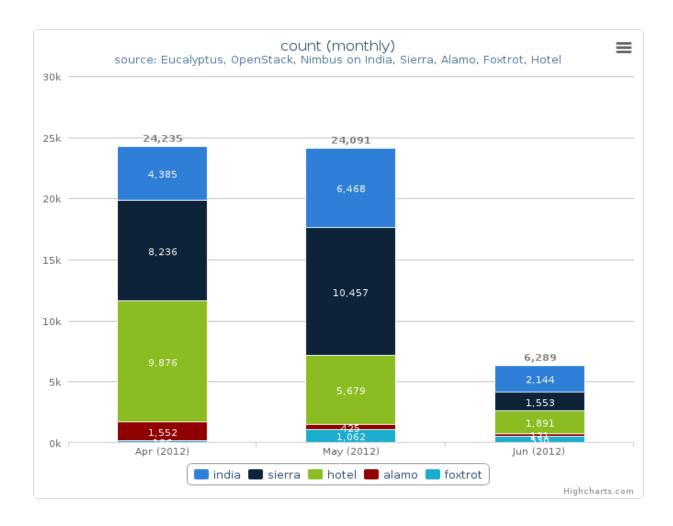


Figure 4. VMs count by Clusters (monthly)

This stacked column chart represents average VM instances count per month.

• Period: April 01 – June 30, 2012

• Cloud:

- india: Eucalyptus, Openstack

- sierra: Eucalyptus, Nimbus

hotel: Nimbusalamo: Nimbus

- foxtrot: Nimbus

1.3 Users Count by Clusters (Total, monthly)

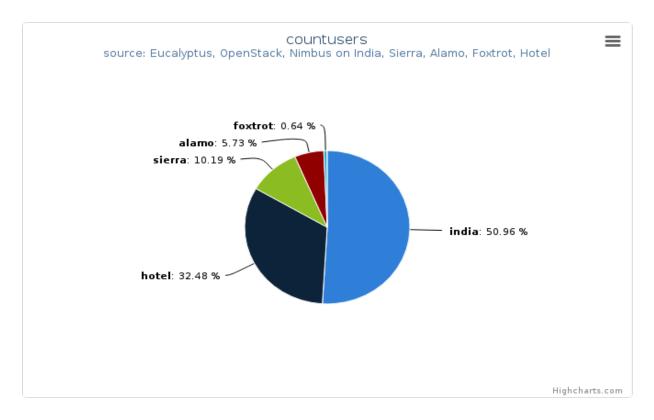


Figure 5. Users count by Clusters
This chart represents total number of active users.

• Period: April 01 – June 30, 2012

• Cloud:

- india: Eucalyptus, Openstack

- sierra: Eucalyptus, Nimbus

hotel: Nimbusalamo: Nimbus

- foxtrot: Nimbus

Table 1.3: User count by Clusters

Total	Value
india	80
hotel	51
sierra	16
alamo	9
foxtrot	1

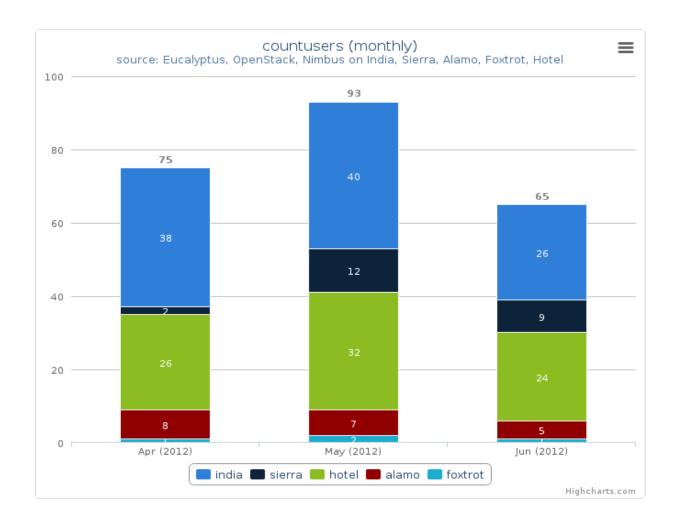


Figure 6. Users count by Clusters (Monthly)

This stacked column chart represents average count of active users per month.

• Period: April 01 – June 30, 2012

• Cloud:

- india: Eucalyptus, Openstack

- sierra: Eucalyptus, Nimbus

hotel: Nimbusalamo: Nimbusfoxtrot: Nimbus

USAGE REPORT SIERRA

- Period: April 01 June 30, 2012
- Hostname: sierra.futuregrid.org
- Services: nimbus, eucalyptus
- Metrics: VMs count, Users count, Wall time (hours), Distribution by wall time, project, project leader, and institution, and systems

2.1 Histogram

2.1.1 Summary (Monthly)



Figure 1: Average monthly usage data (wall time (hour), launched VMs, users)

This mixed chart represents average monthly usage as to wall time (hour), the number of VM instances and active users.

- Period: April 01 June 30, 2012
- Cloud(IaaS): nimbus, eucalyptus
- · Hostname: sierra
- Metric:
 - Runtime (Wall time hours): Sum of time elapsed from launch to termination of VM instances
 - Count (VM count): The number of launched VM instances
 - User count (Active): The number of users who launched VMs

2.1.2 Summary (Daily)

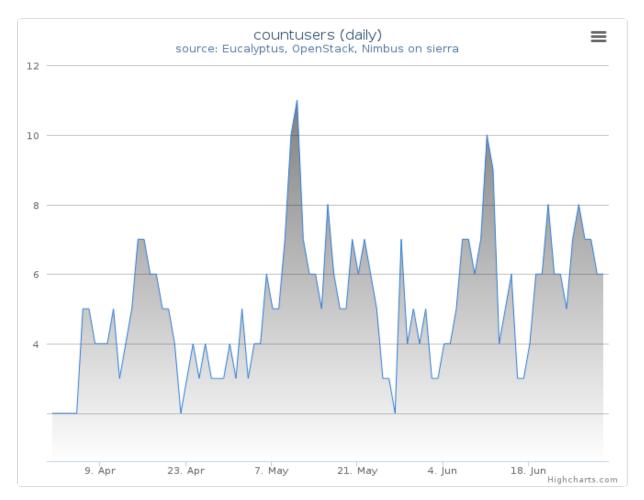


Figure 2: Users count

This time series chart represents daily active user count for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus, eucalyptus

· Hostname: sierra

2.1. Histogram

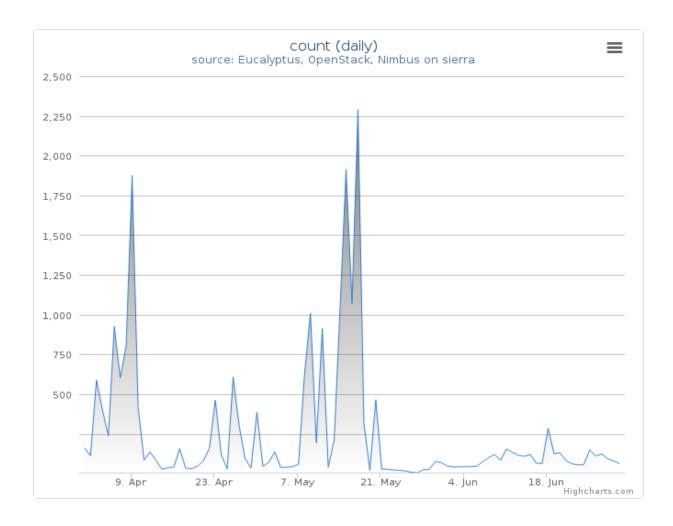


Figure 3: VMs count

This time series chart represents the number of daily launched VM instances for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus, eucalyptus

• Hostname: sierra

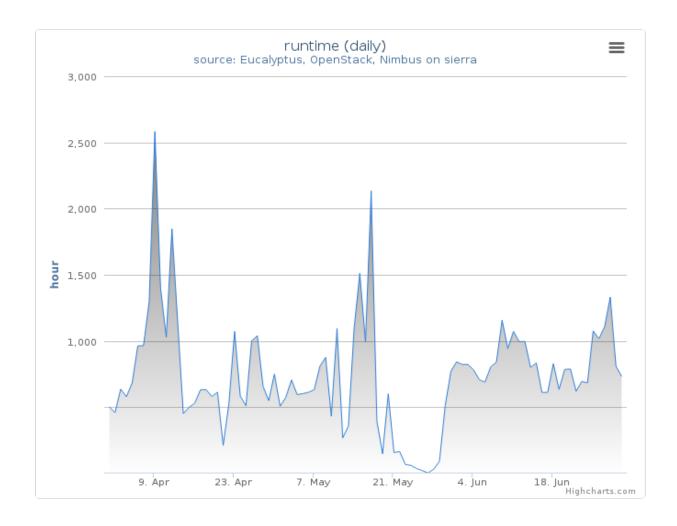


Figure 4: Wall time (hours)

This time series chart represents daily wall time (hours) for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus, eucalyptus

• Hostname: sierra

2.1. Histogram 15

2.2 Distribution

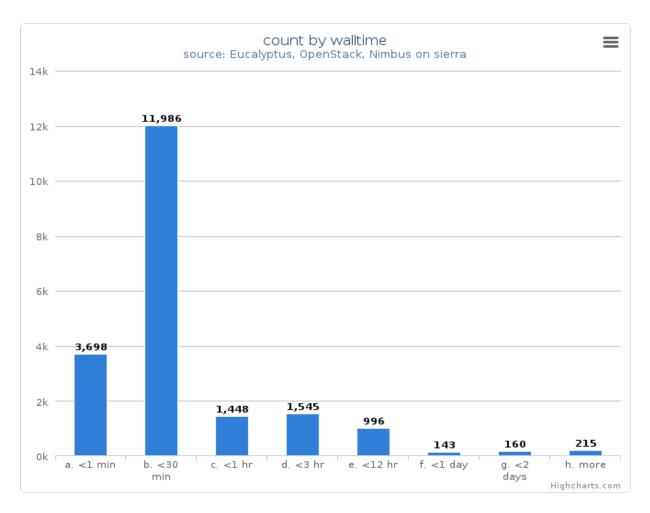


Figure 5: VM count by wall time

This chart illustrates usage patterns of VM instances in terms of running wall time.

