
Aspects of Portability and Distributed Execution for

JNI-Wrapped Message Passing Libraries�

Vladimir S. Getovy, Paul A. Grayzx, Vaidy S. Sunderam{

January 25, 2000

Abstract

This paper discusses an approach which aims to provide legacy message passing libraries with

Java-like portability in a heterogeneous, metacomputing environment. The results of such portability

permits distributed computing components to be \soft-loaded," or \soft-installed" in a dynamic

fashion, onto cooperating resources for concurrent, synchronized parallel execution. This capability

provides researchers with the ability to tap into a much larger resource pool and to utilize highly-

tuned codes for achieving performance. Necessarily, the Java programming language is a signi�cant

component. The Java Native Interface (JNI) is used to wrap message passing libraries written in

other languages and the bytecode which is generated for the front-end may be analyzed in order to

completely determine the needs of the code which it wraps. This characterization allows the pre-

con�guration of a remote environment so as to be able to support execution. The usefulness of the

portability gained by our approach is illustrated through examples showing the soft-installation of a

process using an MPI computational substrate and the soft-installation of a process which requires a

C-based communication library based upon the eÆcient multi-cast communication package, CCTL.

The examples show that signi�cant gains in performance can be achieved while allowing message

passing execution to still exhibit high levels of portability.

1 Introduction

The Java programming language has received a considerable amount of attention since its public in-

troduction and many of the inherent features of the language have since garnered the interest of high-

performance computing communities. In looking to Java as a language for high-performance computing

though, several preventative barriers inherent to the language have become clear. Executional speed, the

present lack of acceptance of an IEEE 
oating point standard, and the abundance of legacy code are some

of the reasons for reluctance of the scienti�c community to completely accept Java as a high-performance

�Work partially supported through NSF grant ACI-9872167, the University of Northern Iowa's Graduate College, and

through the NFF initiative of HEFCE (UK)
ySchool of Computer Science, University of Westminster, London, UK
zContact author: gray@math.uni.edu
xDepartment of Mathematics, University of Northern Iowa, Cedar Falls, IA 50614
{Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322



programming language. These issues have been discussed at length, for example, in [4], [18] and [16]

respectively.

During the evolutionary period of the Java programming language, other independent projects have

evolved that have taken on the task of extending the de�nition of a computational environment, such as

Globus [3] and Legion [14]. These metacomputing environments share a \computational grid" approach

to metacomputing. The scope of such environments has been shown to be well suited for Grand-Challenge

problems, but not always suitable for the types of computational situations academic researchers are con-

fronted with today. At this research level, the \Interoperable MPI" (IMPI) [15] standard that is currently

under development aims to provide researchers with mechanisms for inter-environmental communication

and the chaining together of individual MPI con�gurations. These projects share the common property

of presenting applications with an environment built around high-performance communication layers.

The topic of this paper re
ects the ongoing e�orts in bringing together separate computational envi-

ronments to provide researchers with a more light-weight, seamless and 
exible environment. The main

objective of which, is to provide an environment that can be automatically recon�gured based upon the

needs of the application. The target applications for such an environment include collaborative tools,

high-performance distributed computations, and other paradigms of computing where applications would

bene�t from the ability to dynamicdally acquire and move upon new resources.

In this new environment, code portability is essential. While optimized programs written in native

languages such as C or Fortran still maintain a signi�cant performance advantage over just-in-time (jit)

execution of Java code, they can not exhibit the degree of portability attributable to Java programs

through Java's platform-independent bytecode representation. Nonetheless, Java's Native Method In-

terface (JNI) provides programmers the ability to mix the speed and functionality of native codes with

the rapid prototyping of Java. Thus, JNI-wrapped codes provide a programmer with the robustness,

speed, and functionality of native methods along with the rapid prototyping of Java at the expense of

maintaining total portability and platform independence.

