
CONCURRENCY|PRACTICE AND EXPERIENCE

Concurrency: Pract. Exper. 2000; 00:1{7 Prepared using cpeauth.cls [Version: 2000/05/12 v2.0]

Simulating asynchronous

hardware on multiprocessor

platforms: the case of

AMULET1z

Georgios K. Theodoropoulosy

School of Computer Science, The University of Birmingham,
Birmingham B15 2TT, U.K.

SUMMARY

Synchronous VLSI design is approaching a critical point, with clock distribution
becoming an increasingly costly and complicated issue and power consumption rapidly
emerging as a major concern. Hence, recently, there has been a resurgence of interest
in asynchronous digital design techniques which promise to liberate digital design
from the inherent problems of synchronous systems. This activity has revealed a need
for modelling and simulation techniques suitable for the asynchronous design style.
The concurrent process algebra Communicating Sequential Processes (CSP) and its
executable counterpart, occam, are increasingly advocated as particularly suitable for
this purpose. This paper focuses on issues related to the execution of CSP/occam
models of asynchronous hardware on multiprocessor machines, including I/O, monitoring
and debugging, partition, mapping and load balancing. These issues are addressed in
the context of occarm, an occam simulation model of the AMULET1 asynchronous
microprocessor, however the solutions devised are more general and may be applied
to other systems too.

key words: Asynchronous hardware, distributed simulation, CSP, occam, monitoring, load

balancing

1. INTRODUCTION

A digital system is typically designed as a collection of subsystems, each performing a
di�erent computation and communicating with its peers to exchange information. Before a

yE-mail: gkt@cs.bham.ac.uk
zUpdated version to address reviews of 10 January 2001. Sent to Professor Anthony J. G. Hey, University of
Southampton, 5 February 2001. Original sent to Professor Anthony J. G. Hey to consider for publication in
the Concurrency-Practice and Experience Journal, 18 October 2000.

Copyright c
 2000 John Wiley & Sons, Ltd.

2 G. K. THEODOROPOULOS

communication transaction takes place, the subsystems involved need to synchronise, namely
to wait for a common control state to be reached, which guarantees the validity of data
exchanged.

In synchronous systems, the synchronisation of communicating subsystems is achieved by
means of a global clock whose transitions de�ne the points in time when communication
transactions can take place. The operation of a synchronous system proceeds in lockstep, with
the di�erent subsystems being activated to perform their computations in a strict, prede�ned
order [54]. Synchronous VLSI design however is approaching a critical point, with clock
distribution becoming an increasingly costly and complicated issue and power consumption
rapidly emerging as a major concern.

Another digital design philosophy allows subsystems to communicate only when it is
necessary to exchange information. The operation of the system does not proceed in lockstep,
but rather is asynchronous; each sub-system operates at its own rate synchronising with its
peers only when it needs to exchange information. This synchronisation is not achieved by
means of a global clock but rather, by the communication protocol employed. This protocol
is typically in the form of local request and acknowledge signals which provide information
regarding the validity of data signals.

Although asynchronous design techniques have been explored since, at least, the mid
1950s [57, 22, 25, 43], they have not hitherto been established as a major philosophy in
digital design. This failure was mainly related to the diÆculty to enforce speci�c orderings
of operations and to deal with circuit hazards and dynamic states in an asynchronous, non-
deterministic environment [40]. However, recently, there has been a resurgence of interest in
asynchronous design techniques, due to the signi�cant potential bene�ts that the elimination
of global synchronisation may o�er to issues such as clock distribution, power consumption,
performance and modularity [36].

Various asynchronous digital design techniques have been developed, which are typically
categorised by the timing model (namely, the assumptions made regarding the circuit and
signal delay), the signalling protocol (namely, the sequence of events which must take place
in a communication transaction between two elements), and the technique they employ
for the transfer of data between two elements (namely, encoding the value of each bit
transmitted during a communication transaction). In his in
uential 1988 Turing award
lecture, Ivan Sutherland introduced Micropipelines, a new conceptual framework for designing
asynchronous systems [71]. In depth surveys of existing asynchronous methodologies may be
found in [13, 40, 10]. Additionally, the Asynchronous Online Logic Home Page maintained
by the AMULET group at the University of Manchester provides continuous, up to date
information regarding asynchronous systems research [5].

A number of asynchronous architectures have been developed [86] including one at
CalTech [52], NSR [15] and Fred [62] at the University of Utah, STRiP at Stanford University
[27], Sun's Counter
ow pipeline processor [69], FAM [20] and TITAC [59] at Tokyo University
and Institute of Technology respectively, Hades at the University of Hertfordshire [30]
and Sharp's Data-Driven Media Processor [66]. The AMULET group at the University of
Manchester have developed a series of asynchronous implementations of the ARM RISC
processor using Sutherland's Micropipelines. The AMULET1 [87] microprocessor has been the
�rst asynchronous implementation of a commercial instruction set; AMULET2e [37] has sought

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 3

to improve performance via an improved design while AMULET3i [38] aims at embedded
applications.

The quest for the exploitation of the potential advantages o�ered by asynchronous logic
has revealed a need for modelling and simulation techniques, which would be appropriate for
the asynchronous design style. Thus, the recent interest in asynchronous design has fuelled an
intense research activity aiming to develop techniques appropriate for modelling and simulating
asynchronous systems. I-Nets [55], Petri Nets (e.g. the Petrify tool [24]), Signal Transition
Graphs (STGs) [21] (e.g. the Versify [81] and SIS [65] tools), State Transition Diagrams (e.g.
the MEAT tools [26]), ST-V (the Self-Time Verilog developed by Cogency Technology Inc.
[23]) and CCS (by Birtwistle et. al. at the University of Leeds [51]) are some of these tools
and formalisms that have been employed in asynchronous logic design.

Communication Sequential Processes (CSP) [41], in particular, the concurrent process
algebra developed by Tony Hoare for the speci�cation of parallel systems, has been extensively
advocated as a suitable and natural means for describing asynchronous behaviour: CSP
supports a concurrent, process based, asynchronous, non-deterministic model of computation
which exactly matches the structure and behaviour of hardware built using asynchronous
logic. Furthermore, in CSP, the communication between di�erent modules is by means of
a point-to-point, synchronised and unbu�ered channel. This behaviour directly re
ects the
interaction between subsystems in asynchronous hardware, where a sender and a receiver
rendezvous before they physically exchange data via wires, which are memoryless media.
Several asynchronous modelling approaches and systems have been developed which use CSP-
based notations, including Martin's [53, 52], Hulgaard's [42] and Brunvand's [14] work, trace
theory [29], Delay-Insensitive algebra [45], Tangram [79], SHILPA [39], LARD [31] and Balsa [9].

However most, if not all, work undertaken so far in this area, has placed emphasis on
producing speci�cations to be used as input to silicon compilers for the automatic synthesis of
asynchronous circuits. An important issue, which has been largely overlooked and neglected,
and which is addressed for the �rst time by the research presented in this paper, is simulation,
namely the execution of such concurrent CSP models on a computer system. Aiming to
contribute to this area, and motivated by the increasing debate regarding the potential use of
CSP, in the context of the AMULET work, a research project has investigated the suitability of
occam [44], the executable counterpart of CSP, for the modelling and distributed simulation of
complex asynchronous architectures [74]. The investigation targeted asynchronous systems
that are based on Sutherland's Micropipelines using the AMULET1 microprocessor as a
testbed, however the results may also be applied to any asynchronous design methodology.
As part of this project, a generic modelling methodology has been developed [76]; timing
and synchronisation issues arising from the parallel semantics of CSP and occam have been
addressed [77] and occarm, an occam simulation model of the AMULET1 microprocessor has
been developed [74]. Complementing this work, this paper focuses on issues related to the
actual execution of parallel, CSP/occam simulation models of asynchronous hardware.

In a sequential environment, the execution and testing of a simulation model written in a
conventional sequential language is a straightforward issue. This however does not apply to
asynchronous parallel models. The extra dimension that concurrency introduces to distributed
systems complicates the programming activity and imposes a number of issues which need to
be addressed before any parallel program may be executed. These issues include monitoring,

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

4 G. K. THEODOROPOULOS

Sender

Data

Request

Receiver

Request

Acknowledge

Acknowledge

Data

Sender’s Action Receiver’s Action

Figure 1. The Two-Phase Bundled Data Interface Protocol

debugging and terminating the processes of the system; for multiprocessor con�gurations,
remote I/O, partitioning, mapping and load balancing issues need also to be addressed. This
is particularly true for the development of occam systems where the aforementioned tasks are
typically the responsibility of the application developer, and need to be explicitly addressed
irrespective of whether the occam program is to executed on a single (internal concurrency)
or multiple processors (parallelism in time). The paper discusses how the above issues have
been addressed in the context of the occarm simulation model of AMULET1; however, the
solutions devised may also be applied to the simulation of other asynchronous achitectures.

The rest of the paper is organised as follows: Section 2 provides a brief overview
of Sutherland's Micropipelines. Section 3 provides a discussion of the role of parallel
simulation in asynchronous VLSI design. Section 4 outlines a generic framework which to
model asynchronous micropipelined systems using CSP/occam, while section 5 discusses the
application of this framework for the development the occarm model of the AMULET1
microprocessor. Section 6 describes the multiprocessor platforms that hosts the simulation
while sections 7 and 8 deal with monitoring and termination issues. Section 9 describes the
simulation environment, section 10 discusses mapping and load balancing issues and section
11 deals with the validation of the model and presents performance results. Finally, section 12
epitomises the conclusions drawn.

2. MICROPIPELINES

Using Micropipelines, the asynchronous architecture is designed as a set of simple, data
processing elastic pipelines, whose stages operate asynchronously and exchange data via a
two-phase bundled data handshake synchronisation protocol (�gure 1). Two-phase signalling
recognises and responds to transitions of the voltage on a wire, regardless of whether the
transition is rising or falling; a transition is referred to as an event.
Ivan Sutherland also proposed a set of event control blocks for the design of control circuits in

micropipelined systems as well as event controlled storage elements to be used in such systems.
The event control blocks include the Muller-C, Select, Call, Toggle, Xor and the Arbiter (�gure

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 5

C SELECT
FalseTrue

TOGGLE

A
R

B
IT

E
R

r1

r2

g1

g2

d1

d2

C
A

L
L r

d

r1

r2

d1

d2

a) Muller-C

e) Call f) Arbiter

c) Select

d) Toggle

b) Xor

Muller-C elements
provide the AND
functions of events.