- Period: April 01 June 30, 2012
- Cloud(IaaS): nimbus, eucalyptus
- Hostname: sierra

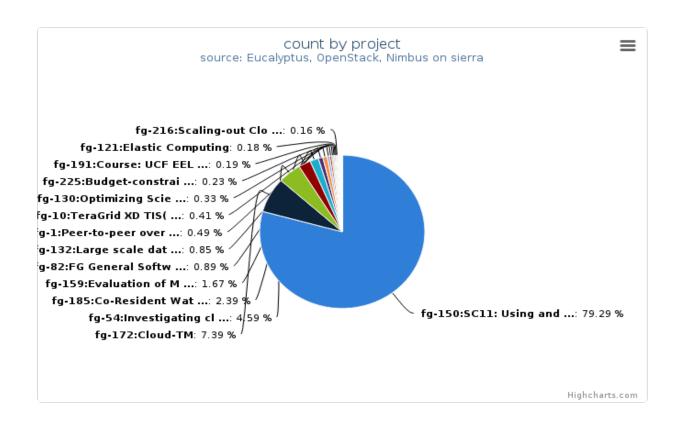


Figure 6: VMs count by project

This chart illustrates the proportion of launched VM instances by project groups. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus, eucalyptus

• Hostname: sierra

Table 2.1: VMs count by project

Project	Value
fg-150:SC11: Using and Building Infrastructure Clouds for Science	6533
fg-172:Cloud-TM	609
fg-54:Investigating cloud computing as a solution for analyzing particle physics data	378
fg-185:Co-Resident Watermarking	197
fg-159:Evaluation of MPI Collectives for HPC Applications on Distributed Virtualized Environments	138
fg-82:FG General Software Development	73
fg-132:Large scale data analytics	70
fg-1:Peer-to-peer overlay networks and applications in virtual networks and virtual clusters	40
fg-10:TeraGrid XD TIS(Technology Insertion Service) Technology Evaluation Laboratory	34
fg-130:Optimizing Scientific Workflows on Clouds	27
fg-225:Budget-constrained workflow scheduler	19
fg-191:Course: UCF EEL6938 Data-intensive computing and Cloud Class	16
fg-121:Elastic Computing	15
fg-216:Scaling-out CloudBLAST: Deploying Elastic MapReduce across Geographically Distributed	13
Virtulized Resources for BLAST	
fg-13:FutureGrid Systems Development and Prototyping	11
fg-170:European Middleware Initiative (EMI)	11
fg-122:Course: Cloud computing class	9
Others	8
fg-52:Cost-Aware Cloud Computing	8
fg-97:FutureGrid and Grid 5000 Collaboration	8
fg-213:Course: Cloud Computing class - second edition	7
fg-176:Cloud Interoperability Testbed	6
fg-143:Course: Cloud Computing for Data Intensive Science Class	5
fg-201:ExTENCI Testing, Validation, and Performance	2
fg-60:Wide area distributed file system for MapReduce applications on FutureGrid platform	1
fg-47:Parallel scripting using cloud resources	1

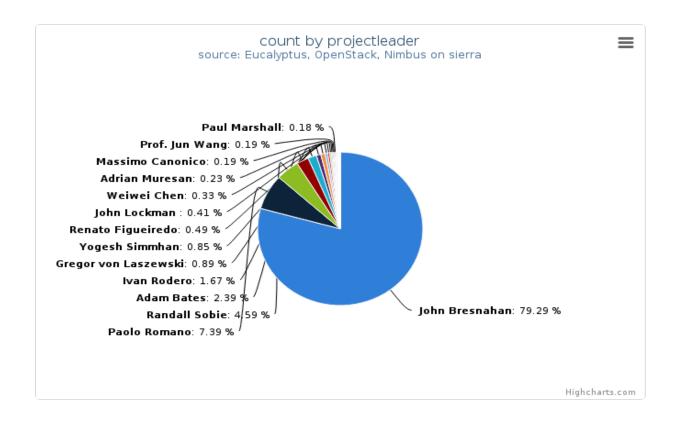


Figure 7: VMs count by project leader

This chart also illustrates the proportion of launched VM instances by project Leader. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus, eucalyptus

• Hostname: sierra

Table 2.2: VMs count by project leader

Projectleader	Value
John Bresnahan	6533
Paolo Romano	609
Randall Sobie	378
Adam Bates	197
Ivan Rodero	138
Gregor von Laszewski	73
Yogesh Simmhan	70
Renato Figueiredo	40
John Lockman	34
Weiwei Chen	27
Adrian Muresan	19
Massimo Canonico	16
Prof. Jun Wang	16
Paul Marshall	15
Andrea Matsunaga	13
Sharif Islam	11
Morris Riedel	11
David Lowenthal	8
Others	8
Mauricio Tsugawa	8
Alan Sill	6
Judy Qiu	5
Preston Smith	2
Michael Wilde	1
Lizhe Wang	1

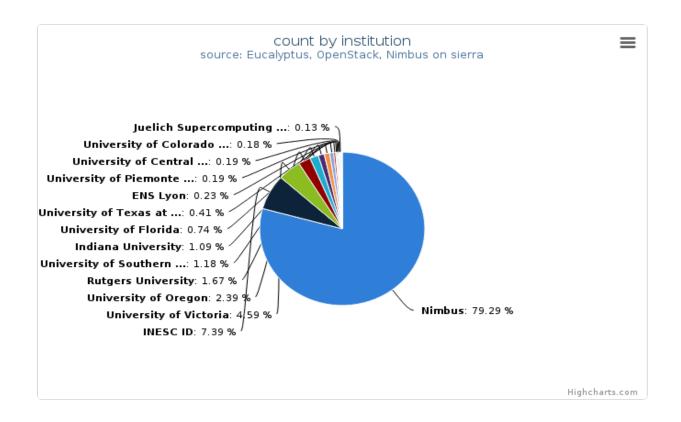


Figure 8: VMs count by institution

This chart illustrates the proportion of launched VM instances by Institution. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus, eucalyptus

• Hostname: sierra

Table 2.3: VMs count by institution

Institution	Value
Nimbus	6533
INESC ID	609
University of Victoria	378
University of Oregon	197
Rutgers University	138
University of Southern California	97
Indiana University	90
University of Florida	61
University of Texas at Austin	34
ENS Lyon	19
University of Piemonte Orientale	16
University of Central Florida	16
University of Colorado at Boulder	15
Juelich Supercomputing Centre	11
Others	8
University of Arizona	8
Texas Tech University	6
Purdue University	2
Argonne National Laboratory	1

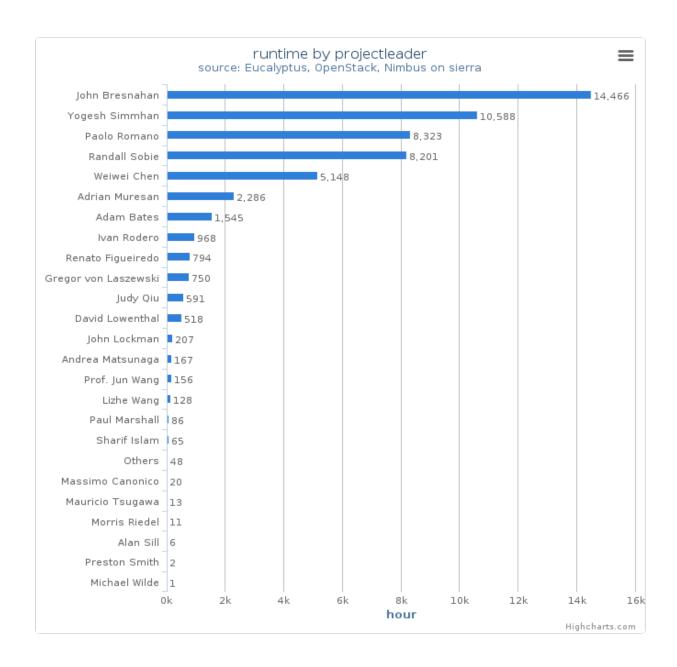


Figure 9: Wall time (hours) by project leader This chart illustrates proportionate total run times by project leader.

Period: April 01 – June 30, 2012
Cloud(IaaS): nimbus, eucalyptus

· Hostname: sierra

2.3 System information

System information shows utilization distribution as to VMs count and wall time. Each cluster represents a compute node.

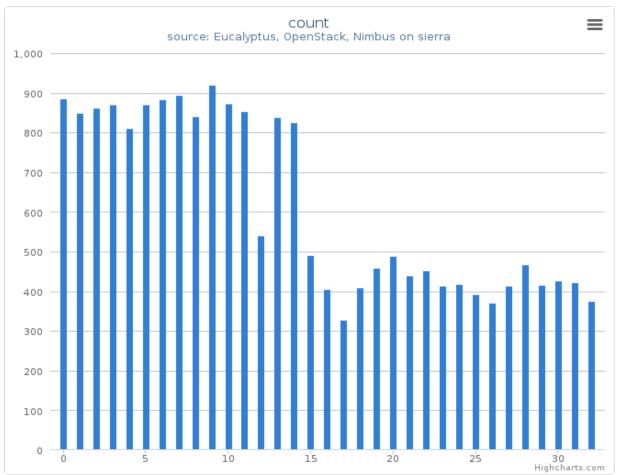


Figure 10: VMs count by systems (compute nodes) in Cluster (sierra) This column chart represents VMs count among systems.

Period: April 01 – June 30, 2012
Cloud(IaaS): nimbus, eucalyptus

• Hostname: sierra

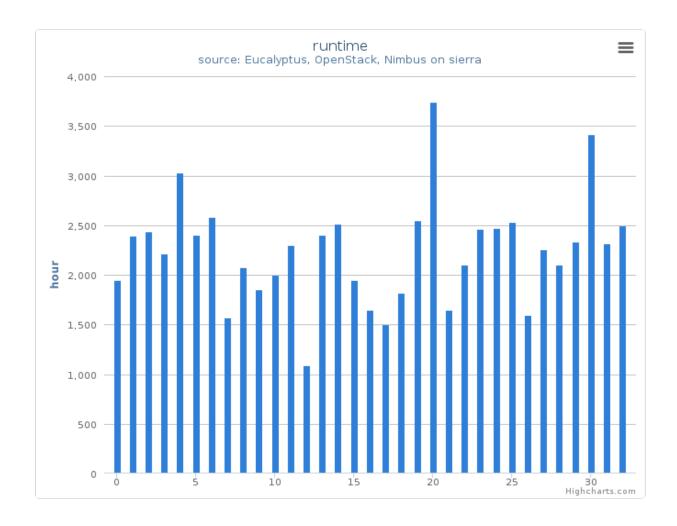


Figure 11: Wall time (hours) by systems (compute nodes) in Cluster (sierra) This column chart represents wall time among systems.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus, eucalyptus

• Hostname: sierra

USAGE REPORT INDIA

- Period: April 01 June 30, 2012
- Hostname: india.futuregrid.org
- Services: openstack, eucalyptus
- Metrics: VMs count, Users count, Wall time (hours), Distribution by wall time, project, project leader, and institution, and systems

3.1 Histogram

3.1.1 Summary (Monthly)

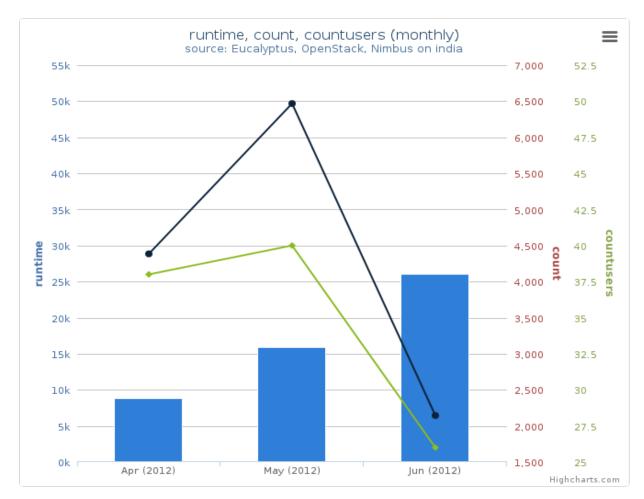


Figure 1: Average monthly usage data (wall time (hour), launched VMs, users)
This mixed chart represents average monthly usage as to wall time (hour), the number of VM instances and active users.

