
Importance of Data Locality
- Gerald

Abstract
Scheduling Policies
Test Applications
Evaluation metrics
Tests in Hadoop

Test environment
Tests

Observations
Job run time vs. Mmax
Job run time vs. number of nodes
Normalized job run time I (eliminate factor of number of nodes)
Normalized job runme I2 (eliminate factors of number of nodes and Mmax)
Map execution time

Importance of Data locality
Single Cluster

Randomness
Cross cluster

More investigation

This is summary of my research on how data locality affects performance.
Detailed doc is here https://docs.google.com/document/d/
17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#

Abstract
For data parallel systems (Hadoop, Sector/Sphere, etc), computation nodes and storage nodes
are not separated. In other words, usually a node has the responsibility of both storage and
computation. For this architecture, two natural problems are how to place data and how to
schedule computation jobs. One heuristic is that the systems should put data and computation
as close as possible. This is the scheduling policy used by Hadoop. Job scheduler schedules
a map task to the node where input data is stored. Our goal is to evaluate importance of
data locality in data parallel systems. In other words, we will study tradeoffs between
migration of computing versus migration of data.
In this document, we designed a set of tests to figure out importance of data locality in modern
data parallel systems. We focus on I/O intensive applications.

https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#

Scheduling Policies
● Default: default scheduler provided by Hadoop

Hadoop scheduler tries to schedule a task to a node where input data is stored.
However, if all such nodes are saturated (number of running tasks is equal to maximum
number of tasks on each node) , the scheduler dispatches the task to an idle node
picked randomly..

● Random scheduling:
schedule tasks to randomly selected non-saturated nodes.

● Customized random:
Choose between data-local scheduling and random scheduling according to a parameter
- randomness. It represents the probability that random scheduling is chosen. If its value
is 0, scheduling becomes data-local scheduling. If its value is 1, scheduling becomes
pure random scheduling.

Test Applications
We have two test programs which are heavily I/O intensive.

● Line count
Count number of lines in input files.

● Input sink
Read input records from input files and throw them away. Don’t do any computation. No
reduce task.

Evaluation metrics
There are three main parameters which control the test environment

1. size of input
2. number of nodes
3. max number of maps per node

Main measurements include

1. Job run time
How long does each job run

a. Job run time is positively correlated to size of input.
For map-only applications, job run time is directly proportional to input size if we
assume that map operations applied to records task approximate amount of time.
For jobs with reduce phase, job run time depends on 1) data shuffling between
map tasks and reduce tasks, and 2) influence of size of reduce input on reduce
phase run time.

b. Job run time is negatively correlated to number of nodes to some point.
Because of overhead of using and managing large number of tasks, adding more

nodes to increase concurrency may not be always beneficial. Especially, when
a task runs short (e.g. 3 seconds), overhead of starting up and tearing down the
task may outweigh task processing time itself.

c. Job run time is negatively correlated to max number of maps per node
when parallelization benefit outweighs resource competition. Otherwise, it is
proportional. The transition point is crucial.

2. Average map task run time
How long does a map task run on average?

Denotation:

N: number of nodes
D: size of input
T: job run time
Mmax: max number of maps per node

Normalization
Given a fixed amount of data to process, ideally the speedup should be

Mmax * N
compared with the baseline configuration where Mmax and N are both 1.

Absolute job run time cannot reveal efficiency of scaling.
● When number of nodes is increased, performance is improved most of the time. But

efficiency of scaling-out may be low. For example, it’s possible that performance is
improved by 2 times while number of nodes is increased by 100 times.
So to erase effect of number of nodes, absolute job run time should be normalized.

Fix M, assume I is the time needed to process one unit of data using one node, we have
T = I * D / N ⇒ I = T * N / D. (T, N, D are known from test result)

● The same holds for M.
We know that I = T * N / D given a M. Now we take M into consideration.
Let I2 denotes the time needed to process one unit of data using one node by one map
task. We assume all map slots are used during processing.

I = I2 / Mmax ⇒ I2 = I * Mmax = T * N * Mmax / D

● I and I2 from above two bullets are normalized metrics.

Tests in Hadoop

Test environment
FutureGrid clusters.

