
Integrating Task Parallelism in Data Parallel Languages for
Parallel Programming on NOWs

Binu K J, D Janaki Ram

Distributed and Object Systems Group

Department of Computer Science and Engineering

Indian Institute of Technology Madras, Chennai - 600 036

India

Email: binu@lotus.iitm.ernet.in, djram@lotus.iitm.ernet.in

Abstract

A number of high level parallel programming platforms for Network of Work-

stations(NOWs) have been developed in the recent times. Most of these platforms

target to exploit data parallelism in applications. They do not allow expressibility

of applications as a collection of tasks along with their precedence relationships.

As a result, the control or task parallelism in an application cannot be expressed

or exploited. The current work aims at integrating the notion of task parallelism

and precedence relationships among constituting tasks to such high level data par-

allel platforms for NOWs. Our model of integration provides for arbitrary nesting

of data and task parallel modules. Also, the precedence relationships are clearly

reected from the program structure. The model relieves the programmer from

designing applications for non-determinism in the order of completion of consti-

tuting tasks. Design of the runtime support as well as system level bookkeeping

is discussed. The model is general enough to be applied to a wide range of data

parallel platforms. A speci�c case of integrating the model into Anonymous Re-

mote Computing(ARC), a data parallel programming platform is presented. The

performance related aspects are also discussed.

Keywords: Parallel Programming; Data Parallelism; Task Parallelism; Network of

Workstations; Loosely Coupled Distributed Systems; Distributed Problem Solving.

1 Introduction and Motivation

Data Parallelism refers to simultaneous execution of same instruction stream on di�er-

ent data elements. Several programming platforms target to exploit data parallelism

1

[1][2]. Control parallelism refers to the simultaneous execution of di�erent instruction

streams[2]. This is also referred to as task parallelism or functional parallelism[2]. Some

of the tasks that constitute the problem may have to honor precedence relationships

amongst themselves. The control parallelism with precedence constraints can be ex-

pressed as a task graph where nodes represent tasks and directed edges represent their

precedences. It is the parallel execution of distinct computational phases that exploit

a problem's control parallelism[3]. This kind of parallelism is important for various

reasons. Some of these are discussed below.

� Multidisciplinary applications: There is an increased interest in parallel multidis-

ciplinary applications where di�erent modules represent di�erent scienti�c disci-

plines and may be implemented for parallel computation[4]. As an example, the

airshed model is a Grand Challenge Application that characterizes the formation of

air pollution as the interaction between wind and reactions among various chemical

species[5].

� Complex simulations: Most of the complex simulations developed by scientists and

engineers have potential task and data parallelism[6]. A data parallel platform

would not be able to exploit the potential control parallelism in them.

� Software engineering: Independent of issues relating to parallel computing, treat-

ing separate programs as independent tasks may achieve bene�ts of modularity[7].

� Real time requirements: Real-time applications are characterized by their strict

latency time and throughput requirements. Task parallelism lets the program-

mer explicitly partition resources among the application modules to meet such

requirements[4].

� Performance: Task parallelism allows the programmer to enhance locality and

hence performance by executing di�erent components of a problem concurrently

on disjoint sets of nodes. Also it allows the programmer to specify computation

schedules that could not be discovered by a compiler[7].

� Problem characteristics: Many problems can bene�t from a mixed approach, for

instance, with a task parallel coordination layer integrating multiple data parallel

computations. Some problems admit both data and task parallel solutions, with

the better solution depending on machine characteristics or personal taste[7].

2

Very often, task and data parallelism are complementary rather than competing

programming models. Many problems exhibit a certain amount of both data parallelism

and control parallelism. Hence, it is desirable for a parallel program to exploit both data

and task parallelism inherent in a problem. A parallel programming environment should

provide adequate support for both data and task parallelism to make this possible[8].

2 A model for integrating task parallelism into data

parallel programming platforms

2.1 Expectations from an integrated platform

The expectations from a high level parallel programming platform stem from the nature

of applications which could utilize the platform. The requirements come from the desired

expressibility of the application, possible transparency in programming, exploitation of

parallelism, achievable performance optimizations for the application etc.

� Expressibility: In order to exploit parallelism in an application, the program must

express potential parallel execution units. The precedence relationships among

them also must be expressed in the program. An elegant expressibility scheme

should reect the task parallel units, data parallel units and precedence depen-

dence among the tasks in the program. This would ease programming, improve

readability and enhance maintainability of the code. However, the expressibility

that can be provided is inuenced by the nature and organization of the underlying

runtime support and the native language to which it is converted.

� Transparency: It is desirable to relieve the programmer from details relating to

underlying network programming. This results in the programmer concentrating

on his application domain itself. With network programming details coded in the

application, a major portion of the program will be unrelated to the application.

Consequently, such programs su�er from readability and hence maintainability.

� Performance: System level optimizations by the parallel programming platform

can improve performance of applications. In addition, the system can achieve

load balancing for the application, further enhancing performance. The run time

scheduling decisions by the system, both the time of scheduling and node to be

scheduled are the other factors that can improve performance.

3

Other desirable properties of the system include fault resilience, fault tolerance, ac-

counting for heterogeneity in machine architecture and operating system and portability

of application.

2.2 Programming model

The model permits a block structured speci�cation of the parallel program with arbitrary

nesting of task and data parallel modules. This is one of the most important quality of

an integrated model[8]. A block could be a high level characterization of a data parallel

module in accordance with the principles of the underlying data parallel platform. In the

model, the system takes the responsibility to intimate the user process when an event

of its interest occurs. Events of interests signi�es completion of one or more tasks which

meets the preconditions for another task that is waiting to be executed. This takes care

of the probability factor in the order of completion of tasks that constitute the program.

The model provides for templates by which events of interest could be registered with

the system.

The model aims at a parallel programming platform that permits expressibility for

task and data parallelism so that both could be exploited. In view of a large number of

existing data parallel programming platforms for NOWs, it would be useful to formulate

the problem as integrating task parallelism into existing data parallel platforms. This

poses some challenges. The data parallel model of computation of these platforms could

be di�erent. Consequently, the program structure favored by these platforms would be

di�erent. The system services provided by them viz. migration, result collection etc

could also be di�erent. Hence, at the programming level, the model restricts itself to

expressing tasks and their precedence relationships. This makes sure that an integration

of the model to an existing data parallel platform does not contradict its existing goals

and the rules by which it handles data parallel computation. Also, it inicts only minimal

disturbance to the existing system.