- Period: April 01 June 30, 2012
- Cloud(IaaS): openstack, eucalyptus
- · Hostname: india
- Metric:
 - Runtime (Wall time hours): Sum of time elapsed from launch to termination of VM instances
 - Count (VM count): The number of launched VM instances
 - User count (Active): The number of users who launched VMs

3.1.2 Summary (Daily)

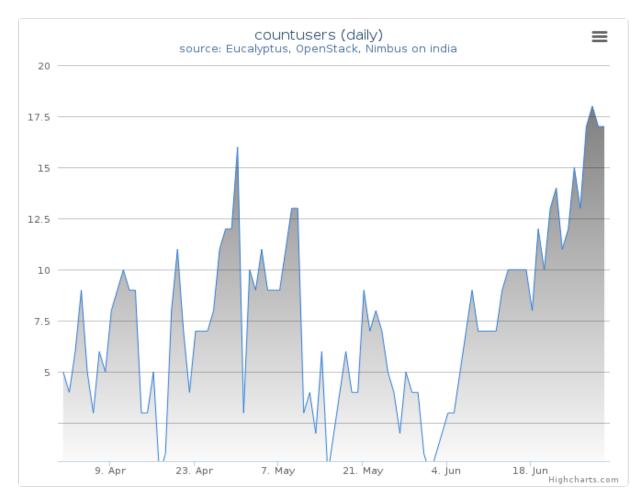


Figure 2: Users count

This time series chart represents daily active user count for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

3.1. Histogram 29

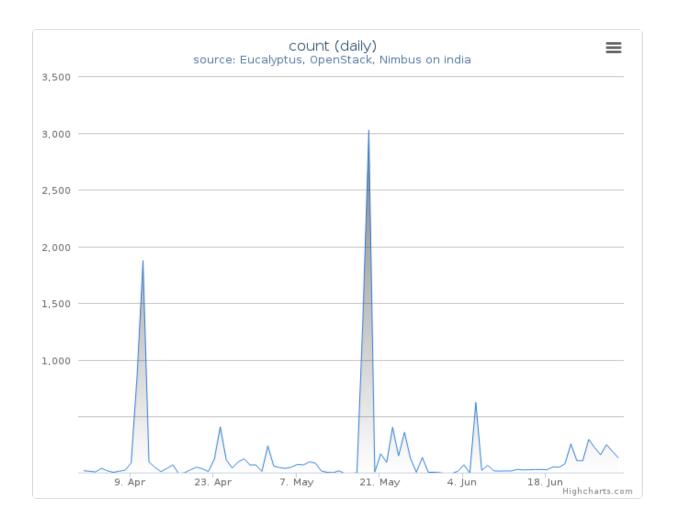


Figure 3: VMs count

This time series chart represents the number of daily launched VM instances for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

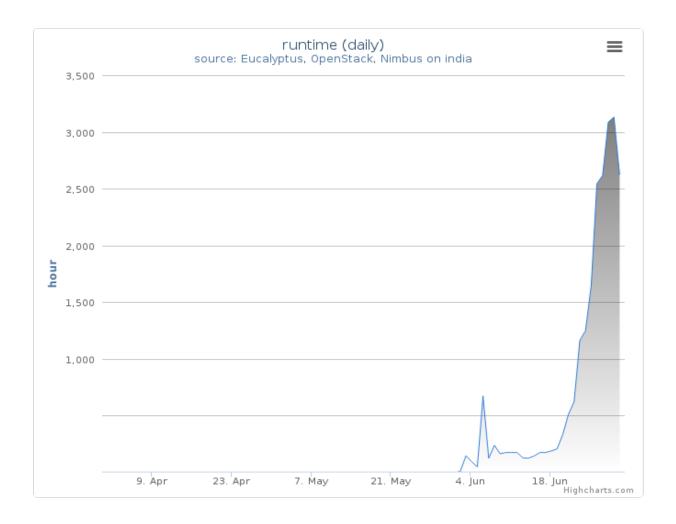


Figure 4: Wall time (hours)

This time series chart represents daily wall time (hours) for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

3.1. Histogram 31

3.2 Distribution

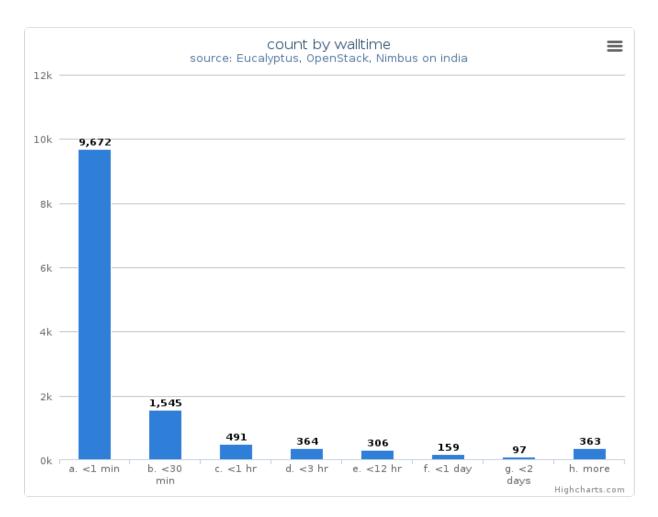


Figure 5: VM count by wall time

This chart illustrates usage patterns of VM instances in terms of running wall time.

- Period: April 01 June 30, 2012
- Cloud(IaaS): openstack, eucalyptus
- Hostname: india

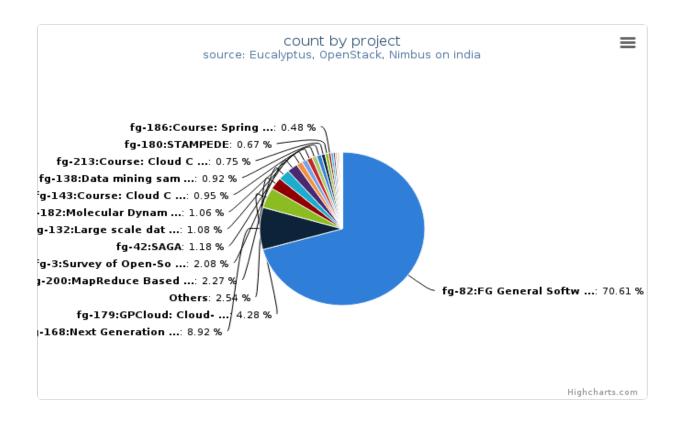


Figure 6: VMs count by project

This chart illustrates the proportion of launched VM instances by project groups. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

Table 3.1: VMs count by project

Project	Value
fg-82:FG General Software Development	7880
fg-168:Next Generation Sequencing in the Cloud	996
fg-179:GPCloud: Cloud-based Automatic Repair of Real-World Software Bugs	478
Others	284
fg-200:MapReduce Based Ray Tracing Class Project	253
fg-3:Survey of Open-Source Cloud Infrastructure using FutureGrid Testbed	232
fg-42:SAGA	132
fg-132:Large scale data analytics	120
fg-182:Molecular Dynamics on Hadoop	118
fg-143:Course: Cloud Computing for Data Intensive Science Class	106
fg-138:Data mining samples based on Twister	103
fg-213:Course: Cloud Computing class - second edition	84
fg-180:STAMPEDE	75
fg-186:Course: Spring 2012 B534 Distributed systems Graduate Course	54
fg-4:Word Sense Disambiguation for Web 2.0 Data	51
fg-72:Course: B534 Distributed systems Graduate/Undergraduate Class	44
fg-69:Investigate provenance collection for MapReduce	36
fg-148:Developing Virtual Clusters for Science Gateways and HPC Education	32
fg-99:Cloud-Based Support for Distributed Multiscale Applications	23
fg-12:The Virtual Block Store system	19
fg-60:Wide area distributed file system for MapReduce applications on FutureGrid platform	11
fg-122:Course: Cloud computing class	8
fg-141:High Performance Spatial Data Warehouse over MapReduce	5
fg-125:The VIEW Project	4
fg-201:ExTENCI Testing, Validation, and Performance	3
fg-23:Hardware Performance Monitoring in the Clouds	3
fg-176:Cloud Interoperability Testbed	2
fg-211:Performance evaluation of cloud storage placement	2
fg-233:CINET - A Cyber-Infrastructure for Network Science	2

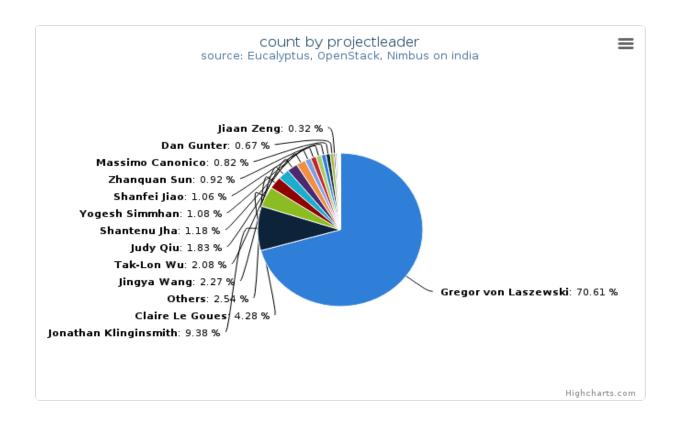


Figure 7: VMs count by project leader

This chart also illustrates the proportion of launched VM instances by project Leader. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