This paper addresses this lucrative aspect of portability of JNI-wrapped code. While truly platform-

2



independent execution is lost, the Java bytecode representation provides a unique quanti�cation of Java-

based processes which provides us a mechanism to detect dependence on native codes and to establish the

necessary environment prior to its execution on a remote host. We show how static (non-executing) Java

bytecode can be analyzed on a non-local (remote) host for dependence on native methods. The result

of this analysis provides speci�c information on the requisite environment needed for execution of the

process. Once the appropriate environment is established, the process may be executed on a non-local

host as naturally as any other.

For illustration, contrast this to the simplest paradigm of a browser loading in Java-based applets over

the network. The situation depicted here is that of an application being uploaded to a remote host which

will load in not only Java bytecode for execution, but also soft-install appropriate shared libraries which

contain the JNI-wrapped methods. To facilitate this remote execution of JNI-wrapped native methods,

one must minimally be able to load in the static bytecode representation of a Java process and analyze

its environmental needs. This bootstrapping of a process includes:

1. detecting the process' dependence on native methods,

2. detecting the process' dependence on other Java classes,

3. obtaining all of the dependency classes and libraries which contain the native method calls,

4. linking the process to the shared libraries containing the native methods,

5. resolving all of the dependency Java classes, and

6. instantiating the process.

These requirements are automated by the IceT environment [12, 13], discussed in the next section.

The IceT mechanism by which the bytecode representation makes this automatic con�guration of the

environment possible is discussed in section 3. For illustration purposes, examples are given in section 4;

one which shows how IceT enables the soft-installation of an MPI process on a remote MPI con�guration

3



and a second example which shows how IceT facilitates the soft-installation of CCTL, an eÆcient multi-

cast-based communication package [17].

2 The IceT Model: Potential and Pitfalls

The IceT project began as an investigation into the utility of Java for extending standard models of

distributed computing[11]. In the setting where the distributed computing environment consisted of

clusters of workstations, these advantages include

� platform independent execution and the Java bytecode representation.

These features of the Java programming language would ease the requirement that the end user

provide a compilation of the program for each possible architecture and operating system present in

the pool of computational resources. Such is the case in packages like PVM and MPI for example,

where a binary executable must be created for each architecture that the application might run

upon.

The bytecode representation of Java applications would permit an extension of the distributed

computing model to include a virtual environment which consists of one's resources and additional,

\unowned" resources (such as those of a colleague). This bytecode representation would provide

means to load and execute code upon remote resources of more arbitrary architectural makeup.

� inherent security

Upon suggesting distributed computing environments with \unowned" computational components,

the issue of security becomes most prominent. The security aspects of the Java programming

language, vis-a-vis the SecurityManager class, provide a wide range of con�gurability in order to

govern processes running on unowned resources.

An early prototype of IceT provided users the ability to merge resources, i.e. compose distributed

computing environments using local and remote resources. Upon these resources, Java-based processes

could be uploaded to any computational resources and instantiated (as an application, not an applet).

4



Processes enrolled in the distributed environment communicate and synchronize using data- and object-

packed messages along with identifying message tags per IceT's message-passing API. The message-

passing paradigm provided by IceT facilitated distributed parallelism. This early prototype showed most

potential for applications in the area of collaborative computing; for example, the sharing of collaborative

tools amongst researchers, where tools for joint visualization or manipulation of data could be provided

and soft-installed on-demand upon resources of a colleague which lacked the tool.

This prototype also showed the signi�cant performance penalty in using Java to build the message-

passing paradigm. Each message read in over the network is received in raw form as an array of bytes.