Another issue which crops up during the integration pertains to data parallel sub-

division of divisible tasks. The underlying data parallel model could be subdividing a

data parallel task into subtasks. These subtasks could be migrated to di�erent nodes

over the network. The underlying data parallel platform could be considering subtasks

as separate entities from the time it is spawned to its result collection. The platform

would have had no purpose to identify a task as a collection of subtasks that constitute

4

it. But, the completion of a task could be a signi�cant event in the proposed integrated

model since the system has to intimate the user process when an event of its interest

occurs. The completion of a task depends upon the completion of the subtasks into

which it is split by the underlying data parallel model. Hence, it becomes indispensable

to integrate to the existing system, the notion of a task as a collection of subtasks to

which it is divided.

The program expressibility of the model reects the task parallel blocks and prece-

dence relationships in the task graph. Two constructs viz. Task begin and Task and are

introduced to demarcate the blocks in the block structured code. Another construct, viz.

OnFinish is provided to specify the preconditions of tasks. The syntax and semantics of

these constructs are described below.

Task_begin(char *TaskName) OnFinish(char *WaitforTask, ...)

This marks the beginning of a block. Each block signifies a task. The

task name of the task it signifies is the only argument to the construct.

If the task has precedence relationships to be met, the Task_begin has

to be immediately followed by another construct viz. {\em OnFinish} with the

names of tasks it has to wait for as its arguments. If {\em OnFinish} is not

furnished, the parser will presume that there are no preconditions to the

task. {\em OnFinish} could have variable length of arguments.

Task_end(char *TaskName)

This marks the end of a block. The only argument is the name of the

task the block signifies.

2.3 Program Structure and Translation of a task graph

A sample task graph and its block structured code is shown to illustrate the expressibility

provided by the model. Also, it illustrates translation of a given task graph into the

program structure favored by the model. The task graph given in �gure 1 is used for

the same.

5

Task1 Task2

Task3 Task4 Task5

Task6

Figure 1: A sample task graph with precedence relationships

Task_begin(Task1)

...

Task_begin(Task3) OnFinish(Task1)

...

Task_end(Task3)

Task_end(Task1)

Task_begin(Task2)

...

Task_begin(Task4) OnFinish(Task1, Task2)

...

Task_end(Task4)

Task_begin(Task5) OnFinish(Task2)

...

6

Task_begin(Task6) OnFinish(Task3, Task4, Task5)

...

Task_end(Task6)

Task_end(Task5)

Task_end(Task2)

Pseudo Code 1 : The block structuring corresponding to the task graph in

Figure 1.

The outline program given above shows the expressibility of a task graph in the

model. At the �rst level, task1 and task2 could be executed in a control parallel fashion

at the beginning of the run itself. This is evident from their Task begin constructs, since

it is not followed by the construct OnFinish. A task which has to wait for another task

to �nish is written inside its predecessor task's block. Also, the Task begin construct of

such tasks would be immediately followed by the construct OnFinish which speci�es the

preconditions. In case where a task has to wait for more than one task, it can be placed

inside one of those blocks which represents a predecessor task. But, its OnFinish should

carry the name of all its immediate predecessors This could be seen from the OnFinish

directives of task4 and task6.

Typically data parallel platforms split divisible tasks to subtasks. Hence the model

provides for a call viz. task() to register a task as a collection of subtasks. The syntax

and semantics of the call is described in section 3.3.

2.4 Separation of System's and Programmer's concern

The system is organized such that the user process registers events of interest (completion

of one or more tasks) which are required in order to meet the precedence constraints and

the system in turn signals the user process on occurrence of any registered event. This

relieves the programmer from designing applications for non determinism in the order

of completion of tasks.

With the program translation capabilities that is provided, the model relieves the pro-

7

grammer from network related code. Another responsibility rested upon the translator

is to contend with the conicting interests of expressibility and performance. Arguments

from the expressibility point of view favor a control structure that best reects the prece-

dence relationships in the code. This in turn would argue for structuring of programs

such that the pieces of code that are executed at the completion of its predecessor task

appear as a program segment inside the program segment of (one of) its predecessor task

itself. Such a structure suitably describes the task graph and contributes to the elegance

of the code. But, it does not support non-determinism in the order of completion of

tasks according to the ow of control permitted by traditional languages. Hence, to

alley the di�erences between these demands, the program translator allows a program

expressibility scheme which satis�es the expectations from the expressibility point of

view. This in turn is parsed and translated to a control structure that well answers the

concerns of non determinism.

The program translation provided with the current model permits a control structure

similar to the block structured code that programmers are familiar with. At the same

time, it reects the task graph and precedence relationships of the application. The

parser and sample translated code is described in section 4.1.

3 Integration of the model into ARC

3.1 ARC model of computation

In Anonymous Remote Computing(ARC) Paradigm[9], a parallel program for NOW is

written as a collection of several loosely coupled blocks called Remote Instruction Blocks

(RIB) within a single program entity. An RIB is a code fragment that can be migrated

to a convenient anonymous remote node at run time for execution. RIBs do not involve

any mechanism of process creation or inter-task communication at the programming

language level. The nodes at which RIBs are to be executed remains anonymous to

the program. The ARC runtime system decides the nodes for RIB execution. At a

given time, multiple programs could be generating RIBs and multiple anonymous remote

participants could be joining or leaving the ARC system. ARC addresses heterogeneity

in architecture and operating system, fault tolerance, load balancing with other load

coexisting and resilience to changing availability of nodes. However, ARC targets data

parallel applications. The control parallelism along with their precedence relationships

8

cannot be expressed in ARC.

In order to achieve load balancing, the ARC model provides a system service which

can be availed by the user program to get the current availability and load of machines.

The user program can use this information, along with the machine handles returned

by the call to migrate his RIBs to least loaded machines. For data parallel modules,

the load ratio on machines could be used to decompose the domain of computation to

achieve load balancing. Subsequently, each grain of computation can be migrated to the

corresponding machines, along with the relevant initial data. The ARC model provides

two calls for functionalities related to result collection. Availing these services, the user

program can get the status of a submitted task as well as collect the results when they

are ready. The syntax and semantics of the calls supported by ARC are given below.

LFmessage get_load_factor(int numberOfMachinesNeeded)

This call is used to obtain information about various machines available

in the system and their loads. The argument to this call is the number of

machines required. The return value is a structure which gives the number

of machines actually available, their load information, and machine

indices which is used by the underlying system to identify the machine.