XOR provides
the OR function
for events.

SELECT steers
events according
to its boolean
input.

TOGGLE steers
events to its out-
puts alternately.

CALL allows two independ-
ent clients R1 and R2 to share
a procedure R. When the pro-
cedure is done a matching
done event is returned on
either D1 or D2.

ARBITER
performs the
mutual exclusion
function

C

D
in

Pd

P

D
ou

t

Cd

R
eg

is
te

r

g) The Capture-Pass Storage Element

Figure 2. Event Processing Blocks and the Capture-Pass Storage Element

2). An event controlled storage element is the Capture-Pass latch, depicted in �gure 2g. The
latch is controlled by two control signals, namely Capture (C) and Pass (P). Initially the latch
is in its transparent state, where the input is connected through to the output (i.e. Din=Dout).
When an event is issued on the Capture wire the input-output connection is interrupted, the
data is \latched", and an event is issued on the Cd signal (Capture done) to indicate the change
of state in the latch (i.e. from transparent to opaque); the latched data does not change with
subsequent data input changes. When an event arrives on the Pass wire, the input is connected
back through to the output, thus making the latch transparent again; this change is indicated

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

6 G. K. THEODOROPOULOS

Rout

Aout

Rin

Ain

DoutDin

C

D
in

Pd

P

D
ou

t

Cd C

D
in

Pd

P

D
ou

t

Cd

C

C

C

D
in

Pd

P

D
ou

t

Cd

C

C

D
in

Pd

P

D
ou

t

Cd

C

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

DELAY

DELAYDELAY

DELAY

A1

A2

A3

R1

R2

R3 A4

(a)

Rout

Aout

Rin

Ain

DoutDin

C

D
in

Pd

P

D
ou

t

Cd C

D
in

Pd

P

D
ou

t

Cd

C

C

C

D
in

Pd

P

D
ou

t

Cd

C

C

D
in

Pd

P

D
ou

t

Cd

C

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

DELAY

DELAYDELAY

DELAY

A1

A2

A3

R1

R2

R3 A4

L
O

G
IC

L
O

G
IC

L
O

G
IC

(b)

Figure 3. Micropipelines Without and With Processing Elements

by an event on the Pd (Pass done) signal. The Capture-Pass may repeat, with events arriving
alternately on the C and P wires respectively.

The simplest micropipeline is a series of Capture-Pass registers connected together to form
a FIFO structure as depicted in �gure 3(a). A micropipeline may perform processing on the
data, by interposing the necessary logic between adjacent register stages (�gure 3(b)). A delay
unit is typically used to slow down the request event and give the data enough time to arrive at
the register before the request, thus guaranteeing the validity of data captured by the register
(the bundled data constraint).

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 7

3. THE ROLE OF PARALLEL SIMULATION IN ASYNCHRONOUS

HARDWARE DESIGN

Simulation modelling languages and tools for synchronous logic design have underpinned the
development of ever more complex synchronous VLSI circuits. The simulation of digital systems
in general, and computer architectures in particular, has long been categorized among the
highly computation intensive applications. In the case of asynchronous systems, the role of
simulation is even more crucial as their concurrent, non-deterministic behaviour makes any
attempt to reason about their correctness and performance a very complicated task.

The concurrent behaviour of asynchronous systems renders them susceptible to deadlocks,
a problem typical in parallel systems but not an issue in systems synchronised by a global
clock and operating in lock step. Deadlock is a high-level issue of the design, and occurs when
the system, as a result of a particular sequence of events, reaches a state wherein at least one
sub-system becomes inde�nitely blocked. Typically, the sequence of events in an asynchronous
system is non-deterministic. This is due mainly to the behaviour of the arbiters which will
typically service request events in arrival order; in the case of two requests arriving at the
same time, the choice will be non-deterministic. Asynchronous logic allows variable delays
within the di�erent sub-systems, which will a�ect the order in which independent request
events arrive at the arbiters of the system. The correct functionality of the asynchronous
system should not depend on the ordering of independent streams of events; a correct design
should be deadlock free for all possible combinations of events.

Verifying that a concurrent, asynchronous structure is deadlock free is a complex and diÆcult
issue. Substantial research e�ort has been invested to develop formal methods which guarantee
deadlock freedom [67, 64, 32]. However, existing formal techniques are not yet mature enough
to tackle systems of the complexity of asynchronous computer architectures although research
is ongoing in this area.

In practice, it is generally possible to identify, and thus avoid, certain design decisions
that are susceptible to deadlock [61]. However the size, complexity and the non-deterministic
behaviour of asynchronous hardware systems do not allow intuition to guarantee a deadlock
free design.

Simulation can be an invaluable aid for this problem�. The approach is to run the simulation
model of the system many times, each time with a di�erent set of delays in the component
sub-systems [36]. Changing the internal delays of the sub-systems, changes the order in which
events are generated. Consequently, the order in which events from di�erent data streams arrive
at the arbiters also changes. Since delays dictate event orderings, following this approach, the
design can be tested for possible deadlocks. The degree of con�dence that a design is deadlock
free is proportional to the number of runs of the simulation model. In this context the speed

�A di�erent approach would be to guarantee deadlock freedom by construction, namely, by applying certain
rules during the design of the system [84]. However, the applicability of this approach for the design of
asynchronous systems has not yet been investigated. Such an approach, which would attempt to exploit the
characteristics of asynchronous hardware systems in order to establish design rules that guarantee deadlock
freedom would be extremely important and would contribute enormously to asynchronous digital system design.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

8 G. K. THEODOROPOULOS

of simulation is crucial, as a fast simulator would allow the delay independence of the system
with regard to deadlocks to be rigorously and extensively tested for a large number of possible
combinations of events.

Furthermore, performance evaluation is a much more complex task in asynchronous systems
than in their synchronous counterparts. In the latter, benchmark execution times are easy to
interpret based on the number of clock cycles and the existence of a critical path. Delays in the
critical path can determine the clock period while non-critical path delays have no e�ect on
the performance of the system. In contrast, the temporal behaviour in asynchronous systems
is much more diÆcult to understand and interpret as delay inter-dependencies are much more
complex. Delays in one module may often be masked by occasional longer delays in another
module, while the accumulation of delays through a chain-reaction in a non-deterministic
concurrent environment may have a chaotic e�ect on system performance. The need to evaluate
the asynchronous architecture for di�erent sub-system delays further complicates the process
rendering simulation speed a crucial element.

Hence, a parallel approach to simulation, could potentially achieve high simulation
performance and contribute signi�cantly in reducing the duration and cost of the design
cycle. Indicatively, for the testing and evaluation of the AMULET1 design more than 4
million instruction cycles were simulated [61], a number which corresponds to several hours of
simulation.

Asynchronous hardware systems are an excellent candidate for parallel simulation.
The concurrent operation of the di�erent subsystems of an asynchronous system, the
inherent parallelism within each subsystem and the lack of any global synchronisation, are
characteristics which support the concurrent execution of events in a simulation model. In
his
ashback simulation approach [72], Sutherland attempts to exploit these characteristics
of asynchronous systems and allow \out-of-order" processing of events to increase simulation
speed; however, his simulation retains its sequential nature, and is intended for execution on
conventional von Neumann computers.

Assuming a correct implementation of the communication protocol, at the Register Transfer
or higher levels, an asynchronous system may be viewed as a network of concurrent modules
communicating via synchronous, unbu�ered communication. The modules are data-driven;
each module will start computation as soon as data is available on its input wires, and will
signal when the result has been computed. Using occam, the asynchronous system may be
modelled at the Register Transfer as a network of concurrent occam processes, topologically
identical to the asynchronous system, with each occam process corresponding to a di�erent
functional module of the system, and communicating with its peers via timestamped messages.
The asynchronous communication protocol is modelled implicitly in the semantics of the occam
channel. This approach is analogous to the \Logical Process Paradigm", typically employed in
distributed simulation modelling [35, 33].

Occam is primarily a general purpose parallel programming language. Thus, a speci�cation
developed using occam is automatically an executable simulation model of the asynchronous
system. No extra simulation engine is required. This model, which is in the form of a network of
occam processes, may be executed on a multiprocessor machine to achieve high performance.
Furthermore, occam allows explicit description of parallel as well as sequential computation.
This explicit control of concurrency which extends down to the command level, along with

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 9

D
in

D
ou

t

R
eg

is
te

r

D
in

D
ou

t

R
eg

is
te

r

Control Logic

DPE

Figure 4. Micropipeline With Processing: A High Level View

its simple but powerful syntax and \send" and \receive" commands, makes occam ideal for
describing digital systems (indeed, occam has been employed for modelling digital systems at
various levels, e.g. [2]).