During the test, only one job runs at any moment in Hadoop cluster. But because the
job uses all available map slots, test results also apply to situation where multiple jobs run
simultaneously.

Tests
I have done tests with following configurations:

41 nodes, 400G input data
31 nodes - 300G input data
31 nodes - 400G input data
21nodes - 200G input data
21 nodes - 400G input data
10 nodes - 400G input data
10 nodes - 100G input data
10 nodes - 100G input data, 64K buffer size
10 nodes - 100G input data, 1m buffer size
41 nodes, 400G inpput data, 192MB mapreduce split size, 64MB block size
41 nodes, 400G inpput data, 128MB mapreduce split size, 64MB block size
41 nodes, 400G inpput data, 256MB mapreduce split size, 64MB block size

Test results are put into following spreadsheet:
https://spreadsheets.google.com/ccc?
key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
Because test programs inputsink and linecount gives similar results,only test results of
inputsink is included in the spreasheet.

Plots and details of tests are written in doc https://docs.google.com/document/d/
17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#. Here I just put
observations below.

Observations

Job run time vs. Mmax

● The relationship is NOT linear. Ideally, job run time should be inversely proportional to
Mmax. But the plots show this is not the case.
When Mmax is small, increasing Mmax can bring significant benefit so that job run time is
decreased drastically. This works because increasing Mmax also increases concurrency.
When Mmax becomes big (more than 32), job run time does not change much. For some
tests, to increase Mmax from 32 to 64 even results in increase of job run time. This means
competition of resources outweighs benefit of higher concurrency.

● Random scheduling performs worse than default scheduling.
● There is additional overhead when 1) number of maps is increased 2) input size is

increased.
○ The more maps run on each node, the more overhead it incurs.

https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://spreadsheets.google.com/ccc?key=0AnYKsmvRoSiodFFCaXRfQUcxbC1vX3ZKWVpZSnJENkE&hl=en&authkey=CI3A0JgK
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#
https://docs.google.com/document/d/17GYvQZrChH_3YC_F8_xpNTYldIfqvu4MUmHJOZPY_78/edit?hl=en#

○ The larger input data is, the more overhead it incurs.

Following table shows job run time of tests run on 20 nodes.

0.5 random default random

Maps 400G 100G Times
 1 5739 1327 4.32
 2 2686 582 4.61
 4 1822 404 4.50
 8 1643 360 4.56
10 1193 248 4.81
32 1018 207 4.91
64 1040 111 9.36

Maps 400G 100G Times
 1 5711 1329 4.29
 4 2554 538 4.74
 8 1868 315 5.93
10 1594 277 5.75
16 1187 231 5.13
32 988 151 6.54
64 955 138 6.92

Maps 400G 100G Times
 1 5754 1321 4.35
 4 2761 625 4.41
 8 1932 438 4.41
10 1869 370 5.05
16 1231 262 4.69
32 1107 185 5.98
64 1050 168 6.25

Field “Times” is result of dividing run time with 400G input data by run time with 100G input
data.

● From above table, we can see the more data is processed, the longer it takes.
● Job run time is not inversely proportional to input data size.

slowdown =
As Mmax is increased, slowdown is increased even through job run time is decreased.
This means when Mmax is big, processing large amount of data is not efficient compared
with processing small amount of data.

Job run time vs. number of nodes
Following table shows speedup resulting from increase of number of nodes. (400GB data is
processed)
For Hadoop cluster, one node is master and other nodes are slave.

maps

(num of slave nodes)
40 30 20 10

(num of slave nodes)
40 30 20 10

default 1
4
8
10
16
32
64

1431 1904 2852 5711
608 787 1180 2554
422 463 756 1868
331 434 699 1594
261 354 572 1187
222 259 440 988
296 294 443 955

(above is job run time)

3.99 2.99 2.00 1.00
4.20 3.24 2.16 1.00
4.42 4.03 2.47 1.00
4.81 3.67 2.28 1.00
4.54 3.35 2.07 1.00
4.45 3.81 2.24 1.00
3.22 3.24 2.15 1.00
4.23 3.47 2.19
(Above is speedup)