Table 3.2: VMs count by project leader

	* 7 *
Projectleader	Value
Gregor von Laszewski	7880
Jonathan Klinginsmith	1047
Claire Le Goues	478
Others	284
Jingya Wang	253
Tak-Lon Wu	232
Judy Qiu	204
Shantenu Jha	132
Yogesh Simmhan	120
Shanfei Jiao	118
Zhanquan Sun	103
Massimo Canonico	92
Dan Gunter	75
Jiaan Zeng	36
Thomas Hacker	32
Katarzyna Rycerz	23
Xiaoming Gao	19
Lizhe Wang	11
Fusheng Wang	5
Shiyong Lu	4
Shirley Moore	3
Preston Smith	3
Keith Bisset	2
Alan Sill	2
Zhan Wang	2

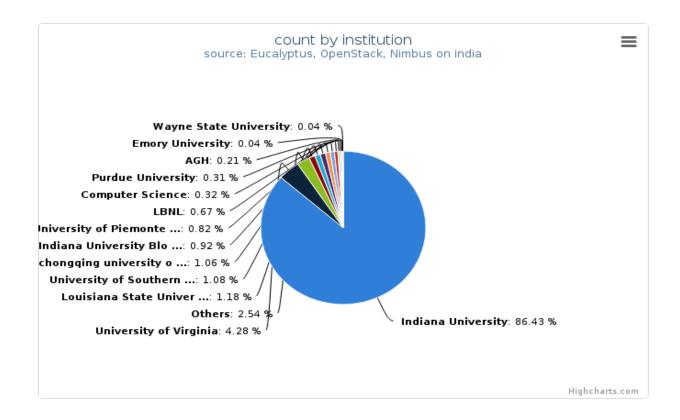


Figure 8: VMs count by institution

This chart illustrates the proportion of launched VM instances by Institution. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): openstack, eucalyptus

· Hostname: india

Table 3.3: VMs count by institution

Institution	Value
Indiana University	9646
University of Virginia	478
Others	284
Louisiana State University	132
University of Southern California	120
chongqing university of posts and telecommunications	118
Indiana University Bloomington	103
University of Piemonte Orientale	92
LBNL	75
Computer Science	36
Purdue University	35
AGH	23
Emory University	5
Wayne State University	4
University of Tennessee	3
Texas Tech University	2
George Mason University	2
Virginia Tech	2

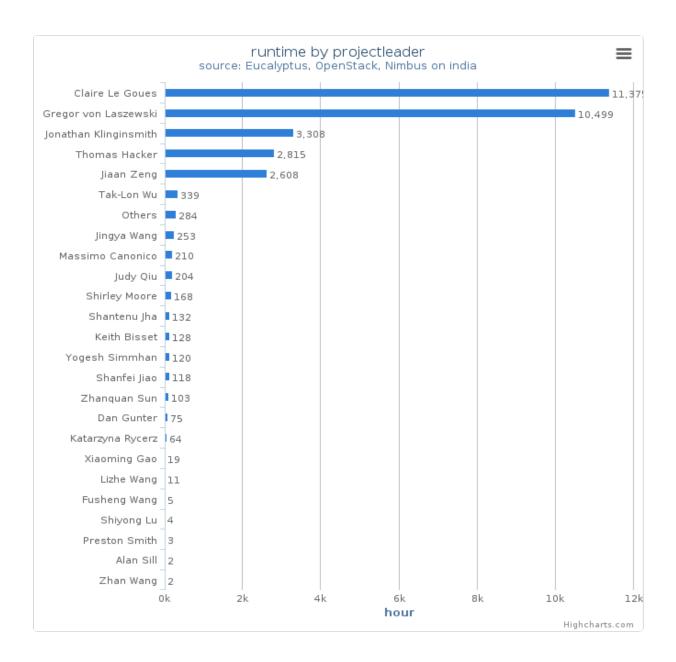


Figure 9: Wall time (hours) by project leader
This chart illustrates proportionate total run times by project leader.

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

3.3 System information

System information shows utilization distribution as to VMs count and wall time. Each cluster represents a compute node.

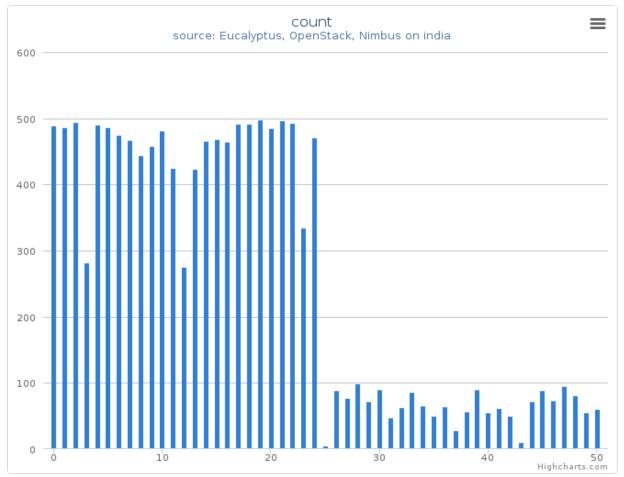


Figure 10: VMs count by systems (compute nodes) in Cluster (india) This column chart represents VMs count among systems.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): openstack, eucalyptus

· Hostname: india

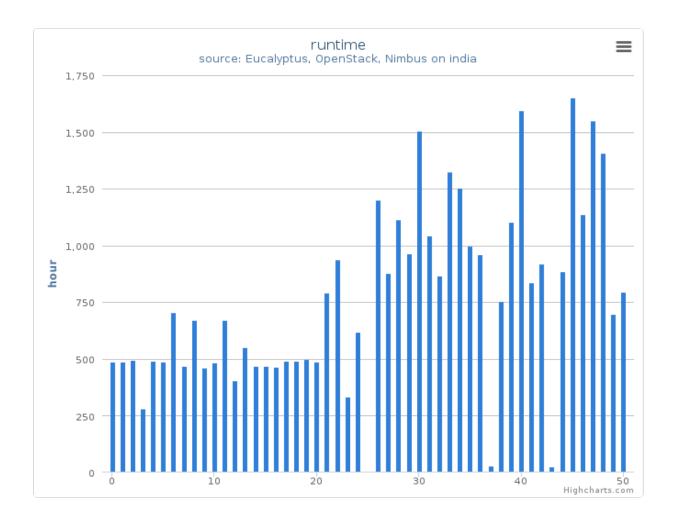


Figure 11: Wall time (hours) by systems (compute nodes) in Cluster (india) This column chart represents wall time among systems.

• Cloud(IaaS): openstack, eucalyptus

• Hostname: india

USAGE REPORT HOTEL

• Period: April 01 – June 30, 2012

• Hostname: hotel.futuregrid.org

• Services: nimbus

• Metrics: VMs count, Users count, Wall time (hours), Distribution by wall time, project, project leader, and institution, and systems

4.1 Histogram

4.1.1 Summary (Monthly)



Figure 1: Average monthly usage data (wall time (hour), launched VMs, users)

This mixed chart represents average monthly usage as to wall time (hour), the number of VM instances and active users.

- Period: April 01 June 30, 2012
- Cloud(IaaS): nimbus
- · Hostname: hotel
- Metric:
 - Runtime (Wall time hours): Sum of time elapsed from launch to termination of VM instances
 - Count (VM count): The number of launched VM instances
 - User count (Active): The number of users who launched VMs

4.1.2 Summary (Daily)

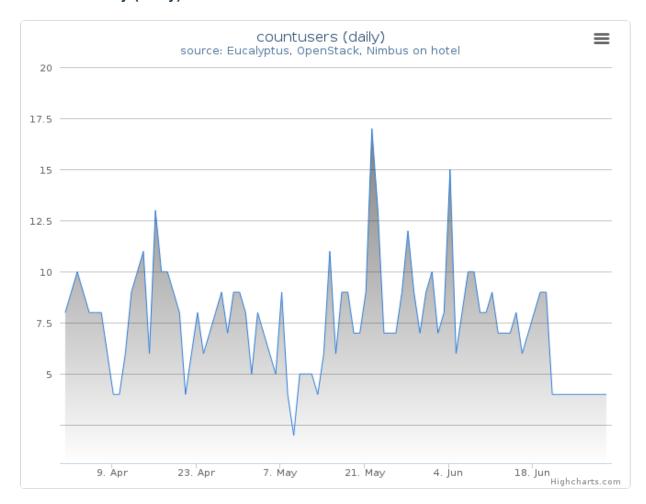


Figure 2: Users count

This time series chart represents daily active user count for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

 $\bullet \ \ Cloud(IaaS): nimbus$

· Hostname: hotel

4.1. Histogram 45

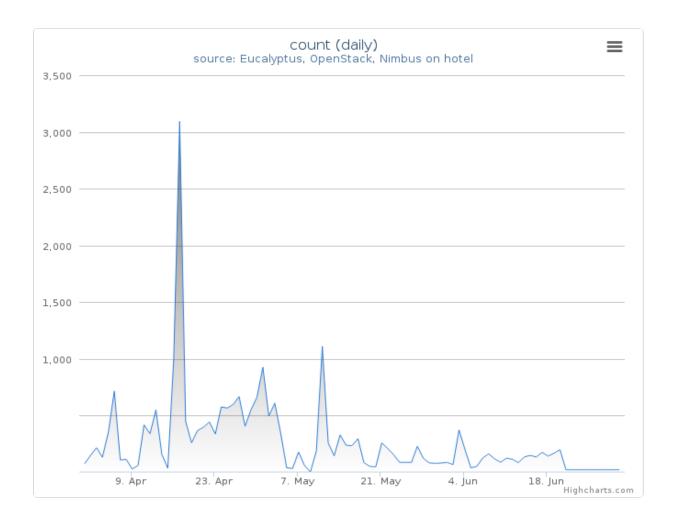


Figure 3: VMs count

This time series chart represents the number of daily launched VM instances for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

· Hostname: hotel

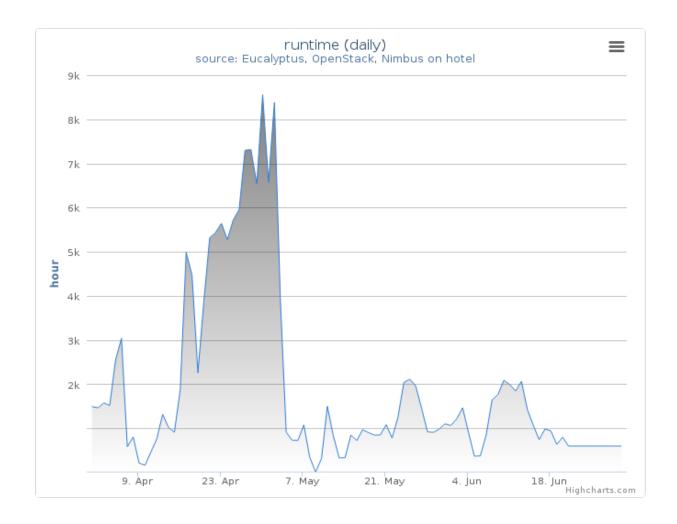


Figure 4: Wall time (hours)