ARC_function_call(char *funct_name, int timeout, int retries, char *

arg_data, int arg_size, int result_size, int machine_index, int tag)

This call is used to submit a task. The first argument specifies the

function that specifies the task. The second argument is the timeout

period. The third argument is the number of retries that should be made.

The fourth argument is the raw data that represents the arguments to the

task. The fifth argument is the size of the result. The next argument is

the index of the machine, obtained using get_load_factor call. The last

argument is the tag to identify the particular task submitted. The value

of tag is returned by the call.

char *obtain_results(int tag);

9

This call is to collect results of a task. The only argument is the

unique id of the task. The call blocks till results are available.

int peek_results(int tag);

This is a non blocking call for a program to check if the results are

available. The only argument is a tag for the piece of computation of

which result is requested. Return value is 1 if the results are available,

else it is -1. When the results are available, it can be collected by

obtain_results call.

3.2 Outline of ARC runtime support

This subsection outlines the runtime support of ARC[10]. The support consists of a

daemon running on each machine present in the pool of machines which cooperate for

parallel computation. This daemon is termed local-coordinator (lc). It is the responsi-

bility of the lc to coordinate the processes initiated on the machine on which it runs.

Any process which intends to make use of the system services registers itself with the lc

that runs on its machine. This is done by the call initialize ARC. Complementing the

call is close ARC which de-registers the user process from the system. The syntax and

semantics of the calls are given below.

void initialize_ARC(void);

It takes no arguments and returns no values. It registers the user program

with the runtime system. In response to this call, the 'lc' allots an

exclusive communication channel between the 'lc' and the user program for

subsequent communication.

void close_ARC(void);

It takes no arguments and returns no values. It de-registers the user

program from the runtime system. The system updates its tables accordingly.

10

One of the machines in the pool is selected to run a daemon which coordinates the

local-coordinators of all the machines which participate in the pool. This daemon is

termed system coordinator sc. The sc keeps track of the lcs in the pool and hence the

machines participating in the pool. It also facilitates communication between individ-

ual local-coordinators. The local-coordinator and system coordinator communicate by

virtue of prede�ned messages (through a dedicated channel). Similarly, the user process

communicates with the local coordinator by prede�ned messages. In a typical session,

a message session sequence would be initiated by the user process by sending a message

to its lc . The lc, in turn, sends the appropriate message to the sc. The sc may either

reply to this message or send a message to another lc if required. In the �rst case, the lc

on receiving the message would generate and send a message to the use process which

initiated the sequence. In the latter case, the lc which receives the message from the sc

would send a reply on completion of the responsibility. This message would be passed

to the lc which initiated the sequence. The local coordinator would generate and send

a message to the actual user process which initiated the message sequence.

3.3 The Integrated Platform

The integration of the model into the ARC framework includes providing for additional

function calls and modi�cations to the the existing runtime support. The crux of such

modi�cations are presented in the section.

The additional calls supported include a call to register a task as a collection of

subtasks, calls to initialize and close the system and a call to register events of interest

with the system. The ARC model permits the decision of the number of subtasks at

run time. Also di�erent tasks could be divided into di�erent number of grains. For

these reasons, the call to register a task as a collection of its subtasks, viz. task(),

provides for a variable length argument. Responsibilities of the calls to initialize and

close the system viz. TaskInit() and TaskClose() are trivial. The call to register event

viz. RegisterEvent() is inserted by the parser during program translation.

The syntax and semantics of the calls are given below.

int task(char *TaskName, int SubTaskId, ...)

11

The call registers a task as a collection of subtasks. The first

argument is the task name itself. The second argument is an integer which

denotes a subtask. If the task is not subdivided, the task_no itself is

to be furnished here. If the task is subdivided, there could be more

arguments each of which represents a subtask. The number of arguments

depends on the the number of subtasks that constitute the task. The return

value is either SUCCESS or ERRNO corresponding to the error.

int RegisterEvent(int EventId, char* TaskNames, ...)

The call registers an event of interest with the system. The first argument is the

event identifier. Following it is a variable length argument list of task

names constituting the event. The return value is either SUCCESS of ERRNO

corresponding to the error.

The modi�cations to the runtime support of ARC could be summarized as additional

table management, additional message protocols between daemons and minimal changes

to system's response to some existing messages. Additional table management includes

mapping tasks to their subtasks, storing the events of interest for a process and status

of �nished tasks. Additional message protocols are those to access and modify these

tables. There has been an inevitable change to existing system. This was to make the

system generate a message to a user process when an event of its interest occurs. In

ARC, a task can be considered to have �nished its execution only when all its subtasks

�nish their execution. The local lc gets a message from remote lcs when the subtasks

given to them �nish their execution. The ARC lc stores the result and waits for the user

process to ask for it. In the integrated system, the lc has an additional responsibility

when a subtask returns. It checks if the subtask that has �nished is the last subtask

of the task. If the task can be considered to have �nished its execution, it would check

the status of �nished tasks and events of interest to �nd out if any event of interest to

the user process has occurred with the completion of the task. If an event of interest

has occurred with the completion of the task, it initiates a message sequence to intimate

the event to the corresponding user process. Additional messages are de�ned in order

to achieve the same.

12

3.4 A sample block in the integrated platform

The program structure of the integrated platform would be same as the one shown with

the model. It has been mentioned earlier that the code inside a block would be meant

for the platform to which the model is integrated. A sample block is given to provide

a comprehensive view of the integrated platform. The semantics of the calls have been

discussed in section 3.1.

Task_begin(TaskN) OnFinish(TaskM)

// Collect the results of an earlier task for subsequent processing.

// The earlier task was data parallelized into two parts with

// TaskMTag1 and TaskMTag2 representing subtasks.

ObtainResults(TaskMTag1);

ObtainResults(TaskMTag2);

// GetLoadFactor returns a structure which gives details of the

// available machines, their loads, processing powers etc.

// The only argument specifies the maximum number of machines

// sought for.

MachineAvailability = GetLoadFactor(3);

if (MachineAvailability.Count == 3)

{

// Data parallelize into 3 with the division based on the

// load and processing power of three machines returned.

ARC_function_call(TaskN, ..., TaskNTag1);

ARC_function_call(TaskN, ..., TaskNTag2);

ARC_function_call(TaskN, ..., TaskNTag3);

task(TaskN, TaskNTag1, TaskNTag2, TaskNTag3);

}

13

if (MachineAvailability.Count == 2)

{

// Data parallelize into 2 with the division based on the

// load and processing power of three machines returned

ARC_function_call(TaskN, ..., TaskNTag1);

ARC_function_call(TaskN, ..., TaskNTag2);

task(TaskN, TaskNTag1, TaskNTag2);

}

if (MachineAvailability.Count == 1)

{

// Cannot be data parallelized due to non availability

// of nodes. Hence run as a sequential program.