4. MODELLING MICROPIPELINES

At the Register Transfer Level, a Micropipeline with processing may be generally viewed as
depicted in �gure 4. The sending register outputs its contents, consisting of data and control
bits, onto the data bus and produces a request event (request wires are indicated in the �gure
by solid lines, while acknowledge wires are denoted by dotted lines). The control bits, are
used by the control logic to direct the request event to its correct destination, activating if
necessary the data path elements (DPEs, e.g. ALUs, multipliers, shifters etc.) of the circuit.
Data passes through the DPEs and propagates to the next stage. This general Micropipeline
may be modelled by three occam processes, two for the registers and one for the control/data
processing logic; the control logic and the DPE may be modelled as one process, with the DPE
being a procedure called by the control process.
Figure 5 illustrates the register occam model. The model makes use of two PAR statements,

one to model the Muller-C element and one to model the fork on the Ain/Rout wire.
Two channels are used in each direction, one for the data/request bundle and one for the
acknowledgement signal. The latter is required to keep the register processes tightly coupled
and synchronised, as in a di�erent case, the control process would act as a bu�er introducing
an extra pipeline stage in the model that does not exist in the physical system. In the case of
pipelines without processing, the acknowledgement channel is not required.
A multi-stage Micropipeline may be modelled by means of a parallel replication of the

register process.
The control logic is inherently concurrent; di�erent parts of the circuit operate concurrently

while, within each part, events take place in a deterministic sequential order, i.e. the control

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

10 G. K. THEODOROPOULOS

Rout

AoutRin

Ain

DoutDin

C

D
in

Pd

P

D
ou

t

Cd

C
R

eg
is

te
r

DELAY

Register

RDin RDout

Ain Aout

PROC Register(CHAN OF BUNDLE RDin,RDout,
 CHAN OF ACK Ain, Aout)
 SEQ
 RDin ? Data
 WHILE TRUE
 SEQ
 PAR -- fork
 RDout ! Data
 Ain ! any
 PAR -- Muller-C
 RDin? ? Data
 Aout ? any
:

RDout

RDin

fork

Figure 5. Micropipeline With Processing: The Register Model

logic implements a partial ordering of events. The simulation model should have the same
degree of concurrency as the physical circuit. The control logic may be implemented as a
network of communicating processes, with the occam PAR (parallel execution) and SEQ

(sequential execution) commands being used within each process to implement the partial
ordering of events of the circuit (internal concurrency). The number of these processes depends
on the degree of modularity and �delity required in the simulation model.
Adopting a data driven approach to model asynchronous systems, it is essential to have

a mechanism for modelling the functionality and the nondeterministic behaviour of arbiters.
The occam ALT construct provides for the non-deterministic choice of messages from di�erent
channels and therefore may e�ectively model the behaviour of an arbiter, however it introduces
synchronisation problems. A detailed discussion of these problems is outside the scope of this
paper and may be found in [74, 77]

5. MODELLING AMULET1: THE OCCARM MODEL

The modelling framework outlined above has been used to develop occarm, an occam
simulation model of the AMULET1 microprocessor (the name of the model is derived from
the combination the words occam and ARM). Figures 6, 7 and 8 illustrate respectively the
interface, the internal organisation and the physical layout of the 1.2 micron implementation
of AMULET1. The processor comprises �ve major units, namely the address interface, the

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 11

AMULET1 Memory

MMU

Initialise

Read Data

Write Data

Control

Dabt0 Dabt1

Interrupts

FIQ IRQ

Address

Write Data

Control

Address

Figure 6. The AMULET1 Interface

data interface, the execution unit, the register bank and the primary decode. The execution
unit consists of two major stages, namely Decode2 (Dec2-Ctr12), which controls the operation
of the shifter and multiplier units of the processor, and Decode3 (Dec3-Ctr13), which controls
the ALU. Detailed descriptions of the AMULET1 microprocessor are provided in [87, 61].

Occarm describes AMULET1 at the Register Transfer Level. It executes ARM6 machine
code produced by a standard ARM compiler. Instructions enter the simulator as 32-bit integer
numbers in hexadecimal format. Instruction decoding is performed by means of PLA models,
which are implemented as two-dimensional arrays of Boolean values.

Occarm has been implemented as a hierarchy of occam processes, with each process
modelling a di�erent functional module of AMULET1. Its top-level process structure graph is
depicted in �gure 9, while �gure 10 illustrates its internal structure (the reader is invited to
relate these two �gures with �gures 7 and 8). AddInt and DatInt processes model AMULET1's
address and data interface units respectively. The datapath is modelled by four processes,
namely Decode1, Decode2, Decode3 and RegBank. Decode1 describes the primary decode unit
while Decode2 and Decode3 model the two major components of the execution unit of the
processor. RegBank process incorporates the functionality of the register bank.WrtCtrlmodels
the operation of AMULET1's write bus arbitration logic.

All the registers of AMULET1, have been modelled using the generic register model, with
interprocess communication being performed using pairs of request/data (solid arrows in the
�gures) and acknowledgement (dotted arrows) channels. To illustrate the modelling of control
logic, �gures 11(a) and 11(b) depict the modelling of one of the control modules of the Address
Interface (AddC).

For a detailed description of the structure and operation of occarm the reader is referred
to [74].

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

12 G. K. THEODOROPOULOS

Ctrl
2

X pipe
rdgen

A Pipe

MemCP
FIFO

ALU

shift

mux

arb. mux

mux

Wbus
Ctrl.

Address

Control Data Out Data In

CPSR

psrC

Cout

I[31:28], PcPar

pass

Cond

multiply

ImmExt

mux

Primary Decode

Dec
3

Dec
2

Reg
Control

NGen Registers

LSMp

incrementer

PC H. L.

Byte Rep.

mem ctrl

AddC

mux

Ctrl

3 mux

Byte Align

PC Pipe

IPipe

CPSR’

DestCtrl

Address Interface

Data Interface

Register

Execution

Exception

Immediate

Primary

Bank

 Decode
 Pipe

 Pipe

 Unit

DataIn

Dout

Wbus

Figure 7. The AMULET1 Internal Organization

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 13

RegBank

AddInt DatIntExecute Pipe

Decode2

Decode1

Decode3

Figure 8. The AMULET1 Processor Physical Layout

6. THE SIMULATION HOST MACHINE: THE PARSIFAL T-RACK

The computer which hosts the occarm simulation model is the ParSiFal T-Rack [18], a
recon�gurable, transputer based machine which has been developed at the University of
Manchester as part of the Parallel Simulation Facility project under the U.K Alvey program.
The T-Rack was developed to serve as a facility for the parallel simulation of computer
architectures.

The basic architecture of the T-Rack is illustrated in �gure 12. It comprises sixty four
T800 transputers (T0-T63), each with one or two Megabytes of local dynamic memory.
The transputers are housed on sixteen identical boards (four transputers per board). Each
transputer communicates via four asynchronous bidirectional links numbered from 0 to 3.
Two of the four links from each transputer of the T-Rack (link0 and link1) are permanently
hardwired to form a processor chain known as the necklace. The o�-necklace links (link2 and
link3) may be connected by means of a crossbar switch which is built using twenty six INMOS
C004 switch chips housed on two boards (S1 and S2, also referred to as near and far boards
respectively [58]). Connections within the switch networks may be de�ned using a software

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

14 G. K. THEODOROPOULOS

Decode1

Decode2 Decode3

AddIntDatInt

WrtCtrl
RegBank

buffer

buffer

buffer

buffer

buffer

AIabt

PCcol

ALx

Wlx

LsmTrm

NGen

R15

Instr

OPa/OPb
CP

Imm

InC2
InC3

Dout

Din
I,R15

RdData

WrtData

Addr

ALUgo

APipe

ALU
result

Dab0

Dabt0

Dabt1

Dabt1

from memory

to memory
addr+data+ctrl

data

from memory

from memory

Bundle

Wire

 (two channels: Req/Data + Ack)

(single channel)

addr+ctrl

Figure 9. Occarm Top Level Process Graph

switch utility allowing the transputers to be connected to form the con�guration required. The
switches are statically set before the application is loaded, though dynamic recon�guration is
also possible. The crossbar switches also provide for the connection of transputer links to
external devices. The T-Rack is hosted by a Sun workstation containing a Tadpole Transputer
Board which acts as a \root" node for the T-Rack and is used for the downloading of code
on to the rack and for I/O operations to and from the host machine. The Tadpole transputer
forms part of the necklace (T-1, see �gure 12). The control board is used for switch control
functions and for system backplane monitoring which is achieved by means of a byte-wide
monitoring bus. This bus provides an alternative route between the T-Rack and the outside
world, as a terminal may be attached to the control board to display low level monitoring
information [47]; the occarm simulator does not make use of this bus.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 15

IncrementerAddC

re
gi

st
er

PC Pipe

register

register

register

register

re
gi

st
er

re
gi

st
er

re
gi

st
er

MAReg
PC0

PC1

APipe

LsmTrm

LSMreg

PCch

Wch

to memory to primary decode

from execution unit
(Decode2)

to/from write control

Wlx

from primary decode

(Dec1CtrlA)

(Dec1CtrlB)

PC Holding Latches

re
gi

st
er

register

register

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

register

DataOut

register

register

DataIn

MemCtrl

Dout

MemCP MRReg

DestCtrl

DInCtrl

IPipe

from memory

to primary decode

from address

from execution unit
(Decode2)

to write control

address+control

address+control+data

instructionsdata

to memory

data

instructions/data

register

register

register

ImmExtregister

Dec1CtrlBDec1CtrlA RdGen

ALUgo
PCcol

from execution unit

to execution unit

InC2 InC3

PCchRBch
to register bank

to execution unit

to execution unit

XP

to XPipe

LSMPr
RdGa

activate

ImmPipe

to address interface

LsmTrm

from execution unitRGch

R15

I

R15

I

from IPipe

from PCPipe

(Decode2) (Decode3)

(Decode2)

(Decode2)

RegA RegB

(e) Decode3

(d) RegBank

(c) Decode1

(a) AddInt

(b) DatInt

register

register

NGen

NGenCtrl

re
gi

st
er

re
gi

st
er

D
ec

2C
tr

l

Ctrl2

from primary decode
(Dec1CtrlB)

from ImmPipe

from register

OPa
OPbCP

AP

to APipe

(Decode3)

from primary decode
(Dec1CtrlB)

A
B bank

to next execution stage

RSh
Dec2

to data interface
Dout

ALx

register

register

Dec3

Dec3Ctrl

register register

register

Ctrl3

RReg

ALUgoPCcolAIabt

OPregCPreg

Dabt1

Dabt0

from primary decode
(Dec1CtrlB)

from previous execution stage

ALx

(Decode2)

from memory

to write control

buffer buffer buffer buffer

register

register

register

register

register
re

gi
st

er

register

register

register

re
gi

st
er

re
gi

st
er

cell cell cell

.

. .
 .

. . .