This time series chart represents daily wall time (hours) for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

• Hostname: hotel

4.1. Histogram 47

4.2 Distribution

Figure 5: VM count by wall time

This chart illustrates usage patterns of VM instances in terms of running wall time.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

• Hostname: hotel

Figure 6: VMs count by project

This chart illustrates the proportion of launched VM instances by project groups. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

• Hostname: hotel

Table 4.1: VMs count by project

Project	Value
fg-54:Investigating cloud computing as a solution for analyzing particle physics data	7234
fg-150:SC11: Using and Building Infrastructure Clouds for Science	5506
fg-159:Evaluation of MPI Collectives for HPC Applications on Distributed Virtualized Environments	1634
fg-172:Cloud-TM	1319
fg-202:Fault Tolerance of HPC systems	205
Others	151
fg-130:Optimizing Scientific Workflows on Clouds	128
fg-121:Elastic Computing	118
fg-213:Course: Cloud Computing class - second edition	108
fg-191:Course: UCF EEL6938 Data-intensive computing and Cloud Class	64
fg-122:Course: Cloud computing class	56
Continued on n	ext page

Table 4.1 – continued from previous page

Project	Value
fg-10:TeraGrid XD TIS(Technology Insertion Service) Technology Evaluation Laboratory	43
fg-170:European Middleware Initiative (EMI)	35
fg-154:STS Server 2011	28
fg-97:FutureGrid and Grid 5000 Collaboration	21
fg-225:Budget-constrained workflow scheduler	15
fg-1:Peer-to-peer overlay networks and applications in virtual networks and virtual clusters	11
fg-47:Parallel scripting using cloud resources	10
fg-125:The VIEW Project	7
fg-201:ExTENCI Testing, Validation, and Performance	5
fg-146:SLASH2 Testing in a Wide Area Environment	5
fg-82:FG General Software Development	4
fg-143:Course: Cloud Computing for Data Intensive Science Class	4
fg-127:Fresno System Architecture and Cloud Computing Class	4
fg-185:Co-Resident Watermarking	3
fg-138:Data mining samples based on Twister	1
fg-176:Cloud Interoperability Testbed	1
fg-194:SGVO Cloud Options Working Group	1
fg-133:Supply Chain Network Simulator Using Cloud Computing	1
fg-18:Privacy preserving gene read mapping using hybrid cloud	1

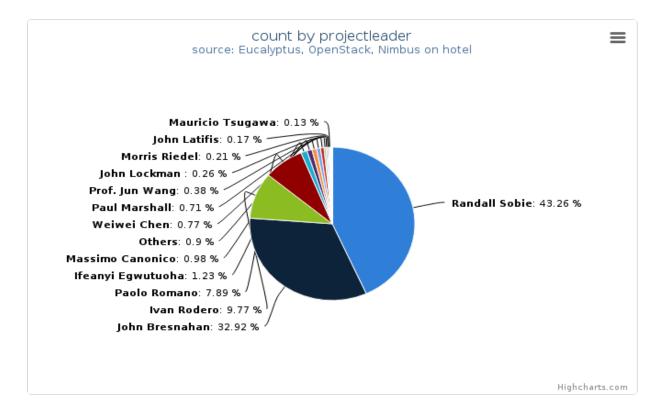


Figure 7: VMs count by project leader

This chart also illustrates the proportion of launched VM instances by project Leader. The same data in tabular form

follows.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

• Hostname: hotel

Table 4.2: VMs count by project leader

icuaci	
Projectleader	Value
Randall Sobie	7234
John Bresnahan	5506
Ivan Rodero	1634
Paolo Romano	1319
Ifeanyi Egwutuoha	205
Massimo Canonico	164
Others	151
Weiwei Chen	128
Paul Marshall	118
Prof. Jun Wang	64
John Lockman	43
Morris Riedel	35
John Latifis	28
Mauricio Tsugawa	21
Adrian Muresan	15
Renato Figueiredo	11
Michael Wilde	10
Shiyong Lu	7
Preston Smith	5
J Ray Scott	5
Judy Qiu	4
Cui Lin	4
Gregor von Laszewski	4
Adam Bates	3
Alan Sill	2
Manuel Rossetti	1
Zhanquan Sun	1
Yangyi Chen	1
	•

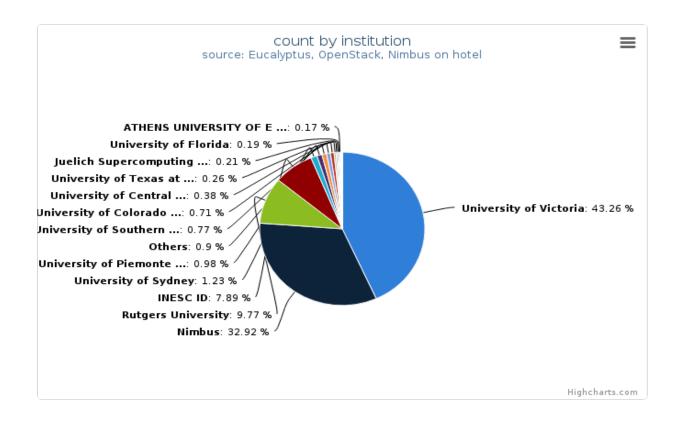


Figure 8: VMs count by institution

This chart illustrates the proportion of launched VM instances by Institution. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

• Hostname: hotel

Table 4.3: VMs count by institution

Institution	Value
University of Victoria	7234
Nimbus	5506
Rutgers University	1634
INESC ID	1319
University of Sydney	205
University of Piemonte Orientale	164
Others	151
University of Southern California	128
University of Colorado at Boulder	118
University of Central Florida	64
University of Texas at Austin	43
Juelich Supercomputing Centre	35
University of Florida	32
ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS	28
ENS Lyon	15
Argonne National Laboratory	10
Indiana University	8
Wayne State University	7
Purdue University	5
Carnegie Mellon University	5
California State University	4
University of Oregon	3
Indiana University Bloomington	2
Texas Tech University	2
University of Arkansas	1

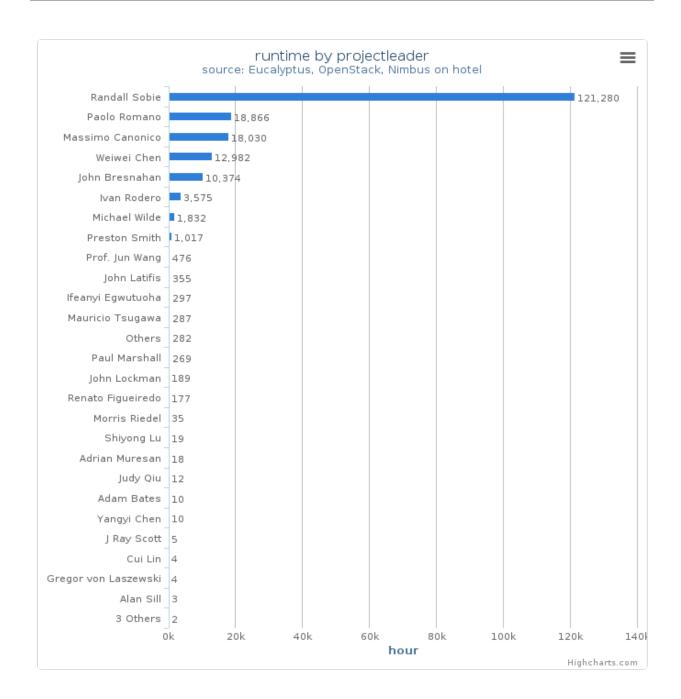


Figure 9: Wall time (hours) by project leader
This chart illustrates proportionate total run times by project leader.

• Cloud(IaaS): nimbus

· Hostname: hotel

4.3 System information

System information shows utilization distribution as to VMs count and wall time. Each cluster represents a compute node.

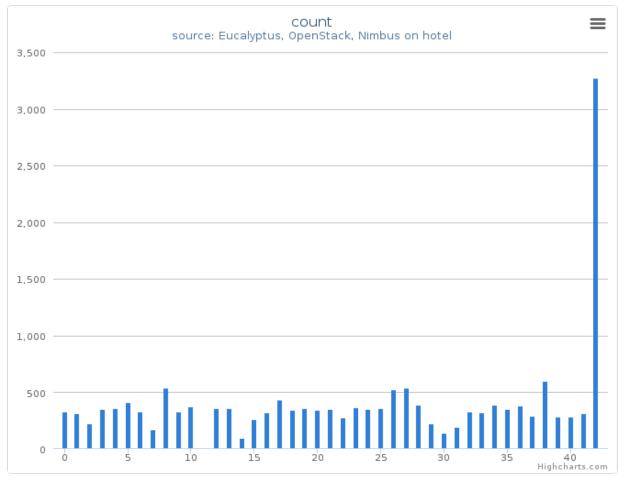


Figure 10: VMs count by systems (compute nodes) in Cluster (hotel) This column chart represents VMs count among systems.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

• Hostname: hotel

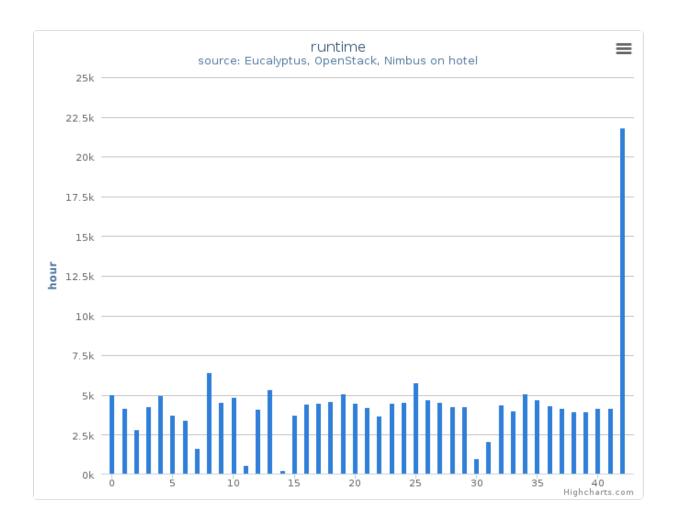


Figure 11: Wall time (hours) by systems (compute nodes) in Cluster (hotel) This column chart represents wall time among systems.