ARC_function_call(TaskN, ..., TaskNTag1);

task(TaskN, TaskNTag1);

}

Task_end(TaskN)

Pseudo Code : A typical block in the integrated platform.

The code shows how ARC decides the number of sizes of grains of computation at

runtime after collecting the load information. Also, note that the arguments to the

task() call reect the actual division employed. The block is marked by Task begin and

Task end. OnFinish speci�es the precondition of TaskN as the completion of TaskM.

4 Design and Implementation

The parser for program translation, the local coordinator daemon for user process co-

ordination, the system coordinator daemon for coordination of the pool of workstations

and functional library support to avail system services are the constituent elements of

the system.

14

4.1 Parser

The parser translates the program submitted by user to the �nal runnable program. This

involves insertion of appropriate network related code, translation of the pseudo control

structure provided by the model to one which is supported by the native language,

construction of events of interest to the user process and transparent insertion of some

system service calls.

In the �rst scan of the user submitted program, parser constructs the precedence

graph. It marks the tasks which do not have any precedence relationship to be met. It

�nds the events of interest to the user process. The calls to register these events with

the system are inserted in the code. A header �le is generated to de�ne the event names

and the �le is included in the user program �le. This permits event names itself to be

used as cases in the �nal at switch-case structure. The tasks which do not have to

meet any precedence relationships are extracted and placed before the at switch-case

structure since they could be executed without waiting for any events.

In the second scan, the parser constructs an in�nite loop which waits on a socket to

read event interrupts. Inside the loop is placed a switch case structure with event names

as cases. The body of a case is the code fragment of the task which waits for the event.

This control structure is a at one unlike the control structure permitted by the model.

The termination would become part of the case which corresponds to the �nal task.

The prototypic version of parser developed can convert the code only to one native

language, viz. C. It is relatively straightforward to extend the scope of the parser to

cater to other native languages.

Below given is a sample translated code. The code is obtained by translation of

Pseudo Code 1. The transformations by the parser could be seen by mapping the

sample translated code with Pseudo Code 1.

/* Sample Defines file */

#define EVENT_Task1 1

#define EVENT_Task2 2

#define EVENT_Task1_Task2 3

#define EVENT_Task3_Task4_Task5 4

15

/* Register Events */

RegisterEvent(EVENT_Task1, "Task1")

RegisterEvent(EVENT_Task2, "Task2");

RegisterEvent(EVENT_Task1_Task2, "Task1", "Task2");

RegisterEvent(EVENT_Task3_Task4_Task5, "Task3", "Task4", "Task5");

/* Contents of the Block for Task1 */

...

/* Contents of the Block for Task2 */

...

while(1)

{

Event = WaitForEvent();

switch (Event)

{

case EVENT_Task1 :

/* Contents of the Block for Task3 */

...

break;

case EVENT_Task2 :

/* Contents of the Block for Task5 */

...

break;

case EVENT_Task1_Task2 :

/* Contents of the Block for Task4 */

...

break;

case EVENT_Task3_Task4_Task5 :

16

/* Contents of the Block for Task6 */

...

exit();

break;

}

}

Pseudo Code : A translated code for Pseudo Code 1

4.2 Local Co-ordinator daemon

Each workstation which enrolls in the pool of machines for parallel computation runs a

daemon viz. localdaemon(lc). The user processes communicate and interact with the

system through the lc. Servicing requests from the user processes, linking the node

on which it is run to the system and book keeping for the user process running on its

machine are the responsibilities of lc.

INIT Initialized

SC Msg

Processed Processed

User Process
 Msg

Error Error

RECVD

SC Msg

ERROR

LISTEN

UP Msg

RECVD

Figure 2: FSM of LC

Fig. 1 gives the �nite state machine of the lc. In the INIT state, lc initializes its

data structures and cleans up the auxiliary system �les left behind by and earlier lc

17

process. After this, it establishes a TCP socket connection with the sc and registers

itself with the sc. In LISTEN state, the lc checks for messages from the sc and waits

for user programs to register with the system. On a message from sc, it transits to SC

Msg RECVD state where it services the message. On a message from a user process,

it transits to UP Msg RECVD where it services the request from user process.

The initial communication between a process and the lc is through a known common

channel. This is for a user process to get itself registered with the local coordinator.

Once it is registered with the local coordinator, it is given an exclusive communication

channel though which subsequent communication is e�ected. When the local coordinator

is initiated, the communication with the system coordinator is e�ected by giving the

address of the machine on which the system coordinator is run as a command line

argument.

The tables maintained by the lc could be distinguished as those required to support

task parallelism and others. This separation eases a clean integration of task parallelism

into the existing systems. In ARC, the local coordinator maintained three tables, viz

viz. Program and Task Table(PTT), Recovery Information Table(RIT), and Results List

Table(RLT). PTT maintains the mapping between the process ids of the processes on

the machine and the socket descriptors of the sockets that connects the processes to

the lc. It also demarcates processes as user processes initiated on the node and tasks

submitted by user processes on other nodes. RIT maintains information that is relevant

for recovery in the event of a failure. RLT stores the results of the tasks submitted by

user processes on the machine as and when they are available. This is stored till it is

claimed by the user process.

It could be seen that the system does not keep track of the subtasks which constitute

a task. The signi�cance of keeping track of subtasks that constitute a task was already

discussed. Hence, a new table, viz. Task Table (TT) is maintained which maps tasks

to the subtasks into which it is divided. This mapping is done on a per process basis.

The table is updated when a task is subdivided. The programming language interface

for updation of the table has already been discussed.

In the integrated system, the lc keeps track of the events of interest to the user

processes. It maintains a table, viz. Event Table (ET) for the purpose. It stores the

predeclared events of interest on a per process basis. The interface for updation of the

table is inserted by the parser by interpreting the events of interest from the user code.