The lack of multiple inheritance in Java is prohibitive in the sense that this byte array is not able to be

manipulated in a more appropriate object. That is, Java's use of Interfaces instead of allowing multiple

inheritance prevents a byte array from being cast into another class object, such as a two-dimensional

double-precision array for example. In lieu of being able to cast the bytes of a message immediately

into another object, a separate object of the appropriate type must be made available for \absorbing"

the message content. Signi�cant amounts of overhead are thus introduced in the instantiation of new

objects and memory-to-memory copying of data. Contrast this to the capability of the C programming

language where one can simply cast the array of bytes into the appropriate form. Benchmarks focusing

on this single aspect of Java as it relates to IceT's unpacking of a message are given in section 4.2. These

benchmarks show the signi�cant time lag in unpacking large double-precision arrays when compared to

a JNI-wrapped library call which performs the same task using the functionality of C.

Benchmarks contrasting the performance of IceT's Java-based message passing environment to com-

parable computations using PVM [5] were also made and appear in [13]. The results presented in [13]

show the ability of jit-executed IceT processes to achieve speeds close to that of comparable unoptimized,

C-based PVM and LINPACK programs in minimal-message parallel computations. However, optimized

versions of the PVM/LINPACK programs maintained a clear advantage in execution speed.

5



3 Soft-Installation of Native Codes

The unacceptable performance penalty mentioned in the previous section was the underlying motivation

for introduction of an alternative approach in IceT. By incorporating soft-installation of native methods

in the IceT environment, modules based upon other languages { more suitable for a speci�c task { could

be used to overcome the inherent limitations of Java-based programs. By simply replacing more eÆcient

and e�ective native components for the bottlenecks attributable to Java, the resulting program collective

(the Java classes and native methods) is able to achieve a level of performance and portability not found

in any single language.

Facilitating the use of native methods in a distributed heterogeneous environment required the ability

to dynamically con�gure remote environments in order to meet the needs of the processes. By using

JNI, a process' use of Java-wrapped native methods can be elicited from a judicious investigation of its

static bytecode representation. This investigation produces speci�c information on the shared library

encapsulating the native methods. Once the appropriate shared libraries are identi�ed, IceT has been

augmented to obtain and link the Java process to the versions of these shared libraries appropriate for the

speci�c architecture and operating system on which the process is to be instantiated. A brief description

of this procedure is outlined below.

In order to detect a Java process' use of native methods prior to instantiating the object from within

a JVM, the bytecode representation of the process is analyzed. An analysis of the bytecode prior to

instantiation provides two major advantages. The �rst relates to security. In IceT, the owner of a

resource sets the conditions under which soft-installed processes are permitted to run (locally). In doing

a static analysis, one can detect use of methods that would be questionable in light of permissions given

to soft-installed processes. For example, methods relating to �lesystem calls, socket usage, and user shells

are able to be detected prior to execution of the code, and creation of the process can be denied. The

second advantage of static bytecode analysis relates to con�guration of the environment. Speci�cally,

if a process depends upon native methods, the library or libraries containing these methods must be

6



present at instantiation of the object. If the native library is not present an error is generated and all

subsequent attempts at linking to that library are ignored by the JVM1. Therefore, by performing this

a-priori analysis, one can soft-install the requisite components prior to instantiation, and thus insure that

the linking steps of the object's instantiation will not fail due to a missing library.

In IceT, remote classes are loaded using an extension of the Java ClassLoader class. The IceT class

loader has two major amendments to the standard class loader. First, it requires all class dependencies

to be resolved prior to the application's instantiation rather than loading class dependencies on-demand.

Second, the IceT class loader performs a thorough analysis of the application classes' bytecode to de-

termine native library usage and security concerns. The �rst property is necessitated by the second,

for if an application does not load native libraries directly but depends upon classes that load native

libraries, the application's successful and secure execution ultimately depends upon the management of

the shared libraries. Therefore, determining an application's utilization of native libraries involves a

thorough inspection of all of the classes associated with the application.

A standard mechanism for bringing together Java-based programs and programs written in C or C++

is to write a Java-based wrapper class which can be thought of as a proxy used to call the native methods.