ReadLock

ReadCtrl WrtCtrl

Read Write

AFifo MFifo

IReg

Mux

read enable

out.bus

write data

from write

write data

write addresses

from primary

I

PC

PC

to execution unit

read addresses

OReg

ReadDone

LockDone

(W decode)(A,B decode)

PC

 control

 decode

(Decode2)

AB

A
B

lock

unlock

read addresses

AB

(f) Decode2

 interface

Figure 10. Occarm Internal Structure

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

16 G. K. THEODOROPOULOS

P1

P2.1

P2.3

P2.4

P2.6
P2.2

P2.5

(a)

SEQ
 ALT --ARBITER
 PCr?
 P1 --PC loop
 Wr?
 P2.1 --IF
 FALSE
 SEQ
 P2.2 --data transfer
 TRUE
 SEQ
 P2.3 --IF
 TRUE
 SEQ
 WHILE Ntrm=FALSE -- LSM loop
 SEQ
 P2.4
 P2.5
 FALSE
 SEQ
 P2.6 --data transfer: Apipe
:

(b)

Figure 11. AddC: Control Circuit and Occam Process

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 17

Backplane bus
Interface

C012

VME/IO

Sun 3/160

Control
Switch

Crossbar switch network

Switch S2Switch S1

To other T-Racks

Monitoring bus

Interface Card

Host Computer

Control Card

0

1

23

10

3

2

1

0

T-1

T63T3T2T1T0

T

console

3232323232

01010101 ...

Figure 12. The T-Rack

The existence of the necklace in the T-Rack limits the set of processor graphs which may be
implemented to those which possess a Hamiltonian Cycle. An occam program can execute
on the T-Rack if the required processor network, either contains, or can be modi�ed to
contain a Hamiltonian Cycle. The route taken by the Hamiltonian Cycle through the network
corresponds to the necklace of the T-Rack while the edges not on the Hamiltonian Cycle
are mapped on switched links. The switching network implements a \split-link" switching
policy, whereby link 2 outputs are connected to link 3 inputs via one switch board, while the
connection between link 2 inputs and link 3 outputs is achieved via the other switch card. The
split link switching mechanism provides a solution to the Odd Cycle problem which does not
allow the construction of networks that possess an o�-necklace closed path (cycle) which has
an odd number of edges [58].

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

18 G. K. THEODOROPOULOS

Monitoring

monitor[]

Process

. .
 .

Occarm MonitoringProcess

monitor[]

Process

. .
 .

A

Occarm
Process

B

Figure 13. Collecting Event Traces in Occarm

7. MONITORING

Monitoring the runtime behaviour of the simulation model and collecting information regarding
the characteristics of the simulated system is one of the main objectives of the simulation
process. Monitoring is essential for the testing and performance evaluation of the simulated
system as well as for the debugging of both the simulated system and the simulation model.
The inherent properties of distributed asynchronous systems make monitoring a diÆcult
and complicated issue for which sequential techniques are insuÆcient. The fundamental
problem is the diÆculty to deal with causality and obtain snapshots in a distributed
environment [48, 19, 7]. To determine the system state, all the di�erent local process as well as
channel states need to be taken into account; the monitoring system should be able to correlate
the histories of the di�erent processes and put them in a global temporal perspective. The main
issues which stem out of this fundamental problem and which an ideal distributed monitoring
system should address include the multiple threads of control, intrusiveness, non-determinism
and the need to cope with (i.e. generate, transport and analyse) a vast amount of monitoring
data. For a detailed discussion of these issues the reader is referred to e.g. [46, 63].

Within the ParSiFal project, a number of experimental graphical tools were developed which
illustrate or monitor di�erent aspects of an occam parallel program (e.g. [70]); these however
were not used in connection with occarm due to their limited capabilities and the need for
portability of the occarm simulation environment. In occarm, monitoring is performed by
means of a time-parallel network of occam monitoring processes (known as reactive processes),
one for each of the top level processes (the active processes) of the occarm model, as depicted
in �gure 13. Clearly, as is typical in software monitoring, monitoring processes make use of
the host machine's resources, thus imposing delays in the simulator's execution; if a reactive

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 19

process is mapped on the same processor as its active process, the host machine will execute
alternately simulation and monitoring code (e.g. in a time-sliced fashion). Delaying a process
does not only have an impact on the performance of the system but it alters the event ordering
in the distributed system in an arbitrary way, thus changing its behaviour (intrusiveness). In
the context of asynchronous hardware such intrusiveness is even more crucial as, for instance, a
delay introduced by a monitoring process may hide a deadlock situation which would otherwise
occur. However, as explained in section 3, the multiple executions of the simulation each time
with a di�erent set of delays in the component sub-systems alleviates this problem.

Monitoring messages are issued to the monitoring system in an event driven fashion, namely
the active processes detect and report to the reactive processes event records on their own
initiative. To enable the model to detect the events to be reported, source-code instrumentation
has been performed. Probes, in the form of a procedure call, have been inserted (manually)
in the source occam code of the active processes. Each time the procedure which implements
the probe is called, it constructs the corresponding monitoring message and sends it to the
monitoring process. Since probes will be invoked in di�erent parallel sections of the active
process, several monitoring messages are issued simultaneously. Thus, for the communication
between an active and the corresponding reactive process, a channel array is used (monitor, see
�gure 13); for the current implementation of occarm the total size of the monitoring channel
array is �fty (50). The monitoring process acts as a multiplexor, employing an ALT construct
to gather the messages issued by the corresponding active process on the channel array; in
order to reduce the e�ects of the ALT bottleneck, the channel array is bu�ered to decouple
the processes involved.

In order to construct global snapshots of the system, the runtime traces of event records
collected by the monitoring processes are transported to the host system, and are put in a
temporal perspective o� line, in a postmortem way. This is a typical approach followed in
distributed monitoring, but is also a particular requirement for transputer-based systems, as
only the root transputer of the network has access to the �le system of the host machine.
The monitoring data are generated in a copious volume and their transportation can have
a signi�cant negative impact on both the computational resources and the communication
network of the distributed system. Occarm supports two di�erent transport strategies, namely
immediate transport, which transports the monitoring data as soon as they are generated and
store and unload, whereby the data are stored in a bu�er before they are transported. The
latter makes use of a circular bu�er to store only the recent history of the active process. The
monitoring process
ushes the contents of the history bu�er when the simulation is complete or
if no monitoring message arrives for a user-de�ned time interval (e.g. in the case of deadlock).
The store and unload transport option is particularly useful as in most, if not all, cases the
most recent history of the processes is suÆcient to identify the cause of errors or deadlocks.
Since the monitoring messages do not propagate further into the system, the communication
overhead of the store and unload policy is minimal.

The collected traces encapsulate a high degree of parallelism implicitly contained in the
event traces. In occarm, event traces arriving from the monitoring processes are distributed
to separate trace �les on the host system, one �le for each of the processes of the occarm top
level process graph. The existence of a separate trace �le for each process provides a view of
the parallelism of the system and thus facilitates the postmortem debugging and analysis task.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

20 G. K. THEODOROPOULOS

Process process_name: instruction instruction_type was executed at time clock

Process process_name: variable variable_name has the value val at time clock

Process process_name: sending value val to process proc on channel chan at time clock

Process process_name: receiving value val from process proc on channel chan at time clock

(a) Execution event trace

(b) Data event trace

(c) Parallelity event traces

Figure 14. Event Traces for Debugging

The simulation of an asynchronous architecture has two main objectives, namely the testing
and debugging of the architecture and the evaluation of the architecture's performance.

7.1. Debugging

For the debugging of the architecture (as well as the simulation model) it is necessary to
monitor both the
ow of control and the
ow of data in each of the di�erent occam processes
in the model; this is achieved by collecting traces regarding the execution and data events of
the processes respectively (see �gure 14a,b).

The concurrent nature of asynchronous hardware systems along with the absence of global
synchronization, introduces a problem, common in asynchronous, parallel structures, namely
deadlocks. Deadlock is a high-level issue of the design, and occurs when the system, as a result
of a particular sequence of events, reaches a state wherein at least one sub-system becomes
inde�nitely blocked. In general, the sequence of events in an asynchronous system is non-
deterministic. This is due mainly to the behaviour of the arbiters, which service request events
in arrival order. If two requests arrive at the same time, the choice will be non-deterministic.
Asynchronous logic allows variable delays within the di�erent sub-systems, which will a�ect
the order in which independent request events arrive at the arbiters of the system. The correct
functionality of the asynchronous system should not depend on the ordering of independent
streams of events; a correct design should be deadlock free for all possible combinations of
events.

For the detection of deadlocks, it is essential to know the state of the channels in the system
when the deadlock occurred. For this purpose, the parallelity events, which correspond to
communication actions, need to be monitored (�gure 14c). These will appear in pairs, one
for the sending and one for the receiving process. The probe in the sending process code, is
inserted before the output command while the receiving probe follows the input command.
The absence of one parallelity event from a pair in the �nal trace indicates the occurrence of
a deadlock.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 21

7.2. Performance Evaluation

When analysing the performance of asynchronous pipelines, measures of special importance
and interest are the occupancy as well as the stall and idle periods of the pipeline.

Pipeline Occupancy. The occupancy of a N stage pipeline is de�ned as the percentage of time
the pipeline has 1, 2, : : : , N elements in it.
In a synchronous pipeline, the clock frequency de�nes the period that any element stays

in the pipeline; thus for the calculation of the occupancy only the entry (arrival) times of
elements are required.
In asynchronous micropipelines however, the times that a particular data bundle enters and

leaves the pipeline are arbitrary. Therefore, the calculation of occupancy in this case requires
knowledge of both, the entry and exit times of bundles in the pipeline. A bundle enters a
pipeline when the corresponding data is latched by the �rst register of the pipeline; thus
the entry time is represented by the timestamp of the acknowledgement (Ain) signal issued
by this register. Similarly, the exit time of a bundle is the value of the timestamp of the
Acknowledgment signal to the last register of the pipeline.
The values of the two timestamps required for the calculation of the duration of a message's

staying in the pipeline are not directly available, for they are possessed by di�erent occam
processes and occam does not support global variables. To overcome this problem a solution
has been devised whereby request messages exiting the pipeline carry with them an extra
timestamp denoting the time of their entry. Using this information, the calculation of the
pipeline occupancy by the control process at the output side is straightforward.
In occarm, control processes maintain a set of occupancy tables, one for each of their

input pipelines. The occupancy table is a circular bu�er which contains the input and
output timestamps of messages passing through the corresponding pipeline, thus providing
a (postmortem) global view of the pipeline at any particular moment.
Each time the control process at the output side issues an acknowledgement message to a

pipeline (i.e. each time a message exits the pipeline), it also invokes a probe procedure (the
calculate.occupancy()) to calculate the current occupancy values for the pipeline; idle periods
are also calculated at that point by the probe.
Contrary to the debugging traces which are sent immediately to the corresponding

monitoring process, the type and quantity of monitoring values concerning the performance
characteristics of the architecture permit active occarm processes to calculate and store them
locally; this eliminates the extra communication overhead that their transport would impose.
The stored values are unloaded by the occarm control processes upon their receiving the
termination signals.