• Cloud(IaaS): nimbus

• Hostname: hotel

USAGE REPORT ALAMO

Period: April 01 – June 30, 2012
Hostname: alamo.futuregrid.org

• Services: nimbus

• Metrics: VMs count, Users count, Wall time (hours), Distribution by wall time, project, project leader, and institution, and systems

5.1 Histogram

5.1.1 Summary (Monthly)

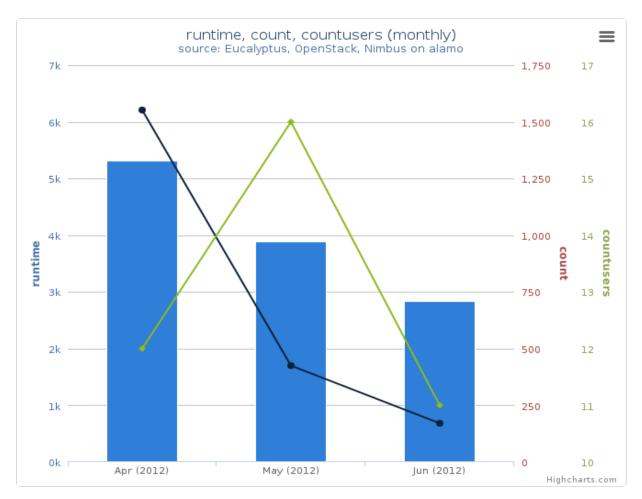


Figure 1: Average monthly usage data (wall time (hour), launched VMs, users)

This mixed chart represents average monthly usage as to wall time (hour), the number of VM instances and active users.

- Period: April 01 June 30, 2012
- Cloud(IaaS): nimbus
- · Hostname: alamo
- Metric:
 - Runtime (Wall time hours): Sum of time elapsed from launch to termination of VM instances
 - Count (VM count): The number of launched VM instances
 - User count (Active): The number of users who launched VMs

5.1.2 Summary (Daily)

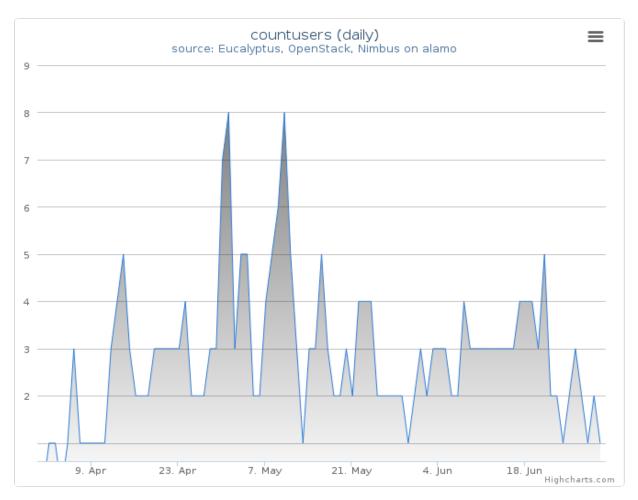


Figure 2: Users count

This time series chart represents daily active user count for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

 $\bullet \ \ Cloud(IaaS): nimbus$

· Hostname: alamo

5.1. Histogram 59

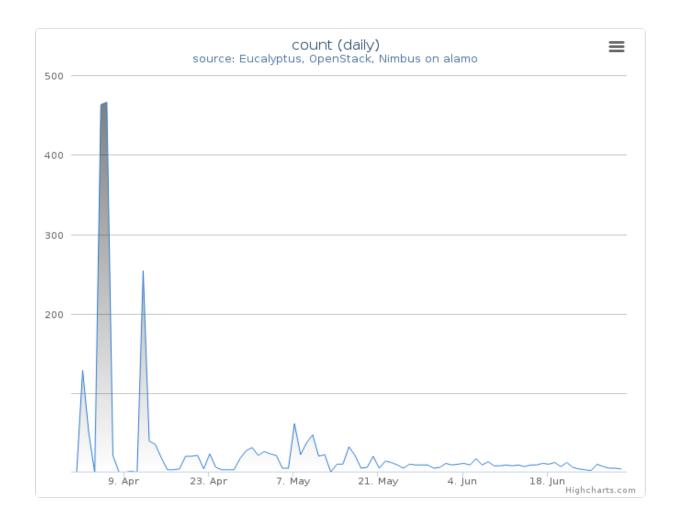


Figure 3: VMs count

This time series chart represents the number of daily launched VM instances for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

· Hostname: alamo

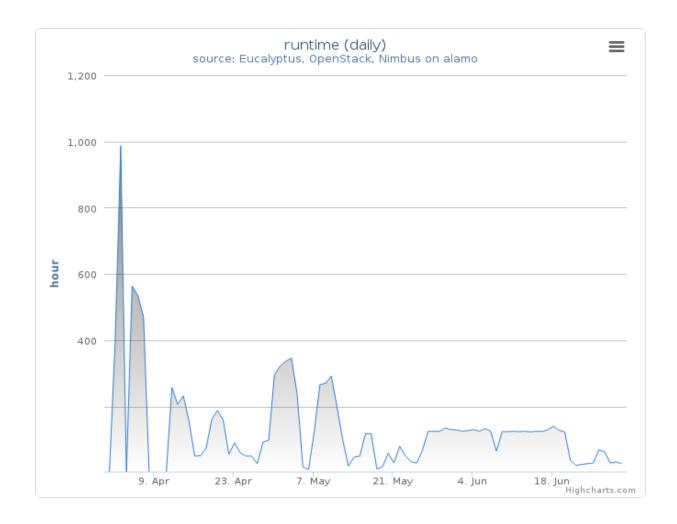


Figure 4: Wall time (hours)

This time series chart represents daily wall time (hours) for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

· Hostname: alamo

5.1. Histogram 61

5.2 Distribution

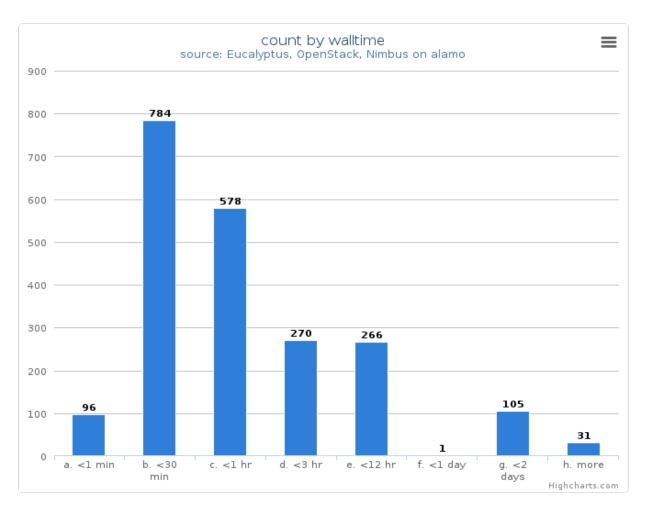


Figure 5: VM count by wall time

This chart illustrates usage patterns of VM instances in terms of running wall time.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

· Hostname: alamo

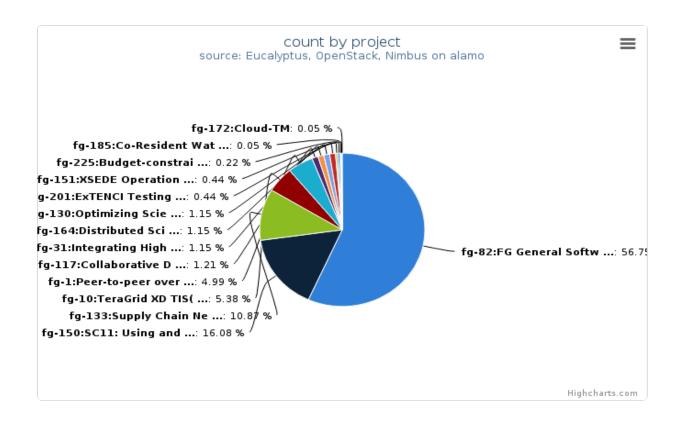


Figure 6: VMs count by project

This chart illustrates the proportion of launched VM instances by project groups. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

· Hostname: alamo

Table 5.1: VMs count by project

Project	Value
fg-82:FG General Software Development	1034
fg-150:SC11: Using and Building Infrastructure Clouds for Science	293
fg-133:Supply Chain Network Simulator Using Cloud Computing	198
fg-10:TeraGrid XD TIS(Technology Insertion Service) Technology Evaluation Laboratory	98
fg-1:Peer-to-peer overlay networks and applications in virtual networks and virtual clusters	91
fg-117:Collaborative Data Distribution and VM Provisioning	22
fg-31:Integrating High Performance Computing in Research and Education for Simulation, Visualization	21
and RealTime Prediction	
fg-164:Distributed Scientific Computing Class	21
fg-130:Optimizing Scientific Workflows on Clouds	21
fg-201:ExTENCI Testing, Validation, and Performance	8
fg-151:XSEDE Operations Group	8
fg-225:Budget-constrained workflow scheduler	4
fg-170:European Middleware Initiative (EMI)	1
fg-185:Co-Resident Watermarking	1
fg-172:Cloud-TM	1

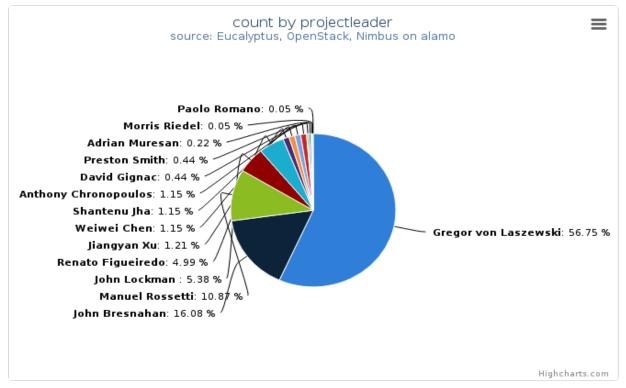


Figure 7: VMs count by project leader

This chart also illustrates the proportion of launched VM instances by project Leader. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

· Hostname: alamo

Table 5.2: VMs count by project leader

Projectleader	Value
Gregor von Laszewski	1034
John Bresnahan	293
Manuel Rossetti	198
John Lockman	98
Renato Figueiredo	91
Jiangyan Xu	22
Weiwei Chen	21
Shantenu Jha	21
Anthony Chronopoulos	21
David Gignac	8
Preston Smith	8
Adrian Muresan	4
Adam Bates	1
Morris Riedel	1
Paolo Romano	1

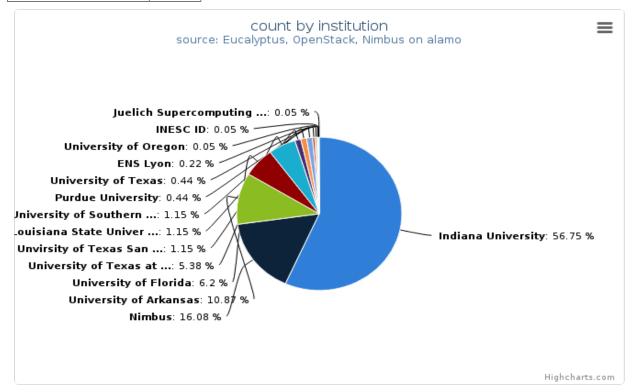


Figure 8: VMs count by institution

This chart illustrates the proportion of launched VM instances by Institution. The same data in tabular form follows.