Typically, the JVM makes the requisite links to the library calls in this Java-wrapper class through a

static method of the class, such as:

static { System.loadLibrary("cctl"); }

This simple mechanism for linking Java to native codes is re
ected in the bytecode representation of the

Java class. Under the JDK1.2 release of the Sun Solaris Java compiler, \javac," this particular section

of code is re
ected in the bytecode representation as part of the class constructor; the ACC STATIC

method \(<clinit>)."

The actual representation of the above loadLibrary call in the bytecode consists of these six bytes in

1This prevents the object from ever linking to the native methods | even if the shared library name is elicited from

the error and is subsequently introduced to the system. See [9], java.lang.Runtime.loadLibrary description for details

relating to unresolved linking of native methods.

7



the (<clinit>) method:

0x12, 0x0B, 0xB8, 0x00, 0x12, and 0xB1:

0x12 is the `ldc' instruction to the JVM which takes 0x0B as its argument. This `ldc' instruction

pushes item 0x0B (11) from the bytecode's constant pool, which, when constructed, refers to the CON-

STANT String entry, \cctl." The next byte, 0xB8, is the `invokestatic' instruction to the JVM which

takes 0x00 and 0x12 as arguments. These two arguments form the two-byte reference to the CON-

STANT Methodref index of the constant pool to be invoked, namely the CONSTANT Methodref at

location 18 which comes from (0x00 << 8 | 0x12) = 0x12 = 18. The CONSTANT Methodref located

in entry 18 of the constant pool re
ects the `loadLibrary' name and type item of the class index pointing

to java/lang/System, having the type descriptor (Ljava/lang/String;)V2. The �nal byte, 0xB1, is the

JVM `return' instruction.

While somewhat terse and narrow in focus, this example shows how the use of native libraries may be

elicited from a static analysis of the bytecode representation. The constant pool of the associated bytecode

must be constructed, the �elds of the bytecode parsed, and the actual JVM instructions associated with

the methods must be parsed for library-loading methods and their arguments.

Note that this analysis may also allow for restrictions to be placed upon other methods that one might

not want a soft-installed process to invoke locally. Methods in java.io.File, java.lang.Runtime or

any extensions which might mask these methods could be detected if one wanted to prevent access to

the local �lesystem or shells. One could also detect a process' use of these methods during the execution

of the process using Java's SecurityManager, however this presupposes the successful instantiation of the

class. Yet, in order to successfully instantiate a class, the appropriate shared library forms must already

be local; hence the need for this static analysis of the bytecode.

While static analysis can detect use of native methods and con�gure the environment accordingly,

it can not characterize all behavior of the process collective. For example, one can use IceT's message-

2Java's Reflection class could be used to determine loadLibrary calls, but it falls short in being able to determine the

actual argument to this call which is needed in order to locate and soft-install the required shared library.

8



passing facility to send and receive Serializable objects, and thus a process could receive a bu�er

containing a serialized object with methods or subclasses screened for during the static analysis of the

soft-installed process. For this reason, monitoring of the local execution of a soft-installed process is

supervised using owner-con�gured SecurityManager classes.

The protocol used to support the trans-location of shared libraries in IceT involves RMI-based

shared library repositories. These repositories store shared libraries in multiple formats in directory

structures according to the GNU convention \arch-os-name," such as \x86nWindows 95nFOO.DLL" or

\i386/Linux/libfoo.so" for example. When an application's shared library dependence is determined

by IceT, the locally-cached shared libraries are searched �rst, then the local system-level shared libraries

are searched. In the event that the shared libraries are not found locally, the IceT repository is queried

for the appropriate library for the architecture and operating system. Finally, if the appropriate library

is not located at the IceT repository, and if the security protocols permit, the location attempting to

instantiate the application is queried for the appropriate shared library format. More details on the

aspects of shared library utilization in IceT can be found in [10].