Stalls. An asynchronous pipeline will stall if the rate that request events are issued to the
pipeline is greater than the rate that events propagate through the pipeline or the rate that
events exit the pipeline (i.e. the rate that events are consumed and processed at the output
side).
Stall situations refer to the input side of the pipeline. They may be detected by examining

the delay between the sending of a Request event (Rin) to the pipeline and the issuing

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

22 G. K. THEODOROPOULOS

of the corresponding acknowledgement signal (Ain) by the �rst register of the pipeline: a
stall situation has occurred if timestamp(Rin) < timestamp(Ain). The duration of the
stall is timestamp(Ain)� timestamp(Rin); clearly the minimum stall period is equal to the
propagation delay of the �rst register in the pipeline.

Monitoring information regarding pipeline stalls is collected by the occarm control processes
at the input side and is unloaded upon detection of the termination signal.

8. TERMINATION

Detection of termination in a distributed parallel environment was brought to prominence
in 1980 by Francez [34] and by Dijkstra and Scholten [28] and since then has constituted
one of the basic problems in distributed computing. The issue of termination has also
been examined for the special case of distributed discrete event simulation [50, 1]. The
fundamental problem in detecting termination is the diÆculty of constructing a global state
of the distributed system. Several termination detection algorithms have been developed;
these di�er in the way they ensure correctness (e.g. liveness and safety) and the assumptions
they make about the semantics and behaviour of the communication links in the distributed
system (e.g. synchronous or asynchronous communication, FIFO or not, atomicity of
communication actions etc.). Typically, termination mechanisms consist of a termination

detector, superimposed on the distributed system, which either monitors the activity of the
processes or uses a deadlock detection/breaking approach [16].

A simulation model of an asynchronous architecture has completed its operation, and thus
must terminate, if it has executed all the instructions of a particular benchmark program.
Within the ARM development environment used in the AMULET project, ARM programs
notify their completion by writing a special End Of Program (EOP) character to a particular
address in memory.

The above mechanism may be exploited for the termination of the occarm model too; upon
receiving EOP, the memory process issues a KILL message which then propagates through
the model, progressively killing the occam processes. A possible route for the KILL message
which has been adopted for the termination of occarm is depicted in �gure 15. The KILL signal
enters occarm by means of the Acknowledgment message issued to the MemCtrl process by
the memory for the EOP, and is then forwarded to Dec1CtrlA (through the IPipe) and to the
Incrementer (on the corresponding Acknowledgment message) to terminate the datapath and
address interface respectively. To cope with closed paths (loops) in the model and allow the
KILL message to reach all processes in the loop, certain processes forward the KILL signal but
do not terminate immediately; they continue their operation sinking subsequent messages until
they receive the KILL for a second time. These processes include MemCtrl and the Incrementer,
which sink PC values from the PC loop, DestCtrl, which sinks messages sent from memory
before EOP, Dec1CtrlA, for PCcol signals and prefetched instructions, Dec1CtrlB, for ALUgo
signals, Decode2, which sinks data from the register bank, and the Write process in the register
bank, which sinks register addresses arriving from the lock �fos.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 23

Memory

MemCtrl

DestCtrl

IPipe

Dec1CtrlA Dec1CtrlB

Decode2

Decode3

WrtCtrl

ReadLock

MRReg

ReadCtrl

WrtCtrl

LockFifos

Write

Read

RegistersIncrementer

PCPipe

AddC

XPipe

sink PC

sink data

sink PCcol/R15 sink ALUgo

sink

sink data

sink PC values
 values

from memory

values events

register addresses

from Reg. bank

ALUgo

PCcol

Figure 15. Terminating Occarm

9. THE SIMULATOR ENVIRONMENT

Occarm has been con�gured to execute on both, single and multiprocessor platforms. The
single-transputer con�guration is depicted in �gure 16.

The Memory process models the memory control logic of the processor; the memory itself
is implemented as a binary �le to achieve compatibility with the existing ARM development
environment. The operation of the simulator consists of reading instructions from the memory
�le, executing them and, possibly, writing results back into it; for compatibility reasons,
messages regarding the correct operation of the simulated architecture produced by benchmark
programs, are written to a separate text �le, one character at a time.

Within the INMOS occam toolset environment, only one occam process may have access
to the host machine's �le system. In the occarm simulator environment, this role is served
by the I/O process via which, all interactions with the outside world are performed. The I/O
process employs an occam ALT construct to allow the multiplexing of system and monitoring
messages arriving from the Memory and Monitoring processes respectively.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

24 G. K. THEODOROPOULOS

Occarm

Monitoring

I/O Process

Trace Files Memory File

. . .

Results File
ê@êd

åÿÎãÑä

äPãûÿ

Memory

Process
Processes

monitor[]

monitor[]

monitor[]

from.memory[]

to.memory[]

Request.out

Data.in

T-1

Host (Sun 3/160)

Model

Figure 16. The Single transputer Environment of Occarm

10. MULTIPROCESSOR IMPLEMENTATION

One of the advantages of using occam as a speci�cation language for asynchronous hardware,
is the ability to exploit the inherent parallelism of the simulated architecture, and thus to
achieve higher performance, by executing the simulation model on a multiprocessor machine.
Mapping a parallel program onto a parallel machine is a fundamental problem in parallel
processing and a detailed discussion would exceed the scope of this paper; in [60] Norman
and Thanisch provide a comprehensive list of references concerning the subject. The mapping
problem has also been investigated within the special context of distributed simulation, for
both conservative (e.g. [12]) and optimistic (e.g. [17]) approaches.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 25

Decode1

Decode2

Decode3

DatInt

AddInt

RegBank

WrtCtrl

Memory

I/O.Process

Decode1 Decode2 Decode3 DatInt AddInt RegBank WrtCtrl Memory I/O.Process

**

*

*

*

* *

*

*

*

*

* *

*

*
* *

* *
*

*

*

*
*

*

*

*

*

*

*

*
*
**

*
* **

: Merge into one link

Figure 17. Occarm Process Connectivity Table

The static nature of the occam language requires that the mapping of the occam process
graph on the transputer network is speci�ed in advance by the application developer, though
a number of tools have been developed to automate various steps of this task(e.g. [11, 49, 73]).
The mapping scheme should ideally take into account the following considerations:

� The limitations imposed by the four links of the transputer. The degree of each node in
the top level process graph should not be greater that four, with an edge in the graph
representing a bidirectional link (in other words, each node of the graph should have at
most four neighbours).

� The limitations imposed by the interconnection network of the machine. Typically,
transputer networks are not fully connected and therefore process graphs have to be
transformed to match the underlying structure; the aim here is proximity, namely placing
communicating processes as close to each other in the network as possible.

� The computation and communication load should be evenly balanced over the processors
and the links of the system respectively.

Based on the above considerations, the �rst step for mapping occarm onto the T-Rack is the
modi�cation of the the top level process graph of occarm as depicted in �gure 9 so that each
node has at most four neighbours. To address this issue the Process Interconnection Table
(PIT) depicted in �gure 17 has been devised. The number of asterisks in a row of the table
represents the number of neighbour processes of that particular process. Merging two columns
together, e�ectively adds one more level of abstraction to the process hierarchy, assigning the
corresponding processes to the same processor and forcing the two channels to share the same
link.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

26 G. K. THEODOROPOULOS

1

3

4

5

2

-16

A B

C

D

E

FGH I

J

Decode1 + Decode2

Decode3 + DatInt
AddInt

RegBank
WrtCtrl
Memory
I/O.Process

Occarm Process Node

1
2
3
4
5
6
-1

Figure 18. Modi�ed Occarm Top Level Process Graph

Link No. of Multiplexed Channels

A 13

B 9

C 4

D 6

E 3

F 6

G 2

H 8

I 3

Table I. Communication Load on Occarm Links

10.1. Balancing the Workload

The criterion adopted for the selection of the level of the occarm process hierarchy, each
of whose process has at most four neighbours, is the maximization of processor utilization;
namely, to occupy as many processors as possible.

Following this criterion the merges presented in �gure 17 have been applied to occarm,
deriving as a result the alternative graph of �gure 18. This graph represents the lowest level
in the process hierarchy which satis�es the four-link-per-transputer limitation; a possible
alternative would be to merge columns 4 and 5, and 7 and 8, placing onto the same
processors DatInt/AddInt and WrtCtrl/Memory respectively, instead of columns 3 and 4;
this arrangement would require �ve, instead of seven, processors.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 27

-1 123 4 56

-1 413 5 26

A

BC D E

F
G

H

I

B

C

D

E

F

G

I

B
C

D E

FG

IAH B

-1 631 2 54
A H

??

??

B
C

D

E

F

G

IAH

J

J

J

??

??

J

J

-1 352 1 46
D

E

G

B

C

FI A

H

J

-1 325 1 46

-1 132 4 56

D

E

G

B

C

F

I A

H

J

D EG
B

C

F

I

A

H

J

-1 413 2 56

-1 213 5 46

D

E

G B

C

F

IAHJ G

??