Cloud(IaaS): nimbus Hostname: alamo

Table 5.3: VMs count by institution

Institution	Value
Indiana University	1034
Nimbus	293
University of Arkansas	198
University of Florida	113
University of Texas at Austin	98
Unvirsity of Texas San Antonio	21
Louisiana State University	21
University of Southern California	21
Purdue University	8
University of Texas	8
ENS Lyon	4
University of Oregon	1
INESC ID	1
Juelich Supercomputing Centre	1

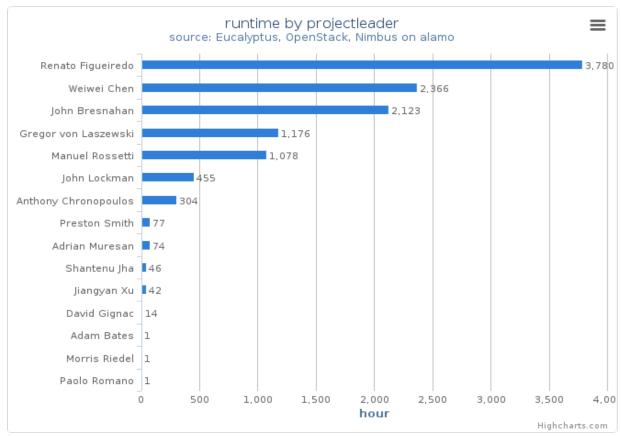


Figure 9: Wall time (hours) by project leader This chart illustrates proportionate total run times by project leader.

Cloud(IaaS): nimbus Hostname: alamo

5.3 System information

System information shows utilization distribution as to VMs count and wall time. Each cluster represents a compute node.

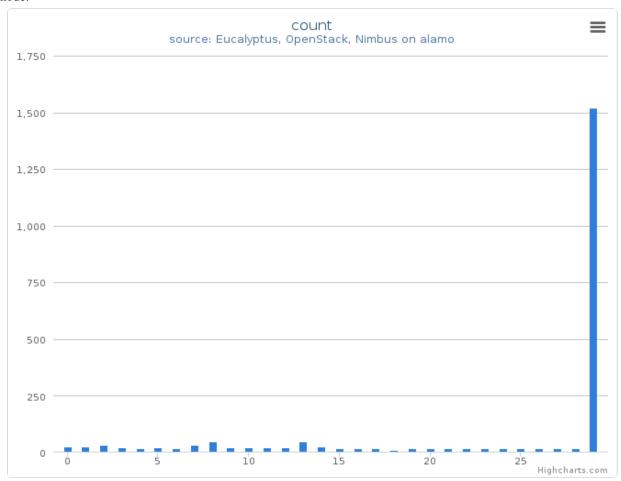


Figure 10: VMs count by systems (compute nodes) in Cluster (alamo) This column chart represents VMs count among systems.

• Period: April 01 – June 30, 2012

Cloud(IaaS): nimbus Hostname: alamo

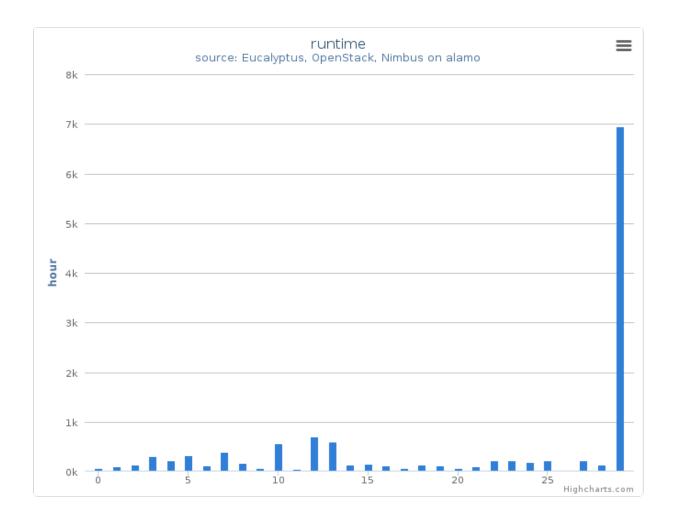


Figure 11: Wall time (hours) by systems (compute nodes) in Cluster (alamo) This column chart represents wall time among systems.

• Cloud(IaaS): nimbus

• Hostname: alamo

USAGE REPORT FOXTROT

Period: April 01 – June 30, 2012
Hostname: foxtrot.futuregrid.org

• Services: nimbus

• Metrics: VMs count, Users count, Wall time (hours), Distribution by wall time, project, project leader, and institution, and systems

6.1 Histogram

6.1.1 Summary (Monthly)

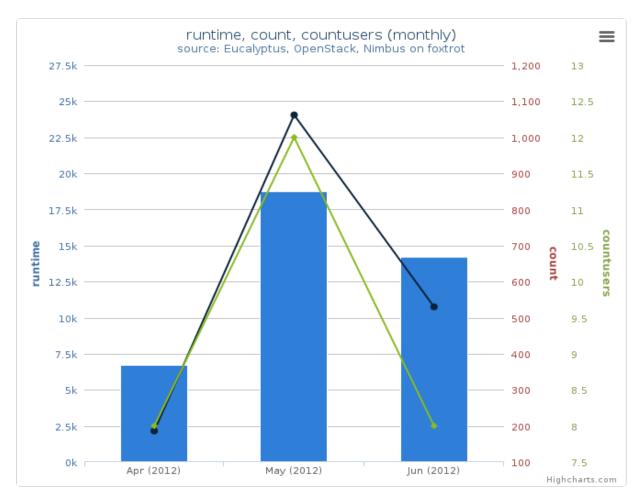


Figure 1: Average monthly usage data (wall time (hour), launched VMs, users)
This mixed chart represents average monthly usage as to wall time (hour), the number of VM instances and active users.

- Period: April 01 June 30, 2012
- Cloud(IaaS): nimbus
- Hostname: foxtrot
- Metric:
 - Runtime (Wall time hours): Sum of time elapsed from launch to termination of VM instances
 - Count (VM count): The number of launched VM instances
 - User count (Active): The number of users who launched VMs

6.1.2 Summary (Daily)

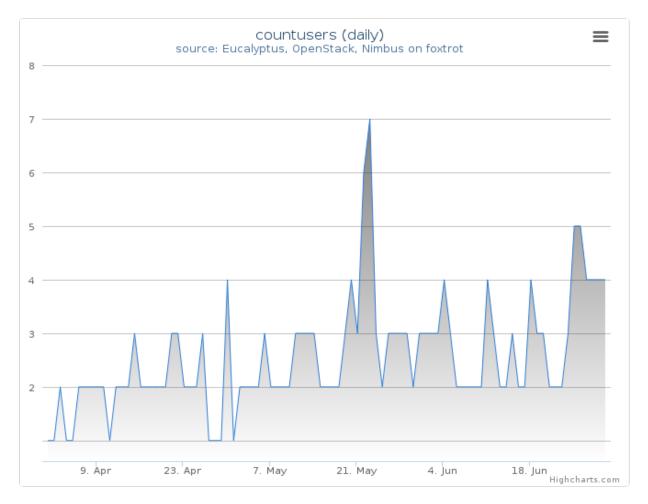


Figure 2: Users count

This time series chart represents daily active user count for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

 $\bullet \ \ Cloud(IaaS): nimbus$

· Hostname: foxtrot

6.1. Histogram 71

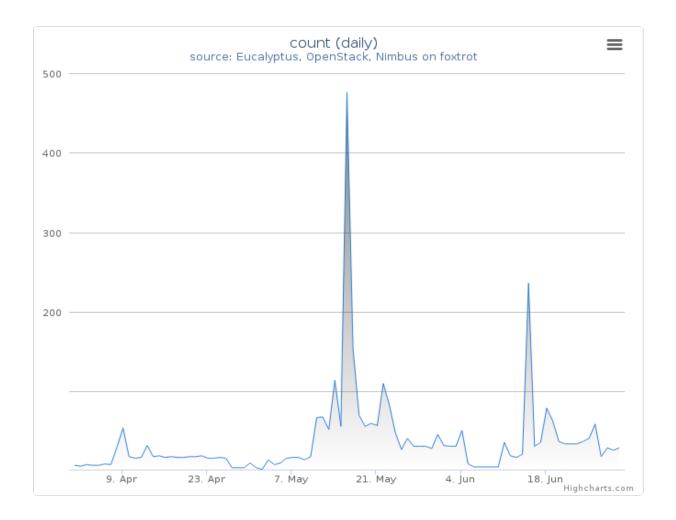


Figure 3: VMs count

This time series chart represents the number of daily launched VM instances for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

 $\bullet \ \ Cloud(IaaS): nimbus$

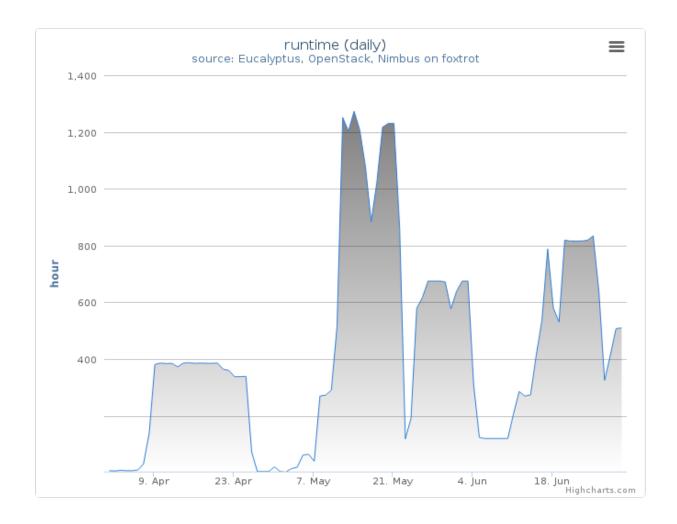


Figure 4: Wall time (hours)

This time series chart represents daily wall time (hours) for cloud services and shows historical changes during the period.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