4 Example Implementations

There are two signi�cant motivations for introducing portability of native methods in the IceT envi-

ronment. One motivation is to utilize the large amounts of established legacy codes as native method

components in higher-level applications aimed toward \metacomputing" environments. An equally-strong

motivation that was mentioned earlier is to gain considerable improvement in the performance of Java-

based distributed computing. The examples presented in this section epitomize each of these motivations.

The �rst example shows how the soft-installation mechanism of IceT introduces a higher-level of portabil-

ity to the rich pool of programs written to utilize MPI. The second example shows how the soft-installation

of native methods can be used to enhance performance of distributed Java-based processes by supplanting

the Java-based IceT message-passing subsystem with CCTL, an eÆcient and optimized communication

package. In both situations, the portability aspect provided by the Java-based portion of the program

9



collective and the robustness of the native method subsystems produces a symbiotic blending which allows

performance and distributed attributes not realizable in either component alone.

Early investigations into the usefulness of wrapping native codes in Java focused on aspects computationally-

intense calculations. In [13], the performance of Fortran-based LINPACK routines was compared to com-

parable programs written in Java. The Fortran LINPACK code was wrapped in Java's JNI and required

a thin C-based translation layer. The results shown therein provided insight into the overhead associ-

ated with the transition into the JNI-level calculations and the computational performance advantages of

native codes over pure Java implementations. The Java-C-Fortran wrapping of the LINPACK routines

was performed manually. While somewhat less than ideal, the thin C-wrapper was used for manually

re-indexing the multi-dimensional arrays in the transitioning from C to Fortran, and was taken into ac-

count in the timings. More recent investigations into the overhead associated with the JNI transition into

and out of native code on an IBM SP2 was shown in [7]. Investigations into the overhead introduced by

the transition in and out of the JNI layer on other platforms and variations of the Java Virtual Machine

implementation are actively being pursued.

While use of native methods is typically associated with increasing the performance of computationally-

intense calculations, attributes of communication can also receive a signi�cant gain in performance. As

depicted in both examples below, the transition from Java into native code permits enhanced communi-

cation between processes; MPI's e�ective communication in the �rst example, CCTL's eÆcient transport

layer in the second.

4.1 MPI

This example provides an illustration of how IceT's soft-installation mechanism can be used to facilitate

a distributed computation which extends beyond resources within the IceT environment. IceT's soft-

installation mechanism is used to soft-install a process which will utilize MPI on a pre-con�gured cluster.

While there are ongoing e�orts in producing a completely Java-based port of MPI, the established, high-

performance MPI libraries written in C are used in order to avoid severe performance penalties on the

10



MPI portion of the environment.

The binding of the MPI library calls which enables their use by Java-based programs was done using

the automated methodologies described in [16]. JNI-wrapping of such a library to Java requires a special

binding which permits linking the library dynamically to the Java virtual machine, or linking the library

to the object code produced by a stand-alone Java compiler. At �rst sight it appears that this should

not be diÆcult, but there are some hidden problems however. In particular, in order to call a C function

from Java, a formal argument of the C function must be supplied for each corresponding actual argument

in Java. Unfortunately, the disparity between data layout in the two languages is large enough to rule

out a direct mapping in general. For instance:

� primitive types in C may be of varying sizes, di�erent from the standard Java sizes;

� there is no direct analog to C pointers in Java;

� multidimensional arrays in C have no direct counterpart in Java;

� C structures can be emulated by Java objects, but the layout of �elds of an object may be di�erent

from the layout of a C structure;

� C functions passed as arguments have no direct counterpart in Java.

As the Java binding for MPI has been generated automatically from the C prototypes of MPI functions,

it is very close to the C binding. This similarity means that the Java binding is almost completely

documented by the MPI-1 standard, with the addition of a table of the mapping of C types into Java

types [6]. All MPI functions reside in one class (MPI), and all MPI constants in another class (MPIconst).