Other than the additions of the above mentioned tables, their programming language

18

level interfaces, and the message sequences that it initiates, there are some modi�cations

to the existing lc. This is to make the lc inform the user process when an event of interest

occurs. A task �nishes its execution when the last subtask of the task �nishes. Hence,

when the lc gets an intimation of completion of a subtask from the sc, it checks if the

task has �nished its execution with the subtask that has returned. If the task is over, the

lc checks to see if it triggers any event of interest. If so, the lc initiates a message to the

user process intimating the occurance of the event. TT and ET are the tables consulted

by the lc in order to accomplish the job. In cases where completion of a subtask results

in more than one event of interest, they are intimated with separate messages one after

the other. Below given are the structure of Event Table and Task Table.

struct EventTable

{

int EventIdentifier; // Event Name

char ** WaitForTaskNames; // Task Names for this Event

BOOLEAN* TasksOver; // Task Completed Array

int NumberofWaitForTask; // Number of Task for the Event

}

struct TaskTable

{

char TaskName[TASKNAME_LENGTH]; // Name of the Task

int * SubTaskIdentifier; // Sub task indentifiers

BOOLEAN * SubTaskOver; // Sub task completion status

int NumberofSubTask; // Number of subtasks

}

19

4.3 System Co-ordinator daemon

The System Co-ordinator(sc) coordinates the set of lcs that constitutes the system. The

sc maintains the global information of the system. Also, for small sessions, the sc routes

the messages between lcs so that the overhead for frequent connection establishment

and closing is minimized. The sc is connected to lcs through TCP sockets. The message

structure includes a �eld to indicate the destination address in order to facilitate this.

The sc that is employed by the ARC is a fairly thin deamon with minimal information

stored and hence scales up quite well with respect to the number of lcs that participate

in the pool.

INIT
Initialized

Processed
LC Msg

ERRORError

RECVD

LC Msg

LISTEN

Figure 3: FSM of SC

In the state INIT, sc cleans up the current directory for any auxiliary system �les

left behind by an earlier sc process. It then initializes its structures. In the LISTEN

state, the sc polls for connection requests from lcs and registers them with the system,

establishing a TCP socket between itself and the lc. It then listens for messages from

the lcs on these exclusive channels, and services the requests. The sc remains in this

state throughout its lifetime or till it encounters an error.

Our implementation for the integration of task parallelism into ARC does not disturb

the existing sc.

20

5 Applications

Applications with coarse grain control parallelism or coarse grain data parallelism or

both are the target of our platform. The motivation of the work has already discussed

some broad classes of applications that could potentially bene�t from the platform. In

addition, here we will discuss some speci�c applications.

Many applications in signal processing have potential coarse grain control and data

parallelism. A good proportion of signal processing applications does some form of signal

transformation. These transformations are typically followed by a �ltering module which

�lters the transformed signal. The inverse of the transformation could follow the �ltering

stage. As an example, an application could consist of a Fourier transform followed by

some �lter module that is dependent on the purpose of the application which is followed

by the inverse Fourier transform. Fourier transform and its inverse are amenable to

data parallel computation. So is the case with many other signal transforms. The

exploitation of parallelism in signal processing becomes even more important in real

time signal processing.

Here, we discuss exploitation of parallelism in one such applications, viz. Speaker

Veri�cation Problem. The speaker veri�cation program starts with a sample of the time

domain signal. A solution to the problem starts with a linear predictive analysis[11]

of the input time domain signal to yields linear predictive(LP) co-eÆcients. From the

set of LP co-eÆcients is obtained LP Cepstrums which are features of the input signal.

There are di�erent methods to obtain evidences for veri�cation from the LP Cepstrums.

Gaussian Mixture Model(GMM) method[12], Neural Network Methods etc. are some

examples. Some methods prove better than the rest according to the nature of input

set. Di�erent methods could be applied control parallely on the same set of LP Cep-

strums. Constraint Satisfaction Model[13] combines evidences obtained from each of

these models. Each of the methods, in turn, could exploit the data parallelism in it.

Below given is a sample pseudo-code for the application on the integrated platform.

LPAnalyse();

ComputeLPCepstrums();

// GMM and NeuralNet blocks are Task parallelized

Task_begin(GMM) // Start of GMM ARC block

21

GMM

 Model
Constrained Satisfaction

Compute LP Cepstrum

Linear Predictive
Analysis

Neural Net
Method.

Figure 4: Task graph of the application

// migrate to 4 lightly loaded nodes

GetLoadFactor(4);

// Data parallelized

ARC_function_call(GMM,...,GMMTag1);

ARC_function_call(GMM,...,GMMTag2);

ARC_function_call(GMM,...,GMMTag3);

ARC_function_call(GMM,...,GMMTag4);

Task_end(GMM)

Task_begin(NeuralNet) // Start of NeuralNet ARC block

// migrate to 3 lightly loaded nodes

22

GetLoadFactor(3);

// Data parallelized

ARC_function_call(NeuralNet,...,NeuralNetTag1);

ARC_function_call(NeuralNet,...,NeuralNetTag2);

ARC_function_call(NeuralNet,...,NeuralNetTag3);

// Wait for GMM and NeuralNet to complete

Task_begin(ConstriantStatisfactionModel) OnFinish(GMM, NeuralNet)

ObtainResult(GMMTag1);

ObtainResult(GMMTag2);

ObtainResult(GMMTag3);

ObtainResult(GMMTag4);

ObtainResult(NeuralTag1);

ObtainResult(NeuralTag2);

ObtainResult(NeuralTag3);

CalculateConstriantStatisfactionModel();

Task_end(ConstriantStatisfactionModel)

Task_end(NeuralNet)

The sample application that is chosen has a relatively simple precedence graph. One

reason for the same was to keep the pseudo-code as compact as possible.

6 Performance Analysis

The section presents performance related aspects of the work. The test bed for the exper-

iments consists of a heterogeneous collection of interconnected workstations with other

load coexisting. The problem that is considered has control as well as data parallelism.

The task graph of the problem is given in �gure 5.

23

T1 T2

T3 T4

T5

Figure 5: Task graph of the application

As the program starts its run, the two tasks viz. T1 and T2 can start its execution.

These two tasks do matrix multiplication on two di�erent sets of large matrices. Task

T3 is a user de�ned function to operate on the resultant matrix of T1. Similarly T4 is

a user de�ned function to operate on the resultant matrix of T2. T3 and T4 can start

execution only after the respective completion of T1 and T2. The average completion

time registered by T1 and T2 on a representative single machine falls between 20 and

25 mnts. These measurement comes at relatively lightly loaded CPU conditions though

there could be spurts of loads that occur during the period of run. The computational

requirement of T3 and T4 are dependent upon the values of the input itself. This would

cause another probabilistic factor in the completion time of these tasks. Consequently,

T3 and T4 registers an average completion time in the range of 8 to 20 mnts under same

conditions. T5 is executed when T3 and T4 completes its execution. In the problem

considered, T5 is a thin task with the only responsibility being collecting the results of

its two predecessor tasks. The task completion time of T5 is insigni�cant and hence not

considered for the analysis.