??a)

b)

c)

d)

e)

f)

g)

h)

Necklace
Switched Links

Figure 19. Occarm Graph Mappings

10.2. Balancing the Communication Load

The new top level occarm process graph possesses more than one Hamiltonean cycle, thus
allowing an equivalent number of possible mappings on the T-Rack.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

28 G. K. THEODOROPOULOS

For the selection of the appropriate mapping, the criterion which has been followed is to
balance the communication load. In the T-Rack the communication performance of a hardwired
link is approximately double that of a switched link. Indeed, the performance of a hardwired
unidirectional link is reported as being 1.72 Mbytes per second, with that of a switched link
being 0.87 Mbytes per second; this is due to the increased latency of acknowledgment messages
imposed by the C004 link switches [58]. Consequently, the objectives of the communication
load balancing policy are to use as few switched links as possible, and to place onto hardwired
links as many (multiplexed) channels as possible. The latter is based on the assumption that
on average, during the execution of benchmark programs, all channels in the system will have
similar traÆc levels. The pipelined structure of asynchronous architectures provides a basis to
this assumption; indeed instructions, as they execute, propagate through successive stages of
the pipeline thus activating most, if not all, channels on their path. Thus in the initial stages
of the design process, when no data regarding the behaviour of the simulated architecture
is available (as was the case with the AMULET1, when occarm was developed), the above
mapping criterion provides a reasonable option. Once a detailed performance analysis of the
architecture has been performed, the mapping of the simulator may be altered accordingly; in
this case, a possible criterion would be to map onto the fast links as many as possible of the
channels which are part of the architecture's critical path.

The communication load on the links of the top level occarm process graph is given in table
I. Figure 19 presents alternative mappings of the graph onto the T-Rack; a : : : c are examples
of mappings which are not feasible due to the limited link connectivity of the T-Rack. The
remaining mappings, namely d : : : h, illustrate the di�erent feasible ways to map occarm onto
the T-Rack. From these, mapping h satis�es the communication balancing criteria speci�ed
above and therefore has been selected for occarm. This mapping uses the minimum possible
number of switched links (namely 4) while allocating the maximum total number of channels
onto the necklace (namely 36); mapping e makes use of 5 switched links while mappings d, f
and g place onto the necklace 30, 28 and 30 channels respectively.

The selected mapping h, has also the advantage that the maximum number of channels
from the Decode3-Memory path of AMULET1 (namely links F, H and I) are placed on the
necklace. This is the path followed by the data transfer addresses and the corresponding
abort signals during the execution of data transfer instructions in AMULET1. After sending
the data transfer address to memory, Decode3 blocks until the corresponding abort signal
is issued; therefore, in order to prevent stall and/or starvation phenomena in the simulation
model, it is essential that Decode3 receives the abort message as soon as possible.

10.2.1. The Monitoring Path

To minimize the communication overhead imposed by the monitoring messages, the
characteristics of the T-Rack may be exploited. As explained in section 9, the I/O process
receives messages from both the Memory and the monitoring processes. Since the Tadpole
transputer, where the I/O process resides, is connected to both ends of the necklace, the
interaction with the Memory process may take place via one end of the necklace, with the
monitoring messages following the other direction towards the other end of the necklace. This
scheme is depicted in �gure 20, where the complete mapping of occarm onto the T-Rack is

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 29

-1

213 5 46

Necklace
Switched Links

T1T0

T-1

T2 T3 T4 T5 T6 T7

T8

T63

F F

F

F

Monitoring Path

...

to/from Host

Monitoring InformationMemory Requests out / Data In

F : Forward Process

Figure 20. Mapping Occarm onto the T-Rack

presented; transputers T0-T5 host the simulation model, while transputers T6-T63 are simply
used to forward monitoring information.

10.2.2. The Generic Simulator Node

Figure 21 depicts a generic node of the distributed con�guration of the simulator. Typically
this will include a number of active processes together with the corresponding monitoring
modules. Extra multiplexing/demultiplexing processes are included to allow the sharing of the
transputer links; to prevent deadlock situations (which for example might occur if one of the
transputer links is blocked by a message destined for a particular process, while this process
is blocked waiting for a message that may follow the former on the link), extra bu�ering has
been incorporated into the demultiplexing modules (i.e. the distributor process). In practice,
not all of the modules depicted in �gure 21 will be included in a typical node.

11. VALIDATION

Simulation model veri�cation and validation is a complicated albeit important issue and has
received considerable attention [8]. The validation of occarm has been performed by comparing

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

30 G. K. THEODOROPOULOS

Mux Distributor

M
u

x

Mux

M
u

x

D
is

tr
ib

u
to

r

Distributor

D
istrib

u
to

r

Occarm
Process

A

MonitorMonitor

Occarm
Process

B

A B

to/from other transputer

to/from other transputer

to/from otherto/from other
 transputer transputer

Demultiplexor

. . .

buffers

North

South

West East

Distributor

Ti

Figure 21. The Generic Simulator Node

results produced by occarm with those produced by a conventional sequential discrete event
simulator of AMULET1 written in Asim, ARM Ltd in-house simulation language, and
concerned the functional correctness, the timing accuracy and the performance of occarm.
As benchmarks, the ARM validation programs [6] as well as Dhrystone [83] have been used.
The former are \toy" benchmarks which invoke di�erent instruction types to test di�erent
parts of the design. Dhrystone is a synthetic benchmark which has traditionally been used
for the evaluation of computer architectures. Like all synthetic benchmarks, Dhrystone tries
to match the average behaviour (i.e. the average frequency of operations and operands) of a
large set of real programs and thus, the results obtained may be considered representative of
the average behaviour of occarm too.

The functional correctness of occarm has been veri�ed by (meta-)executing the complete
set of the ARM validation programs. The accuracy of timing has been tested by obtaining
and comparing simulated time based values that are used for the performance evaluation of
AMULET1 (and asynchronous architectures in general), namely the Dhrystone number, as
well as the occupancy and stall periods of the pipelines. These results have been reported
in [74, 77].

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 31

With regard to performance, occarm and the Asim model are not directly comparable, since
each describes the AMULET1 architecture at a di�erent level, and the supporting machines
(namely the T-Rack and a SPARC workstation) are intrinsically very di�erent. Nevertheless,
a comparative examination of the performance of the two models may provide an indication
of the impact that the use of the occam model may have to the duration (and cost) of the
design cycle. Tables II and III present the performance results achieved for the di�erent occarm
con�guration and transport policies used. The results are compared with those achieved by
the Asim simulator executing on an IPX Sun workstation. The �gures represent mean values
derived from ten simulation runs. The elapsed time for the Asim model has been obtained by
taking into account the user and sys values provided by the Bourne shell \time" command.

Within the single transputer con�guration (i.e. on a single 20MHz, T414 transputer), occarm
requires on average 1.72 minutes to execute one Dhrystone loop when no monitoring traces are
generated (this corresponds to the execution of 20 ARM machine instructions per second); this
time is longer than that required by the Asim model by a factor of 1.16. This is a reasonable
and expected performance, for the execution of the occarm processes on a single transputer
is performed not in a parallel but rather in a time sharing fashion and the large number of
parallel processes in the model (approximately 120 in the current implementation of occarm)
make the context switching overhead in the transputer signi�cant.

Table III presents the performance of occarm for both, its single and multiple transputer
con�gurations and for the di�erent policies employed for the transportation of monitoring
data.

In the multi-trunsputer con�guration, when no monitoring traces are generated, the
distribution of occarm on to the seven transputers of the T-Rack yields a speedup of 1.69.

The \store and unload" transport policy allows a speedup of 2.26 to be achieved since, in this
mode of operation, the performance of occarm on a single transputer drops by a factor of 2.45
compared to 1.83 in the multi transputer implementation. This di�erence in the performance
drop may be attributed to the fact that the activation of the monitoring processes severely
increases the frequency and, consequently, the overhead of context switching on the single
transputer. The distribution of the monitoring processes onto multiple transputers alleviates
this phenomenon as the context switching overhead is also distributed.

When the \immediate transport" policy is employed, the performance of both the single and
multiple transputer con�gurations of occarm drops dramatically by 5.67 and 7.07 respectively,
allowing a speedup of only 1.35. This behaviour may be attributed to the operation of the
I/O process, which acts as a multiplexor for messages arriving from both the Memory and the
Monitoring processes. This introduces a major bottleneck in the system, which imposes the
ultimate limit on the performance of the simulator. The large number of monitoring messages
generated by the \immediate transport" policy occupy a large proportion of I/O process
activity, thus reducing the rate at which instructions and data are supplied to the model; as a
consequence, the processes of the model remain idle for substantial periods.

The speedups achieved by the distribution of occarm onto the multiple transputers of the
T-Rack may be considered acceptable and reasonable but not satisfactory. The poor speedup
achieved may be attributed to a number of factors related to the characteristics of both the
simulated architecture and the machine that hosts the simulator.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

32 G. K. THEODOROPOULOS

Model Elapsed Time (minutes)

Occarm(Single) 1.72

Asim 1.48

Benchmark: Dhrystone (1 loop)

Table II. Asim versus Occarm (Single Transputer
Implementation)

Transport Policy Elapsed Time (minutes) Speedup
Occarm (single) Occarm (multi)

Tracing O� 1.72 1.02 1.69

Store and Unload 4.22 1.87 2.26

Immediate Transport 9.75 7.21 1.35

Benchmark: Dhrystone (1 loop)

Table III. Performance of Occarm

� Amdahl's law [4] speci�es that the maximum possible speedup depends on the inherent
parallelism of the executed system which may potentially be exploited. In the case of
AMULET1, the requirement for instruction compatibility with the synchronous ARM,
has resulted in an asynchronous design with a very complex pipeline structure and,
indicatively, limited parallelism. The performance of AMULET1 itself is 70% of the
performance of the synchronous ARM. The complexity of the AMULET1 architecture
makes an analysis of the inherent parallelism of the design a complicated task which, as
yet, has not been undertakeny.

� Asynchronous architectures are communication bound systems and therefore the
eÆciency of the communication system is crucial. The complex irregular interconnection
pattern of AMULET1's functional modules and the extra multiplexing/demultiplexing
processes required to cope with the connectivity constrains of the Transputer and the T-
Rack introduce major bottlenecks in the system which severely reduce the communication
eÆciency.

� The transputer technology used, the only available to execute occam at the time of the
experiments, is indeed dated, with poor performance characteristics.

yThe estimation of the maximum possible speedup of a distributed simulation is an active area of research.
Techniques which have been suggested for this purpose include the employment of a critical path analysis of a
trace from a given simulation [68], and the treatment of the process graph as a queueing network model [82].

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 33

As explained in section 7, most of the time the simulation model will operate under the
\store and unload" transport policy which permits the maximum speedup.