However, there is nothing to prevent us from parting with the MPI-1 C{style binding and adopting a

more object{oriented approach by grouping MPI functions into a hierarchy of classes.

In our implementation, MPI is bound to the Java virtual machine for Solaris. The MPI implemen-

tation used is LAM (version 6.1) of the Ohio Supercomputer Center [1] and is con�gured for user-level

applications on each system involved. The IceT environment is also pre-con�gured on each environment.

11



The con�guration of the IceT environment involves speci�cation of local variables that determine class

�le search paths for IceT applications (over and above Java's classpath), the local search tree for locating

IceT shared libraries locally, the location of IceT library repositories, security protocols, and protocols for

removing locally-cached soft-installed libraries when the parent application terminates. Presented here,

is IceT's soft-installation on a remote host, of a distributed MPI-based process. The MPI environment

consisted of a pre-con�gured MPI cluster comprised of Sun UltraSparc workstations. Functionally, this

is achieved as follows:

2221EBABEFAC

01100101110

n0 n1 n2

n3 n4 n5

Java bytecode

libJavaMPI_MPI.so

Figure 1: Using IceT, a user can merge with a remote MPI cluster. Java-based processes and any

necessary shared libraries may be uploaded to the remote site. A soft-installed MPI-collective is able to

run within the remote MPI system.

1. the user writes code which utilizes the methods in the MPI Comm and MPI classes of the JavaMPI

package. These classes provide the mechanism to interact with and communicate within the MPI

environment.

2. on the remote site, MPI is con�gured several computational resources. On node-0 of these resources,

an IceT daemon is started.

3. on the remote site, a shell-script is provided which supplies the mechanism to execute \mpi-run"

with the necessary arguments. The name and location of this shell script is provided to the appli-

cation programmer.

4. the user writes a skeleton class which contains references to the classes to be distributed over the

MPI con�guration. This skeleton class contains a single execution statement which directs execution

12



of the \mpi-run" shell script.

5. the user starts an IceT daemon and merges with the IceT daemon on node-0 of the remote site.

6. the user requests a spawn of the skeleton class on the remote host, which is node-0 of the MPI

cluster.

7. the IceT daemon on node-0 analyzes the bytecode of the MPI skeleton. This analysis detects the

references to the classes to be distributed over the MPI cluster mentioned in item (4) and soft-

installs them as necessary. These classes are analyzed in-turn, which results in the soft-installation

of the appropriate libJavaMPI MPI.so shared library if necessary.

8. the skeleton class is executed as an IceT process. This causes execution of the shell script which

in-turn executes the master process of the MPI-based distributed matrix manipulation process.

Using the outline above as a general framework, users are able to write portable MPI programs which

will execute upon any number of remote MPI con�gurations.

Note that the IceT program skeleton may be more than just a facilitator for the detection and soft-

installation of the requisite components of the distributed MPI run. That is, the \skeleton" that is

sent over may be written so as to enroll in both IceT and the MPI computation. In this way, the IceT

process could be made aware of the state of the MPI computation, and the original user would be able

to manipulate and interact with it.

4.2 CCTL

The use of Java for the sca�olding for the message-passing subsystem of IceT provides several immediate

bene�ts but at a cost. Java provides a unique bene�t in the serialization of objects. Objects which

are \Serializable" are able to be packed into messages as easily as language primitives. However, the

lack of pointers in the language prohibits casting between pointer types, which would permit certain

optimizations of bu�er methods. As a consequence, a large amount of overhead is incurred in allocation

of new objects and the memory-to-memory copying of objects to and from bu�ers.

13



What this means is that the message-passing substrate of IceT is not optimally suited for passing

large messages between tasks. This is somewhat contrary to the demands of distributed high-performance

computations. Nonetheless, IceT's soft-installation mechanism and the additional portability of JNI-

wrapped native methods can be used to overcome this shortcoming of the language.