The control parallelism in the problem is by independent execution of two control

parallel arms in the task graph. The data parallelism in the problem is by data parallel

execution of each of the tasks T1, T2, T3 and T4.

In the �rst experiment, tasks T1 to T4 are data parallely executed on three nodes

each. The run is repeated 5 times and the time of completion of each of the tasks is

24

observed. During data parallel division, the then load conditions are taken. The grain

size of individual data parallel subtasks is determined using this load snap shots.

Table 1: Some sample scenarios(time in mnts)

No Crit T1 Crit T2 Crit T3 Crit T4 CritPath Di� Crit Path

1 7.9 9.1 5.3 4.7 13.8 -0.6

2 8.1 10.8 4.8 4.7 15.5 -2.6

3 11 8 7 5 18 +5.0

4 8 10.5 7.2 4.9 15.4 -0.2

5 11.2 8 4.8 7.1 16 +0.9

The time of completion of task is shown in the table as its critical path. The ter-

minology is adopted because a task is said to have completed when the last among its

subtasks completes. Along with the time of completion of T1 to T4 is given the larger

value of time of completion of the �rst and second arm of the task graph. The last

column gives the di�erence in the time of completion of the two arms.

The observations of interest from the experiments could be summarized as

� In spite of a task division policy based on runtime load conditions, the completion

time of tasks could vary considerably. It can be seen from the table that T1

registers a high of 11.2 in the 5th observation against a low of 7.9 in the �rst

observation, yielding a di�erence of 3.3 mnts, which is 41% of the lower value.

� Any of the control parallel arms could �nish before the other and the di�erence

in their completion time could be substantial. A negative value of di�erence in

critical path signi�es the �rst arm �nishing before the second and vice versa.

� The di�erence in critical paths of the arms could have cumulating or compensating

e�ects from the individual completion times of the tasks in the arms. Observation 3

shows the cumulating e�ect whereas observations 4 and 5 shows the compensating

e�ect.

� The values presented are taken without inducing any arti�cial loads. Under heavy

load uctuations or with arti�cially altering load, the probabilistic values would

uctuate even more.

25

The earlier experiment has brought out the probabilistic factors in the time of com-

pletion of tasks. The next set of values would present the e�ect of presupposing the

order of completion of tasks to schedule the subsequent tasks. In the table given, each

row is derived from the corresponding row of the last table. The �rst column shows

the critical path if T1 is waited for before T2 and the second column if the expected

sequence is opposite. The last column shows an event driven model.

Table 2: E�ect of various scheduling

No T3 T4 T4 T3 Event driven

1 13.8 14.4 13.8

2 15.5 15.6 15.5

3 18 18 18

4 15.4 17.7 15.4

5 18.3 16 16

The observations of interest from the experiments could be summarized as

� When the di�erence in critical path compensates in an arm, the di�erence in the

two scheduling schemes would be more. Observations 4 and 5 presents cases for

the same.

� When the di�erence in critical path cumulates in an arm, there will not be any

di�erence in the two scheduling schemes since the critical arm remains critical

however it is scheduled. Observation 3 presents a case for the same.

� The event driven scheduling always gives the same performance as the better of

the two schemes. As the task graph gets more complicated, there would be more

possible schemes and only one of them would perform as good as the event driven

model.

� The scheduling schemes that are referred above are mainly targeted at scheduling

the various arms of the task graph in an integrated task-data parallel model. These

strategies do not stem from a perspective of scheduling for load balancing.

The next experiment is conducted to show the e�ect of exploiting data parallelism,

task parallelism and both task and data parallelism. For comparison, the sequential

26

time of execution is also presented. The second column states the nature of parallelism

exploited. NOP stands for No Parallelism Exploited, DP for Data Parallelism Exploited,

TP for Task Parallelism Exploited and TDP for Task and Data Parallelism Exploited.

The other columns show the number of machines utilized for parallel computation and

the time of completion of the problem. The split up of the time of completion is also

shown.

Table 3: E�ect of Exploiting task and data parallelism(time in mnts)

No Parallelism #OfMachines TimeOfCompletion SplitUp

1 NOP 1 74.2 23 + 24 + 12 + 15.2

2 DP 2 41.7 14 + 14.2 + 6.5 + 7

3 DP 3 26.3 8 + 9 + 4.5 + 4.7

4 TP 2 36 24 + 12

5 TD 4 19.8 (13.3,12.7) + (6.5,5.2)

6 TD 6 13.2 (8.4,8.2,8.0) + (4.3,4.1,4.8)

The �rst row corresponds to the sequential execution of the problem. The split up

of total time is the time taken for T1 to T4 respectively. The second and third row

presents the results with data parallel execution on two and three nodes respectively.

The split up in this case also is the time taken for T1 to T4 respectively. The scaling

down of the time of execution is accounted by the data parallel execution of tasks. The

fourth row shows the task parallel execution on two machines. The split up in this case

is the time of tasks in the critical path. The last two runs employs both task and data

parallelism with two nodes per task and three nodes per task respectively. The split ups

in these cases are the time taken by data parallel subtasks of the tasks in the arm which

proves to be the critical path.

The observations of interest from the experiments could be summarized as

� The problem is a case where the task and data parallelism are complementary.

� The control parallelism in the problem saturates with the utilization of two nodes.

This is because there are only two control parallel arms in the application.

� The data parallelism in the problem starts saturating with the utilization of three

nodes. It could be seen from the third row that the the granule size has reached

27

around four minutes of execution time. Further subdivisions for parallelism does

not yield results because of the �xed time overheads of splitting the problem,

migrating the code and arguments, compiling the code and collecting the results.

� It could be seen that with the exploitation of both task and data parallelism,

six nodes are utilized for parallel execution before the same granule size of four

minutes is reached.

7 Guidelines for composing user programs

Composing a program over the platform involves translation of task graph of the appli-

cation to the �nal code. A task graph can be expressed as a directed graph with nodes

representing tasks and links precedence relationships. A task could be a starting task,

an intermediate task or the �nal task. Starting tasks are those which do not have to meet

any preconditions for their execution. Intermediate tasks have precedence constraints to

honor. The Final task is one which is responsible for termination of the program.

The Task begin of Starting tasks need no OnFinish directives whereas it is required

for the Intermediate tasks and the Final task. The Final task should take care of the

termination of the program. Else, the program will wait in an in�nite loop for further

events to come. In cases where there are more than one �nal task, the methodology

insist on keeping a single pseudo �nal task which takes care of termination.