0.5
random

1
4
8
10
16
32
64

1460 1910 2856 5739
667 880 1298 2686
481 612 931 1822
399 530 787 1643
305 382 548 1193
226 254 394 1018
281 288 408 1040
(job run time)

3.93 3.00 2.00 1.00
4.02 3.05 2.06 1.00
3.78 2.97 1.95 1.00
4.11 3.10 2.08 1.00
3.91 3.12 2.17 1.00
4.50 4.00 2.58 1.00
3.70 3.61 2.54 1.00
3.99 3.26 2.19

random 1
4
8
10
16
32
64

1459 1905 2853 5754
706 957 1370 2761
506 645 1026 1932
440 557 836 1869
328 418 634 1231
245 271 461 1107
299 278 534 1050
(job run time)

3.94 3.02 2.01 1.00
3.91 2.88 2.01 1.00
3.81 2.99 1.88 1.00
4.24 3.35 2.23 1.00
3.75 2.94 1.94 1.00
4.51 4.08 2.40 1.00
3.51 3.77 1.96 1.00
3.95 3.29 2.06

Following table shows speedup all referred to the case Mmax=1, Nslave_nodes = 10 and default
scheduling.

maps
(num of slave nodes)

40 30 20 10
(num of slave nodes)

40 30 20 10

default 1
4
8
10
16
32
64

1431 1904 2852 5711
608 787 1180 2554
422 463 756 1868
331 434 699 1594
261 354 572 1187
222 259 440 988
296 294 443 955
(above is job run time)

 4.0 3.0 2.0 1.0
 9.4 7.2 4.8 2.2
13.5 12.3 7.6 3.0
17.2 13.1 8.2 3.6
21.9 16.1 10.0 4.8
25.7 22.0 13.0 5.8
19.3 19.4 12.9 6.0
(Above is speedup)

0.5
random

1
4
8
10
16
32
64

1460 1910 2856 5739
667 880 1298 2686
481 612 931 1822
399 530 787 1643
305 382 548 1193
226 254 394 1018
281 288 408 1040
(job run time)

 3.9 3.0 2.0 1.0
 8.6 6.5 4.4 2.1
11.9 9.3 6.1 3.1
14.3 10.8 7.2 3.5
18.7 14.9 10.4 4.8
25.3 22.5 14.5 5.6
20.3 19.8 14.0 5.5
(Above is speedup)

random 1
4
8
10
16
32
64

1459 1905 2853 5754
706 957 1370 2761
506 645 1026 1932
440 557 836 1869
328 418 634 1231
245 271 461 1107
299 278 534 1050
(job run time)

 3.9 3.0 2.0 1.0
 8.1 6.0 4.2 2.1
11.3 8.9 5.6 3.0
13.0 10.2 6.8 3.0
17.4 13.7 9.0 4.6
23.3 21.1 12.4 5.2
19.1 20.5 10.7 5.4
(Above is speedup)

● As we expect, the job completion time is decreased as we increase number of nodes.
● Default scheduling has highest speedup. Random scheduling has low speedup.
● The speedup is proportional to number of nodes.
● Speedup gains its maximum value when number of maps is not too small or large.

Initially, as number of maps increases, speedup increases as well.At some point,
speedup becomes maximum. Beyond that point, speedup decreases as number of maps
is increased.

Normalized job run time I
(eliminate factor of number of nodes)

1. When Mmax is small (1 - 4)
a. size of input data does not have significant impact on I.

2. When Mmax becomes big,
a. the more data is processed, the bigger I becomes.

3. When Mmax is small, no matter how many nodes the system has and how much data is
processed, I is pretty close.
As Mmax is increased, the difference between I with different input data size is increased.

Normalized job runme I2
(eliminate factors of number of nodes and Mmax)

● Efficiency gets worse as Mmax is increased.
This means increasing concurrency by increasing Mmax always results in decrease of
efficiency.
In worst case, it is 10x slower than ideal speedup.

● When Mmax is small, no matter how many nodes the system has and how much data is
processed, I is pretty close.
As Mmax gets larger (beyond 16), different system configurations in terms of number of
nodes and amount of input data result in diverse I2.