The \Collaborative Computing Transport Layer," CCTL, was developed to support multi-user collab-

orative tools across both local- and wide-area networks as part of the \Collaborative Computing Frame-

work" (CCF) project at Emory University [2]. Using IceT, one can provide an additional dimension to

the communication package, namely portability of collaborative tools. By writing IceT programs which

utilize a JNI-wrapped CCTL library, a user's collaborative tool may be soft-installed upon a colleague's

resources for subsequent interaction. Thus, for example, one could share a molecular visualization tool

with a colleague using the soft-installation mechanism of IceT and the JNI-wrapping of the CCTL library.

The example presented here shows how the soft-installation mechanism of IceT can be coupled with the

portability of JNI-wrapped native methods of CCTL, to achieve high-performance communication across

wide-area networks in a multi-user setting. A program written to be portable over an IceT environment

is also able to supplant the Java-based IceT message-passing substrate with a JNI-wrapped CCTL library

in order to gain e�ective communication.

Double-Precision
Array Size

IceT's Java-based
Message-Passing Substrate

JNI-Wrapped CCTL-based
Message-Passing Substrate

1 38 6

10 19 3

100 34 3

1,000 250 9

10,000 2538 59

100,000 23662 622

Table 1: Time (in milliseconds) required to pack, send, and unpack double-precision arrays using IceT's

Java-based message-passing substrate and the JNI-wrapped CCTL library.

The data in Table 1 provides the results of the use of CCTL in this example, and provides motivation

for abandoning the Java-based message-passing substrate of IceT when passing large messages amongst

processes.

14



Benchmarks for the overhead associated with the MPI binding have also been performed and the

results are given in [8]. The MPI benchmarks give a clear indication of the overhead associated with

transitions into and out of the JNI layer (see [8]).

In the CCTL example presented in Table 1, two processes representing a sender and a receiver bench-

mark times to send and receive double precision arrays over the network. The \Sender.class" is spawned

on a local host in the IceT environment while the \Receiver.class" component is soft-installed along

with the appropriate JNI-wrapped CCTL library.

The Sender �rst uses the message-passing substrate of IceT to pack and send double-precision arrays

of various lengths which are received and unpacked by the Receiver. The total time incurred in packing,

sending, receiving, and unpacking the arrays are given in the �rst column of Table 1.

The Sender and Receiver then call upon CCTL to create a reliable cctl-\channel" between them.

Once the channel is established, the Sender utilizes a cctl-based send call to deliver the array to the

Receiver. The total time incurred in the CCTL transport of the array is given in the second column of

Table 1.

5 Conclusions

The JNI-binding of legacy code to Java o�ers advantages in rapid software development and higher perfor-

mance but has certain limitations. In particular, mobility of JNI-wrapped codes is typically unsupported

due to lack of a mechanism to handle heterogeneous platforms and executable locations. In addition,

portability is often partially restricted due to the presence of platform-speci�c native code. In this paper

we describe a solution to this problem by introducing the detection and soft-installation of native codes

within the IceT environment.

While JNI-wrapping of native methods is usually presented from the vantage point of increasing

computational performance on a single machine, the MPI and CCTL examples in this paper show the

bene�ts of providing Java bindings to communications packages for supporting distributed application

programming. By combining the autobinding techniques to provide Java bindings to scienti�c packages

15



written in other languages and IceT's soft-installation mechanism, application programmers are given the

best of both worlds: Applications enjoy enhanced portability and wider accessibility to resources similar

to pure-Java applications and are able to derive high-performance levels exclusive to scienti�c languages

such as C.

References

[1] Burns, G., Daoud, R., and Vaigl, J. LAM: An open cluster environment for MPI.

In Supercomputing Symposium '94 (Toronto, Canada, June 1994). Source available at

http://www.osc.edu/lam.html.

[2] Chodrow, S., Cheung, S., Hutto, P., Krantz, A., Gray, P., Goddard, T., , Rhee, I., and

Sunderam, V. CCF: A Collaborative Computing Framework. IEEE Internet Computing (Jan/Feb

2000), 16{24.