It was mentioned earlier that the expressibility provided employs block structuring of

the code. A block designates a task and could contain other blocks in it. Blocks written

inside a block are those which can execute only after the completion of outer block. The

complete precedence requirements including the implications from the structure of the

code has to be speci�ed.

Tasks which has more than one precedence relationship to be met could be written

as a block inside any one of its parent blocks. In such cases, the choice of the parent

block is left to programmer's discretion. However, the placing of such blocks would not

have any e�ect on the translated code. It should be noted that such tasks should not be

placed in more than one parent blocks. Also, readability of the code can be enhanced

by placing appropriate comments wherever such discretions are made.

While composing programs with existing modules, programs for each tasks could be

available as individual �les. In such cases, the strucuring policy need not be strictly

28

followed. The only modi�cation that is to be done in such cases is to wrap the code for

each tasks with task demarcating constructs, Task begin and Task end along with their

OnFinish directives.

Passing of arguments to tasks should be done keeping in mind the syntax, semantics

and limitations of the call which supports it. Some systems are not designed for the

tasks to take more than one stream as argument. In such cases, the programmer has to

explicitly pack the argument streams before passing the argument and unpack it in the

target task.

The Register event calls are inserted by the parser itself. The call has atleast once

semantics. A redundant insertion of the call by the programmer would be ignored.

While programming for anonymous execution, no assumption should be made about

the underlying system. Though the portability of the system is provided, the portability

of the migratable user program has to be ensured by the programmer himself.

8 Related Work

There have been a few attempts at integrating task and data parallelism in the literature.

Notable ones include Opus [14], Fx [15], Data Parallel Orca [16] and Braid [17]. Opus

integrates task parallel constructs into data parallel High Performance Fortran (HPF). A

task in Opus is de�ned as a data parallel program in execution. Due to this heavyweight

notion of a task, inter-task communication is costly and hence Opus is suited only

for coarse grained parallelism. Fx also adds task parallel constructs into HPF. But it

uses directives to support task parallelism. It does not allow arbitrary nesting of task

and data parallelism. Data Parallel Orca uses language constructs to integrate data

parallelism into task parallel Orca. It has a limited notion of data parallelism as it does

not support operations that use multiple arrays. This is because Orca applies operations

only to single objects. Braid is a data parallel extension to task parallel Mentat. It uses

annotations to determine which data an operation needs. The four models are cases of

integrating task and data parallelism in speci�c languages. The proposed model, however

is a generalized methodology to integrate task parallelism into any data parallel language.

The model targets coarse grain task-data parallel computing on loaded NOWs. Further

it supports arbitrary nesting of task and data parallelism unlike the existing models.

The table 4 summarizes the comparison of our model with the existing works.

29

Table 4: Comparison of various task-data parallel integration models

System Fx Opus Data Parallel Braid Our Model

Orca

Aim Integrate task Integrate task Integrate Integrate Integrate

parallelism into parallelism data data task

data parallel into parallelism parallelism parallelism

HPF HPF into task into task into any

parallel parallel data

orca mentat parallel

language

Basis of Compiler Run Time RTS Annotation RTS

Implementation System(RTS)

Expressibility Restricted form Full Restricted Full Full

(exp) of task exp form of data exp exp

parallelism parallelism

Communication Shared Shared Shared Shared Dependent

between tasks address object object object on native

space data parallel

language

Grain Size Fine Coarse Fine Fine Coarse

30

9 Future work

Further challenge in transparent platforms for NOWs is to support communicating par-

allel tasks. The key issue in such an attempt is to provide message passing abstractions

in the premises of distribution transparency. Such an attempt can address problems with

patterns in their process interaction. Optimizations possible with di�erent interaction

schemes could be explored.

A generic speci�cation scheme for programs to specify the constraints on

task/subtask mapping could be explored. This, along with anonymous execution will

make it possible for the programmer to exploit the best of both. The constraints could

be inexible when a piece of code makes assumptions on the underlying system. The

set of constraints could also include directives by the programmer of some hidden possi-

bilities of optimizations that could be exploited. An approach to characterize nodes in

a pool of machines keeping in mind the spectrum of distributed computations could be

attempted.

Acknowledgements

We thank vijay and all other members of the Distributed & Object Systems Lab at IIT

Madras for their support.

31

Appendix

The section describes the messages that are exchanged between the daemons and the user

processes. Message exchanges occur between user process and the local coordinator on

its machine, local coordinators and system coordinator and between a local coordinator

and the processes which has migrated to its machine for execution.

The messages received by the lc are:

From the user program:

� get load factor: Prior to the submission of a set of tasks, a user program requests

for the load information of a required number of nodes. In response to this, the lc

forwards this message to the sc.

� take work: This is a task submission message. The destination is indicated in the

message itself, and this is followed by the string representing the RIB's source �le

name and the arguments to the task. The lc forwards this set of messages to the

sc after recording the information required for recovery.

� check results: This message is sent when the user program calls the peek results()

function. The lc checks in its structures for the presence of the required results

and sends a corresponding reply to the user program. The content of this reply is

the return value of the function.

� want results: This message is sent when the user program calls the obtain results()

function call. In response to this, the lc checks in its structures for the presence

of the required results and sends a corresponding reply to the user program. The

function call is blocking and sends this message repeatedly after a waiting period,

incorporating task re-submissions if necessary.

� user is terminating: This message says that the user program is terminating. In

response to this, the lc invalidates the user program related information maintained

in its structures.

� register event: This message is used by the user program to inform lc, the events

of its interest. In response to this, the lc updates the event table corresponding to

the user process.

32

� register tasks: This message is used by the user program to declare a task as a col-

lection of subtasks. In response to this, the lc updates the task table corresponding

to the user process.

From the sc:

� take load factor: This message is in response to an earlier get load factor message

sent on behalf of a user-program. It is followed by a message which represents the

actual load factors. This set of messages is forwarded to the user program.

� take work: This message represents a task submission. It is followed by the source

�le name for the task and the arguments to the task. The lc checks whether the

said task is already running, ie. whether the current message represents a re-

submission. If not, or it the task failed, the lc compiles the source �le and spawns

a task process to execute the task.

� take results: This message represents the results of an earlier submitted task. It is

followed by the actual result. The lc stores the result in its structures, so that it

can immediately respond to a want results or check results from the user program.

Also, with each of the take results, the lc checks if some event of interest registered

in the event table has occurred. If so, it informs the user process by generating an

event occurred message.

� generator failed: This message indicates that a particular user program has failed.