• Hostname: foxtrot

6.1. Histogram 73

6.2 Distribution

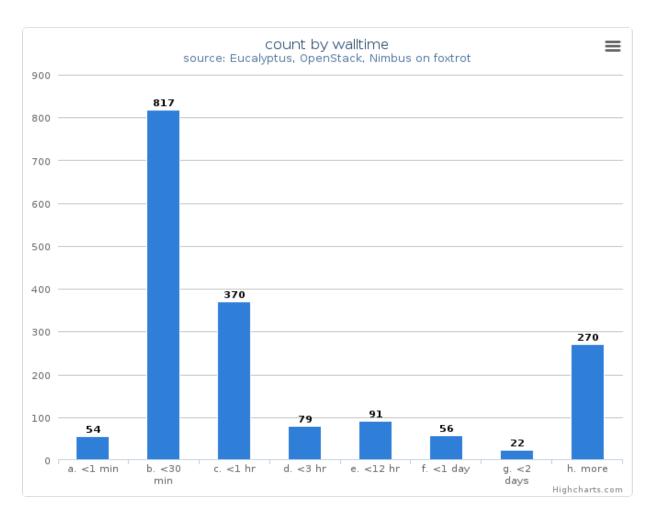


Figure 5: VM count by wall time

This chart illustrates usage patterns of VM instances in terms of running wall time.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

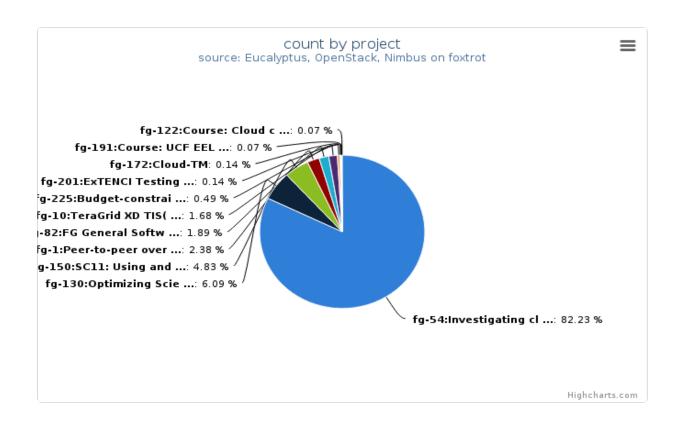


Figure 6: VMs count by project

This chart illustrates the proportion of launched VM instances by project groups. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

Cloud(IaaS): nimbusHostname: foxtrot

Table 6.1: VMs count by project

Project	Value
fg-54:Investigating cloud computing as a solution for analyzing particle physics data	1175
fg-130:Optimizing Scientific Workflows on Clouds	87
fg-150:SC11: Using and Building Infrastructure Clouds for Science	69
fg-1:Peer-to-peer overlay networks and applications in virtual networks and virtual clusters	34
fg-82:FG General Software Development	27
fg-10:TeraGrid XD TIS(Technology Insertion Service) Technology Evaluation Laboratory	24
fg-225:Budget-constrained workflow scheduler	7
fg-201:ExTENCI Testing, Validation, and Performance	2
fg-172:Cloud-TM	2
fg-191:Course: UCF EEL6938 Data-intensive computing and Cloud Class	1
fg-122:Course: Cloud computing class	1

6.2. Distribution 75

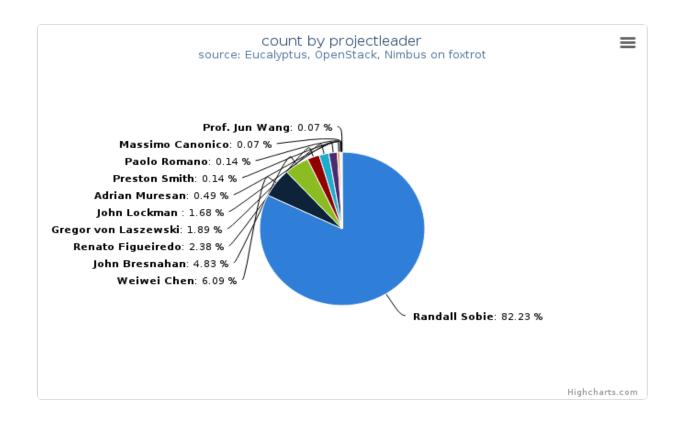


Figure 7: VMs count by project leader

This chart also illustrates the proportion of launched VM instances by project Leader. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

Cloud(IaaS): nimbus Hostname: foxtrot

Table 6.2: VMs count by project leader

Projectleader	Value
Randall Sobie	1175
Weiwei Chen	87
John Bresnahan	69
Renato Figueiredo	34
Gregor von Laszewski	27
John Lockman	24
Adrian Muresan	7
Preston Smith	2
Paolo Romano	2
Massimo Canonico	1
Prof. Jun Wang	1

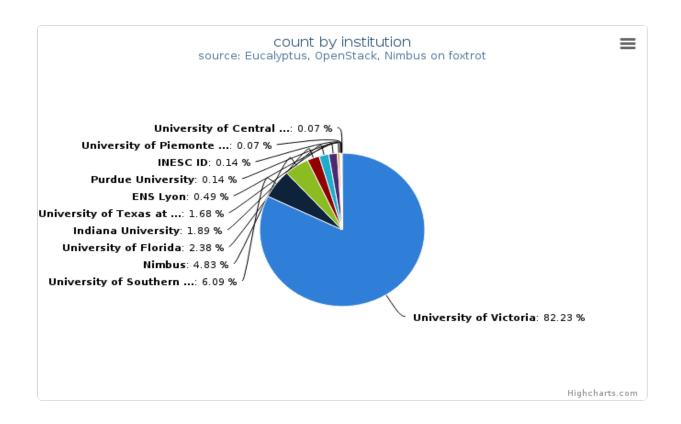


Figure 8: VMs count by institution

This chart illustrates the proportion of launched VM instances by Institution. The same data in tabular form follows.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

• Hostname: foxtrot

Table 6.3: VMs count by institution

Institution	Value
University of Victoria	1175
University of Southern California	87
Nimbus	69
University of Florida	34
Indiana University	27
University of Texas at Austin	24
ENS Lyon	7
Purdue University	2
INESC ID	2
University of Piemonte Orientale	1
University of Central Florida	1

6.2. Distribution 77

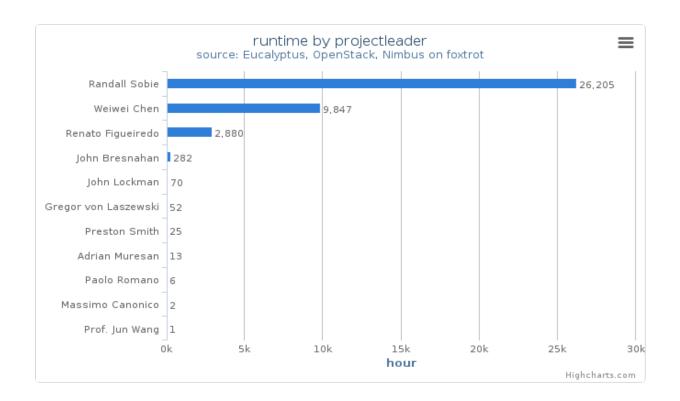


Figure 9: Wall time (hours) by project leader This chart illustrates proportionate total run times by project leader.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

• Hostname: foxtrot

6.3 System information

System information shows utilization distribution as to VMs count and wall time. Each cluster represents a compute node.

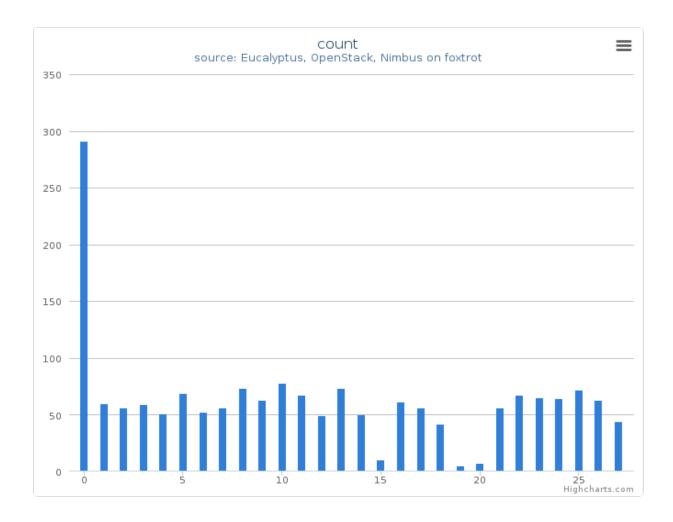


Figure 10: VMs count by systems (compute nodes) in Cluster (foxtrot) This column chart represents VMs count among systems.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

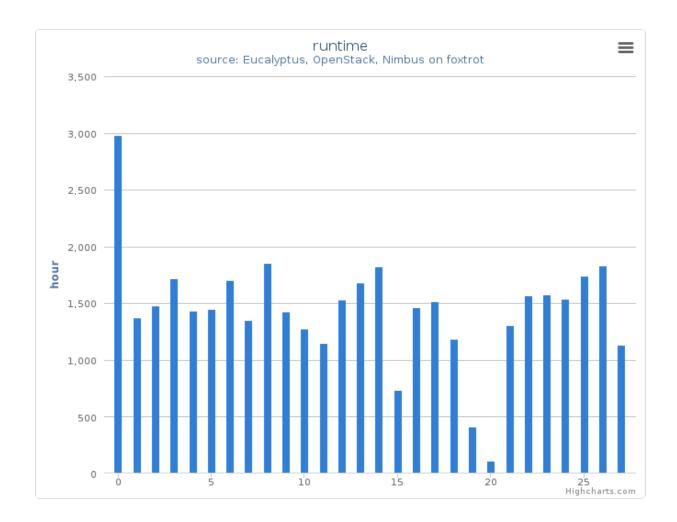


Figure 11: Wall time (hours) by systems (compute nodes) in Cluster (foxtrot) This column chart represents wall time among systems.

• Period: April 01 – June 30, 2012

• Cloud(IaaS): nimbus

USER TABLE (CLOUD)

This table provides wall time usage of cloud users with the project id (first appearance). - Cloud:

- india.futuregrid.org: openstack, eucalyptus
- sierra.futuregrid.org: nimbus, (openstack expected soon)
- hotel.futuregrid.org: nimbus
- alamo.futuregrid.org: nimbus, (openstack expected soon)
- foxtrot.futuregrid.org: nimbus

CHAPTER

EIGHT

USER TABLE (HPC)

This table provides detailed information on users, including average job size, average wait time, and average run time. - HPC: alamo, bravo, hotel, india xray, sierra - Data obtained from ubmod.futuregrid.org **** Missing user name is represented as a hidden userid under asterisks.