Map execution time
● For fixed number of nodes, the larger the input data is, the longer each map task

executes.

● Random scheduling performs worse than default scheduling. The more nodes there are
in the system, the smaller is the performance difference.

● As Mmax is increased, map execution time is increased as well.
● Combining above three observations, we get the conclusion that the average map task

run time is proportional to

● Both mean and standard deviation increases monotonically with increase of Mmax.
However, the slope changes.
So one subsequence of increasing Mmax is increase of map execution time. This is
because of competition of resource usage.

● So increasing Mmax is a double-edged sword.
a. It increases concurrency by P times.
b. It increases overhead by Q times because of resource usage contention.

The final outcome depends on effect of above two factors. If P > Q, it decreases job run
time. If P < Q, it increases job run time.
P/Q = speedup => Q=P/speedup

Importance of Data locality
When Hadoop runs in cluster with high speed connections, whether data locality is critical
depends on Mmax.

● I assume nodes in a FutureGrid cluster are located on 1 rack.
 Based on my test, the speed of switch is 1Gbps. So pairwise connection among nodes
is 1Gbps. This is comparable to disk I/O throughput.

● Random scheduling performs worst.

● Approximately, when Mmax changes from 1 to 8, the slowdown of random scheduling
(compared with default scheduling) is between 0% - 50% and proportional to Mmax. This
means data locality is increasing critical with increase of Mmax.
When Mmax becomes larger than 8, slowdown drops. This means data locality
becomes less critical.
When Mmax is larger than 32, data locality is not critical at all. One explanation is that
resource competition and other overhead outweigh effect of data locality. For some
tests, random scheduling performs even better than default scheduling.

● For Hadoop cluster on Wide Area Network, we guess data locality is more critical
generally.

●

Single Cluster
Following plots show slowdown of random scheduling:

(job_runtime_random - job_runtime_default) / job_runtime_default

So the baseline is default scheduling.

Randomness
Following tests are done in Alamo using 11 nodes (1 master and 10 slave) to process 50GB
data. Randomness is varied (0.3 random, 0.5 random, 0.5 random, random) to see its effect on
performance. Again the baseline is default scheduling.

Cross cluster
1 EC2 instance and 1 polargrid machine are used. Mmax is 1, 2 and 4.

Foxtrot and Sierra, cross-cluster tests (HDFS and MapReduce use the same
nodes)
5 VM instances from foxtrot and 5 VM instances from sierra, ViNe is used to build virtual
network. 1GB input data. Because of abnormally slow interconnection (compared with
maximum possible throughput), this test result is not accurate.

From the plot, we see that random scheduling degrades performance a lot (around 2500%).
When Mmax is 1, default scheduling and random scheduling both have non-local scheduling
(remember that default scheduling uses best-effort strategy to satisfy data-locality
requirement). Because of slow cross-cluster interconnection (described in detail below), one
non-local map task can slow down the whole process a lot. Rack-local data access is faster
than cross-cluster data access by 510 times.

The reason is slow interconnection between VM instances in foxtrot and VM instances in sierra.

Pair of nodes tested Network
throughput

Tools used

foxtrot vm1 ↔ foxtrot vm2 (TCP) 941 Mbps netperf

sierra vm1 ↔ sierra vm2 (TCP) 940 Mbps netperf

foxtrot head node ↔ sierra head node
(TCP)

60 Mbps scp

foxtrot vm ↔ sierra vm (TCP) 1.84 Mbps netperf (use -l 200
based on Mauricio’s
comment)

foxtrot vm ↔ sierra vm (UDP) 280 Mbps netperf (with -l 200)

Table 3. Network throughput test
Several observations

1. VM layer does not incur much overhead because inter-VM connection with the same
cluster is close to theoretical limit (I assume it is Giga network)

2. Interconnection between foxtrot and sierra is much lower than Giga speed.
3. On virtual network, cross-cluster connection becomes slower compared with physical

network without ViNe being involved.
Mauricio said that ViNe has been tested to process traffic up to 800Mbps.

For item 2 and 3, still not clear about what is the cause.