The lc uses it recovery information to track all the tasks created by this particular

user program and kills them, since they are no longer useful.

� LC is terminating: This message indicates that a particular lc has failed. The lc

uses its recovery information to track all the tasks created by the user programs

on the machine and kills them.

� terminate: This message is sent by the sc asking lc to quit. In response to this,

the lc quits.

From the task process:

� take results: This is a message from the task process saying that it has completed

the task assigned to it. This message is followed by the actual results of task

execution, after which the task process exists. The lc forwards the result to the

sc, after which, it invalidates the recovery information maintained for the task.

33

� give arguments: This message is sent by the task process as soon as it comes up. It

is a request for the arguments of the task. The lc responds with a take arguments

messages followed by the actual arguments for the task.

The messages received by sc are:

� get load factor: This messages is sent by an lc to the sc prior to the submission of

tasks to the system. The purpose of this message is to ask for a certain number

of machines in order to perform tasks. In response to this, the sc �nds that many

number of least loaded machines from the sc structures, orders their load factors

in ascending order, and sends it to the requesting lc.

� take load factor: This message is sent by an lc to the sc to inform it of the current

load factor on its machine. In response to this, the sc makes a record of this

information in its structures.

� take work: This message, initiated by a user program is forwarded by an lc to the

sc. It represents a task submission. It is followed by the string representing the

RIB source �le name and the arguments to the task. In response to this, the sc

sends this set of messages to the appropriate lc as indicated in the �rst message.

� get code: This message is sent from an lc to the sc and is meant for another

lc. It represents a request for the source code for a migratable module, and will

be needed if the two machines in question are not on Network File System. In

response to this, the sc forwards this to the corresponding lc.

� take code: This message is the counterpart to the previous message. The sc handles

this message similar to the previous one.

� take results: This message is sent by an lc to the sc and represents the results of

a task submission. This is followed by a message containing raw data, which rep-

resents the actual results. In response to this, the sc forwards this set of messages

to the appropriate lc.

� generator failed: This message is sent by an lc to the sc informing it that a par-

ticular use program on its machine has failed. This is helpful because the tasks

submitted by the user program are no longer needed to be executed, and hence

can be killed, removing a possibly substantial workload. In response to this, the

message is forwarded to the corresponding lcs.

34

� LC is terminating: This fact is recorded by the sc either when an lc terminated

on its own accord or failed suddenly, or the network connection to it failed. In

response to this, the sc broadcasts this message to all the other lcs

All the messages that a user program receives are from lc. The messages received by the

user program are:

� take load factor: This is in response to one of the earlier get load factor message

generated by the user program. It gives the required machine indices and their

load factors to the user program.

� result availability: This is in response to a check results message generated by the

user program. This messages lets the the user program know if the results are

available or not.

� take results: This is in response to a want results message generated by the user

program. This message passes the results to the user program.

� event occurred: This message is used to let the user program know the occurrence

of an event of its interest. It speci�es the event or events that has occurred. In

response to this, the user process can determine its further course of computation.

References

[1] P.J.Hatcher and M.J.Quinn, "Data-Parallel Programming on MIMD Computers",

1991, The MIT Press, Cambridge, MA.

[2] Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis, "Introduction to

Parallel Computing", The Benjamin/Cummings Publishing Company Inc., 1994.

[3] Bradley K. Seevers, Micheal J. Quinn, Philip J. Hatcher, "A Parallel Programming

Environment Supporting Multiple Data Parallel Modules", SIGPLAN, Jan 1993,

pp 44-47.

[4] Thomas Gross, David R. O'Hallaron, and Jaspal Subhlok, "Task Parallelism in a

High Performance Fortran Framework", IEEE Parallel and Distributed Technology,

Fall 1994, pp 16-26.

35

[5] G.McRae, A.Russell, and R.Harley, "CIT Photochemical Airshed Model: Systems

Manual", 1992.

[6] IEEE Parallel and Distributed Technology, Fall 1994, pp.69

[7] Ian Foster, "Task Parallelism and High-Performance Languages", IEEE Parallel

and Distributed Technology, Vol.2, No.3, Fall 1994, pp 27-36.

[8] Henri E. Bal, Mathew Haines, "Approaches for Integrating Task and Data Paral-

lelism", IEEE Concurrency, Jul-Sep 1998, pp. 74-84.

[9] Rushikesh K. Joshi, D. Janaki Ram, "Anonymous Remote Computing: A Paradigm

for Parallel Programming on Interconnected Workstations", IEEE Trans. on Soft-

ware Engineering, Vol.25, No.1, Jan/Feb 1999.

[10] R. Parthasarathy, "Designing a Robust Runtime System for ARC", Project report,

Acc.No.97-BT-04, Dept. of Computer Science and Engineering, IIT Madras.

[11] R.P. Ramachandran, M.S. Zilovic, R.J. Mammone, "A comparitive study of Robust

LP Analysis Methods with Applications to Speaker Identi�cation", IEEE Trans.

Speech, Audio Processing, Vol.3, pp. 117-125, Mar 1995.

[12] D.A.Reynolds, R.C.Rose, "Robust Text-Independent Speaker Identi�cation using

Gaussian Mixture Speaker Models", IEEE Trans. Speech, Audio Processing, Vol.3,

pp.72-83, Jan 1995.

[13] C.Chandrasekhar, B.Yegnanarayana and R.Sundar, "A constraint satisfaction

model for recognition of Stop Consonant-Vowel(SCV) utterances in Indian lan-

guages, Proc. Int. Conf. on Communication Technologies(CT-96), Indian Institute

of Science, Bangalore, pp 134-139, Dec 1996.

[14] B. Chapman et al., "Opus: A Coordination Language for Multidisciplinary Appli-

cations," Scienti�c Programming, Vol. 6, No. 2, April 1997.

[15] J. Sublhok and B. Yang, "A New Model for Integrated Nested Task and Data

Parallel Programming," Proc. ACM Symp. Principles and Practice of Parallel Pro-

gramming, ACM Press , 1996, pp.1-12.

[16] S. Ben Hassen and H. E. Bal, " Integrating Task and Data Parallelism Using Shared

Objects," Proc. 10th ACM Intl. Conf. Supercomputing, ACM Press, 1996, pp. 317-

324.

36

[17] E. A. West and A. S. Grimshaw, "Braid: Integrating Task and Data Parallelism,"

Proc. Frontiers '95: Fifth Symp. Frontiers of Massively Parallel Computation, IEEE

CS Press, 1995, pp. 211-219.

37