12. EPILOGUE

Asynchronous logic is being viewed as an increasingly viable alternative digital design approach
which promises to liberate VLSI systems from clock skew problems, o�er the potential for
low power and high performance and encourage a modular design philosophy which makes
incremental technological migration a much easier task. The advent of easily available custom
ASIC technology in the form of VLSI or FPGAs has greatly facilitated the implementation
of asynchronous circuits. However, asynchronous logic has to overcome several obstacles
before it is established as a mainstream digital design style. One such obstacle is the
lack of modelling languages and simulation techniques suitable for asynchronous design.
Fundamentally, conventional, sequential, synchronous hardware description languages are not
suitable for describing concurrent non-deterministic asynchronous behaviour. Modelling and
simulation, being at the heart of digital system design, may perform a catalytic role in the
quest for the realisation of the potential o�ered by asynchronous logic. Hence, the recurrence
of interest in asynchronous design has been accompanied by intense research activity aimed at
developing notations and techniques appropriate for modelling and simulating asynchronous
systems.

The concurrent, asynchronous, process-based model of computation of CSP, with the
support for non-deterministic behaviour, and the point-to-point, synchronous and unbu�ered
inter-process communication are particularly suitable for describing the concurrent, non-
deterministic behaviour of asynchronous hardware systems and provide a natural and
convenient means for the rapid construction of asynchronous hardware models. Hence,
CSP has long and extensively been advocated as potential notation for the description of
asynchronous hardware and various CSP-based and notations have already been employed
for this purpose. However the work undertaken so far in this area, has placed emphasis on
producing speci�cations to be used as input to silicon compilers for the automatic synthesis
of asynchronous circuits; the use of these speci�cations as simulation models has received
very little, if any, attention. Occam forms a practical realisation of CSP, and, consequently, it
maintains the strong relationship with regard to communication and computation between CSP
and asynchronous systems. An asynchronous architectural speci�cation expressed in occam, is
automatically an executable model, which may executed on a processor network.

However, this is a complicated endeavour as the distributed semantics of CSP and occam
impose a number of issues that need to be resolved if the model is to serve as a simulation
tool rather that just a simple textual description. These issues include debugging, monitoring
and terminating the simulation; for distributed, multi-processor implementations, mapping
and load balancing issues also need to be considered. This paper has presented a number of
techniques and mechanisms have been developed to address all the aforementioned issues in
the context of the occam model of the AMULET1 microprocessor.

Although the principal initial motive for using CSP and occam is the need to capture and
model the concurrent, asynchronous, non-deterministic behaviour of asynchronous hardware,

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

34 G. K. THEODOROPOULOS

the exploitation of the inherent parallelism and the execution of the CSP/occam models
on multiprocessor platforms can potentially achieve high simulation performance and can
contribute in reducing the duration and cost of the design cycle. The poor speedups achieved by
the multiprocessor implementation of the occarm model have been attributed to the particular
characteristics of the testbed architecture and the transputer technology used. Other existing
asynchronous architectures are generally characterised by a higher degree of parallelism and
more regular interconnection patterns than AMULET1. The major de�ciency of occam has
been its close association with the transputer technology. The current availability of occam for
non-transputer distributed platforms, including shared-memory multiprocessors, SMP systems
and the Web [80], as well as the introduction of the CSP/occam model into other languages
such as Java and C (e.g. JavaPP [85] and CCSP [56]), will alleviate the de�ciencies of the
transputer technology and will allow the potential for high performance to be realised. An
alternative approach, would be to separate modelling from simulation: the former would
provide a CSP based, occam-like notation for the speci�cation of asynchronous hardware
while the latter would utilise a generic distributed simulation kernel which would be optimised
for the simulation of asynchronous hardware, incorporating the ideas discussed in this paper.
Work in this direction has already commenced [78].

REFERENCES

1. M. Abrams, V. Sanjeevan, D. S. Richardson, Termination and Output Measure Generation in Parallel
Simulations, Journal of Parallel and Distributed Computing 1993;18:454-472.

2. F. A. Almeida, P. H. Welch, A Parallel Emulator for a Multiprocessor Data
ow Machine, Proceedings of
the World Transputer Congress 1994, Como, 1994; pp. 259-272.

3. J. M. Alonso, et al., Conservative Parallel Discrete Event Simulation in a Transputer-Based Multicomputer,
Proceedings of the World Transputer Congress 1993, Aachen, 1993; pp. 636-650.

4. G. M. Amdahl, Validity of the Single Processor Approach to Achieving Large Scale Computing
Capabilities, Proceedings AFIPS 1967 Sping Joint Computer Conference, Atlantic City, April 1967; pp.
483-485.

5. The AMULET Group, World Wide Web Home Page, URL: http://www.cs.man.ac.uk/amulet/index.html
6. ARM Ltd, World Wide Web Home Page, URL: http://www.arm.com
7. O. Babaoglou, , K. Marzullo, Consistent Global States of Distributed Systems: Fundamental Concepts and

Mechanisms, Technical Report UBLCS-93-1, Laboratory for Computer Science, University of Bologna,
January 1993.

8. O. Balci, Principles of Simulation Model Validation Veri�cation and Testing, Transactions of the Society
for Computer Simulation International1997; 14(1):3-12.

9. The Balsa Asynchronous Synthesis System, URL: http://www.cs.man.ac.uk/amulet/projects/balsa/
10. G. Birtwistle, A. Davis, eds., Asynchronous Digital Circuit Design, Springer Verlang, 1995.
11. J. E. Boillat, An Analysis and Recon�guration Tool for Mapping Parallel Programs onto Transputer

Networks, Proceedings of the 7th Occam Users Group, September 1987; pp. 186-194.
12. A. Boukerche, C. Tropper, A Static Partitioning and Mapping Algorithm for Conservative Parallel

Simulations, Proceedings of the 8th Workshop on Parallel and Distributed Simulation (PADS94), SCS,
July 1994; pp. 164-172.

13. J. A. Brozowski, C-J. H. Seger, Asynchronous Circuits. Springer Verlang, 1995.
14. E. Brunvand, M. Starkey, An Integrated Environment for the Design and Simulation of Self Timed Systems,

in Proceedings of VLSI 1991 1991; pp. 4a.2.1-4a.3.1.
15. E. Brunvand, The NSR Processor, in Proceedings of the 26th Annual Hawaii International Conference on

System Sciences, Maui, Hawaii, 1993; pp. 428-435.
16. J. Brzezinski, J. M. Helary, M. Raynal, Distributed Termination Detection: General Model and Algorithms,

Technical Report 1964, INRIA, March 1993.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 35

17. C. Burdorf, J.Marti, Load Balancing Strategies for TimeWarp on Multi-User Workstations, The Computer
Journal 1993;36(2):168-176.

18. P.C. Capon, J. R. Gurd, A. E. Knowles, ParSiFal: A Parallel Simulation Facility, inProceedings of IEE
Colloquium: The Transputer: Applications and Case Studies, IEE Digest,91, May 1986.

19. K. M. Chandy, L. Lamport, Distributed Snapshots: Determining Global States of Distributed Systems,
ACM Transactions on Computer Systems 1985; 3(1):63-75.

20. K. R. Cho, K. Okura, K. Asada, Design of a 32-bit Fully Asynchronous Microprocessor (FAM), in
Proceedings of the 35th Midwest Symposium on Circuits and Systems, Washington D.C., 1992; pp. 1500-
1503.

21. T. A. Chu, Synthesis of Self-timed VLSI Circuits from Graph-Theoretic Speci�cations, Ph.D Thesis
(MIT/LCS/TR-393), M.I.T., June 1987.

22. W. A. Clark, C. E. Molnar, Macromodular Computer Systems, R. W. Stacy, B.D, Waxman, eds.,
Biomedical Research, Academic Press, 1974, Chapter 3.

23. Cogency Technology Inc., World Wide Web Home Page, URL: http://www.cogency.com
24. J. Cortadella, et. al., Petrify: A Tool for Manipulating Concurrent Speci�cations and Synthesis of

Asynchronous Controllers, IEICE Transactions on Information and Systems 1997, E80-D(3):315-325.
25. A. Davis, The Architecture and System Method for DDM1: A recursively structures data-driven Machine,

in Proceedings of the 5th Annual Symposium on Computer Architecture, Palo Alto, CA, 1978; pp. 210-215.
26. A. Davis, S. M. Nowick, Synthesizing Asynchronous Circuits: Practice and Experience, in [10], pp. 104-150.
27. M. E. Dean, STRiP: A Self-Timed RISC Processor, Technical Report CSL-TR-92-543, Computer Systems

Laboratory, Stanford University, July 1992.
28. E. W. Dijkstra, C. S. Scholten, Termination Detection for Di�using Computations, Information Processing

Letters 1980, 11(1).
29. D. L. Dill, Trace Theory for Automatic Hierarchical Veri�cation of Speed-Independent Circuits, ACM

Distinguished Dissertations, MIT Press, 1989.
30. C. J. Elston, et al., Hades - Towards the Design of an Asynchronous Superscalar Processor, in Proceedings

of the 2nd Working Conference on Asynchronous Design Methodologies, London, 1995; pp. 200-209.
31. P.B. Endecott, S.B. Furber, Modelling and Simulation of Asynchronous Systems using the LARD Hardware

Description Language, in Proceedings of the 12th European Simulation Multiconference, Society for
Computer Simulation International, Manchester, 1998; pp. 39-43.

32. FDR User Manual (available via anonymous ftp at ftp.comlab.ox.ac.uk), Formal Systems Europe, 3 Alfred
Street, Oxford, 1993.

33. A. Ferscha, S. K.Tripathi, Parallel and Distributed Simulation if Discrete Event Systems, Technical Report
CS.TR.3336, University of Maryland, August 1994.