[3] Foster, I., and Kesselman, C. Globus: A Metacomputing Infrastructure Toolkit. International

Journal of Supercomputing Applications (May 1997).

[4] Fox, G. C., and Furmanski, W. Java for parallel computing and as a general language for

scienti�c and engineering simulation and modeling. Concurrency: Practice and Experience 9, 6

(June 1997), 415{426.

[5] Geist, G. A., and Sunderam, V. S. The PVM system: Supercomputer level concurrent compu-

tation on a heterogeneous network of workstations. In Proceedings of the Sixth Distributed Memory

Computing Conference (1991), IEEE, pp. 258{261.

[6] Getov, V., Flynn-Hummel, S., and Mintchev, S. A Programming Environment for High-

Performance Computing in Java. High Performance Computing (1998).

[7] Getov, V., Gray, P., and Sunderam, V. MPI and Java-MPI: Contrasts and comparisons of

low-level commnication performance. In Proceedings of Supercomputing 99 (Nov. 1999).

[8] Getov, V., Gray, P., and Sunderam, V. MPI and Java-MPI: Contrasts and comparisons of

low-level commnication performance. In Proceedings of Supercomputing 99 (Nov. 1999), The OX

Association for Computing Machinery.

[9] Gosling, J., Joy, B., and Steele, G. The Java Virtual Language Speci�cation. Addison Wesley,

1996.

[10] Gray, P., and Sunderam, V. Building Distributed Applications Using Multiple Heterogeneous

Environments. Submitted to a special edition of Parallel Applications and Architectures, September

30, 1999. Guest editor Dr. Peter Parsons, University of Reading, RG6 6AY, UK.

[11] Gray, P., and Sunderam, V. IceT: Distributed Computing and Java. Concurrency: Practice and

Experience 9, 11 (Nov. 1997), 1161{1168.

[12] Gray, P., and Sunderam, V. The IceT Environment for Parallel and Distributed Computing. In

Scienti�c Computing in Object-Oriented Parallel Environments (New York, Dec. 1997), Y. Ishikawa,

R. R. Oldehoeft, J. V. W. Reynders, and M. Tholburn, Eds., no. 1343 in Lecture Notes in Computer

Science, Springer Verlag, pp. 275{282.

16



[13] Gray, P., and Sunderam, V. Native Language-Based Distributed Computing Across Network

and Filesystem Boundaries. Concurrency: Practice and Experience 10, 1 (1998).

[14] Grimshaw, A., Wulf, W., and French, J. Legion: The Next Logical Step Toward a Nationwide

Virtual Computer. Tech. rep., University of Virginia, 1994. T-R Number CS-94-21.

[15] IMPI Steering Committee. IMPI { Interoperable Message-Passing Interface. Draft prtocol

version 0.0, currently available at ftp://ftp.nist.gov/pub/hpss/interop/impi-report.current.ps, Oct. 1999.

[16] Mintchev, S., and Getov, V. Automatic binding of native scienti�c libraries to Java. In Scienti�c

Computing in Object-Oriented Parallel Environments (New York, Dec. 1997), Y. Ishikawa, R. R.

Oldehoeft, J. V. W. Reynders, and M. Tholburn, Eds., no. 1343 in Lecture Notes in Computer

Science, Springer Verlag, pp. 129{136.

[17] Rhee, I., Cheung, S., Hutto, P., and Sunderam, V. Group communication support for

distributed collaboration systems. In Proceedings of ICDCS (May 1998).

[18] W.Kahan, and Darcy, J. How Java's Floating-point Hurts Everyone Everywhere. Presentation

at the ACM Workshop on Java for High-Network Computing, Mar. 1998. document available at

www.cs.berkeley.edu/�wkahan/JAVAHurt.pdf.

17