Sierra and Hotel, cross-cluster tests (HDFS and MapReduce use the same
nodes)
Test environment: 5 Nimbus VM’s in Hotel, 5 Nimbus VM’s in Sierra. 10GB input data.
Note: ViNe is not used.

Throughput of network connection is shown below:

Pair of nodes tested Network throughput Tools used

hotel vm ← sierra vm (TCP) 268.52 Mbps netperf, runs for 20 seconds

hotel vm → sierra vm (TCP) 107.48 Mbps netperf, runs for 20 seconds

hotel vm ← sierra vm (TCP) 133.83 Mbps netperf, runs for 100 seconds

hotel vm → sierra vm (TCP) 91 Mbps netperf, runs for 100 seconds

hotel vm ← sierra vm (TCP) 54 Mbps netperf, runs for 200 seconds

hotel vm → sierra vm (TCP) 69.03 Mbps netperf, runs for 200 seconds

hotel vm ← sierra vm (TCP) 48 Mbps netperf, runs for 300 seconds

hotel vm → sierra vm (TCP) 126.68 Mbps netperf, runs for 300 seconds

hotel vm ← sierra vm (UDP) 903.10 Mbps netperf, runs for 200 seconds

hotel vm → sierra vm (UDP) 961.52 Mbps netperf, runs for 200 seconds

India and Hotel, cross-cluster tests (HDFS and MapReduce use the same nodes)
5 physical nodes from hotel and 5 physical nodes from india. 10GB input data.
Following plots show impact of random scheduling. First plot shows job run time and second
plot shows percentage of slowdown.
From the plots, we can tell job run time is negatively correlated to randomness. The more
random the scheduling policy is, the longer a job runs.
Approximately, random scheduling (100% random) slows down job execution by 2% - 20%.

Comparison with single-cluster tests

We ran both cross-cluster and single-cluster tests.

Cross-cluster tests: 5 nodes in India and 5 nodes in Hotel
Single-cluster tests: 10 nodes in India
Data size: 10GB
Following three plots show the comparison. Note: they show the same results in
different ways.

● Raw job run time comparison:

● Log-scaled run time comparison (logarithm is applied to run time):

● Normalized job run time (All results are normalized to the result of the intra-cluster
test with 8 mappers):

Comparison of single-cluster tests and HPC-style setup
HPC-style setup means storage and computation are separated.
In my tests, HDFS (for storage) runs on 10 nodes in Hotel, and MapReduce (for
computation) runs on 10 nodes in India.

!!!Note: for this setup, our scheduling algorithms (random, default, etc) don’t make
difference because data accessing is remote (cross cluster) anyway.

Results
 mapp

ers
Single
Cluster

Cross
Cluster

HPC-Style
Setup

Default 1
2
4
8

10
16
32

154
72.5
40.2
42

24.7
24.4

154
73
44
43
28

160.7
84.9
57.2
53.2
36.6
32.2

0.5
Random

1
2
4
8

10
16
32

153.7
73.2
46.9
43.1
31.5
32.0

155
80
48
49
30

160.7
84.9
57.2
53.2
36.6
32.2

Random 1
2
4
8

10
16
32

155
76.1
52.3
47.9
33.6
29.5

155
82
53
51
32

160.7
84.9
57.2
53.2
36.6
32.2

Following three graphs show the same results in different ways.

● Raw job run time

● Log-scaled job run time

● Normalized job run time

Summary for cross-cluster tests

Environment Slowdown of random scheduling

VM 20% - 90%

VM + ViNe 10% - 3000%

Physical nodes 2% - 20%

Slowdown of job execution is positively correlated to randomness of scheduling. The more
random the scheduling strategy is, the severer performance degradation becomes. Using VM
adds additional overhead (25% - 250%). Usually, as max number of map tasks per node is
increased, job run time is decreased.

More investigation

● Following graph shows the run time for 8 mappers per node and 32 mappers per node.
Data size is fixed to 400GB. Number of nodes varies in the plot. All data is normalized
to the result of the test with 10nodes, 400GB input, 8 mappers per node and default
scheduling.

In following graph, the speed up is calculated using: job_runtime/ baseline_runtime