34. N. Francez, Distributed Termination, ACM TOPLAS 1980; 2(1):42-55.
35. R. Fujimoto, Parallel Discrete Event Simulation, Communications of the ACM 1990;33(10):31-53.
36. S. B. Furber, Computing Without Clocks, In [10], pp. 211-262.
37. S. B. Furber, et. al., AMULET2e: An Asynchronous Embedded Controller, in Proceedings of Async '97

Conference, IEEE Computer Society Press, 1997; pp. 290-299.
38. J. D. Garside, et. al., AMULET3 Revealed, in Proceedings of Async'99 Conference, IEEE Computer

Society Press, 1997; pp. 51-59.
39. G. Gopalakrishnan, V. Akella, Speci�cation, Simulation, and Synthesis of Self-Timed Circuits, in

Proceedings of the 26th Hawaii International Conference on System Sciences, 1993; pp. 399-408.
40. S. Hauck, Asynchronous Design Methodologies: An Overview, Technical Report UW-CSE-93-05-07,

University of Washington, April 1993.
41. C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall International, 1985.
42. H., Hulgaard, S. M. Burns, Bounded Delay Timing Analysis of a Class of CSP Programs with Choice,

in Proceedings of the International Symposium on Advanced Research in Asynchronous Circuits and
Systems, 1994.

43. R. N. Ibbett, P. C. Capon, The Development of the MU-5 Computer System, Communications of the
ACM 1978;21(1):13-24.

44. Occam 2 Reference Manual, Inmos, Prentice Hall International, 1988.
45. M. B. Josephs, J. T. Udding, Delay-Insensitive Circuits: An Algebraic Approach to their Design, in Lecture

Notes in Computer Science, Vol. 458, 1990; pp. 342-366.
46. J. Joyce, et al., Monitoring Distributed Systems, ACM Transactions on Computer Systems1987;5(2):121-

150.
47. A. E. Knowles, M. S. Illiev, Monitoring Facilities on the ParSiFal T-Rack, in Proceedings of the ConPar'88,

Cambridge University Press, 1988.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

36 G. K. THEODOROPOULOS

48. L. Lamport, Time, Clocks and the Ordering of Events in Distributed Systems Communications of the
ACM 1978;21(7):558-565.

49. F. C. M Lau, K. M. Shea, Mapping a Process Network onto a Processor Network, in Occam and the
Transputer-Research and Applications, Editor C. Askew, IOS, 1988; pp. 91-100.

50. Y. B. Lin, On Terminating a Distributed Discrete Event Simulation, Journal of Parallel and Distributed
Computing 1993;19:364-371.

51. Y. Liu, J. Aldwinckle, K. Stevens, and G. Birtwistle, Designing Parallel Speci�cations in CCS, in
Proceedings of the Canadian Conference on Electrical and Computer Engineering, Vancouver, 1993.

52. A. J. Martin, et al., Design of an Asynchronous Microprocessor, in Proceedings of the Decennial Caltech
Conference on VLSI: Advanced Research in VLSI, 1989; pp. 351-373.

53. A. J. Martin, Synthesis of Asynchronous VLSI Circuits, J.Staunstrup, editor, Formal Methods for VLSI
Design, North Holland, 1990.

54. C. A. Mead, L. A. Conway, Introduction to VLSI Systems, Addison Wesley, 1980.
55. C. E. Molnar, T-P. Fang, Synthesis of Reliable Speed-Independent Circuit Modules: I. General Method

for Speci�cation of Module-Environment Interaction and Derivation of a Circuit Realisation, Technical
Report 297, Computer Systems Laboratory, Institute for Biomedical Computing, Washington University,
St. Louis, 1983.

56. J.Moores, CCSP - a Portable CSP-based Run-time System Supporting C and occam, in Architectures,
Languages and Techniques for Concurrent Systems ,B.M.Cook, editor, Concurrent Systems Engineering
series, Vol. 57, WoTUG, IOS Press, Amsterdam, the Netherlands, 1999; pp. 147-168.

57. D. E. Muller,W. S. Bartky, A Theory of Asynchronous Circuits,Digital Computer laboratory 75, University
of Illinois, November 1956.

58. A. D. Murta, Support for Transputer Based Program Development via Run Time Link Recon�guration,
Ph.D Thesis, Department of Computer Science, University of Manchester, 1991.

59. T. Nanya, et al., TITAC: Design of a Quasi-delay-Insensitive Microprocessor, IEEE Design and Test of
Computers 1994; 11(2):50-63.

60. M. G. Norman, P. Thanisch, Models of Machines and Computation for Mapping in Multicomputers, ACM
Computing Surveys 1993; 25(3):263-302.

61. N. C. Paver, The Design and Implementation of an Asynchronous Microprocessor, Ph.D Thesis,
Department of Computer Science, University of Manchester, 1994.

62. W. F. Richardson, E. Brunvand, Fred: An Architecture for a Self-Timed Decoupled
Computer, Technical Report UUCS-95-008, University of Utah, May 1995. Available at:
ftp://ftp.cs.utah.edu/techreports/1995/UUCS-95-008.ps.Z

63. M. Riek, B. Tourancheau, X. F. Vigouroux, Monitoring of Distributed Memory Multicomputer Programs,
Technical Report UT-CS-93-204, University of Tenessee, October 1993.

64. A. W. Roscoe, N. Dathi, The Pursuit of Deadlock Freedom, Technical Monograph PRG-57, Programming
Research Group, Computing Laboratory, Oxford University, November 1986.

65. E. M. Sentovich, et. al., SIS: A System for Sequential Circuit Synthesis, Technical Report UCB/ERL
M92/41, U.C. Berkeley, May 1992.

66. Sharp's Data-Driven Media Processor, World Wide Web Home Page, URL:
http://www.sharpsdi.com/DDMPhtmlpages/DDMPmain.html

67. J. Sifakis, `Deadlocks and Livelocks in Transition Systems, Lecture Notes in Computer Science, 88, 1980,
pp. 587-599.

68. T. K. Som, B. A. Cota, R. G. Sargent , On Analysing Events to Estimate the Possible Speedup of Parallel
Discrete Event Simulation, in Proceedings of the 1989 Winter Simulation Conference, December 1989; pp.
729-737.

69. R. F. Sproull, I. E. Sutherland, C. E. Molnar, The Counter
ow Pipeline Processor Architecture, IEEE
Design and Test of Computers 1994; 11(3):48-59.

70. M. Stephenson, O. Boudillet, A Graphical tool for the Modeling and Manipulation of Occam Software
and Transputer Hardware Topologies, in Occam and the Transputer-Research and Applications, Editor C.
Askew, IOS, 1988; pp. 139-144.

71. I. E. Sutherland Micropipelines, Communications of the ACM 1989;32(1):720-738.
72. I. E. Sutherland, Flashback Simulation, Research Report SunLab 93:0285, Sun Microsystems Laboratories,

Inc., August 1993.
73. G. Theodoropoulos, A. West, Graphical Con�guration of Transputer Systems: The Graphical

Con�guration Assistant, Proceedings of the 1994 Transputer Research and Applications Conference
(NATUG-7), Athens, Georgia, October 1994.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

DISTRIBUTED SIMULATION OF ASYNCHRONOUS HARDWARE 37

74. G. Theodoropoulos, Strategies for the Modelling and Simulation of Asynchronous Computer Architectures,
Ph.D Thesis, Department of Computer Science, University of Manchester, 1995. Available at:
ftp://ftp.cs.man.ac.uk/pub/amulet/theses/theo95-phd.ps.Z

75. G. Theodoropoulos, J. V., Woods, Occam: An Asynchronous Hardware Description Language?, in
Proceedings of the 23rd IEEE Euromicro Conference on New Frontiers of Information Technology,
Budapest, Hungary, September 1997.

76. G. Theodoropoulos, Modelling and Distributed Simulation of Asynchronous Hardware, Simulation
Practice and Theory Journal 2000, 7:741-767.

77. G. Theodoropoulos, Distributed Simulation of Asynchronous Hardware: The program Driven
Synchronisation Protocol, Journal of Parallel and Distributed Computing, Special issue on Distributed
Simulation, editor C. Tropper, to appear.

78. G. Theodoropoulos, Towards a Framework for the Distributed Simulation of Asynchronous Hardware, 5th
United Kingdom Simulation Society Conference, UKSim 2001, Emmanuel College, Cambridge, United
Kingdom, 28-30 March 2001, to appear.

79. C. H. Van Berkel, J. Kessels, M. Roncken, R. Saeijs, F. Schalij, The VLSI-Programming Language Tangram
and its Translation into Handshake Circuits, in Proceedings of EDAC, 1991; pp. 384-389.

80. K.Vella and P.H.Welch, CSP/occam on Shared Memory Multiprocessor Workstations, in Architectures,
Languages and Techniques for Concurrent Systems, B.M.Cook, editor, Concurrent Systems Engineering
series, Vol. 57, WoTUG, IOS Press, Amsterdam, the Netherlands, 1999; pp.87-119.

81. VERSIFY Release 2.0, Department d'Arquitectura de Computadors, Universitat Politcnica de Catalunya,
Barcelona, Spain, November 1998, World Wide Web Home Page, URL: http://www.ac.upc.es/vlsi/versify/

82. D. B. Wagner, E. D. Lazowska, Parallel Simulation of Queueing Networks: Limitations and Potentials,
Proceedings of the International Conference on Measurement and Modeling of Computer Systems,
Berkeley, USA, May 1989; pp. 146-155.

83. R. P. Weicker, Dhrystone, A Synthetic Systems Programming Benchmark, Communications of the ACM
1984;27(10):1013-1030.

84. P. H. Welch, G. Justo, C. Willock, High-Level Paradigms for Deadlock-Free High-Performance Systems,
Proceedings of the World Transputer Congress 1993, September 1993, pp. 981-1004.

85. P. H. Welch, G. S. Stiles, G. H. Hilderink, A. P. Bakkers, CSP for Java : Multithreading for All, in
Architectures, Languages and Techniques for Concurrent Systems, B.M.Cook, editor, Concurrent Systems
Engineering series, Vol. 57, WoTUG, IOS Press, Amsterdam, the Netherlands, 1999; pp.112-120.

86. T. Werner, A. Venkatesh, Asynchronous Processor Survey, IEEE Computer 1997;30(11):67-76.
87. J.V. Woods, P. Day, S.B. Furber, J.D. Garside, N.C. Paver, and S. Temple, AMULET1: An Asynchronous

ARM Microprocessor, IEEE Transactions on Computers 1997; 46(4):385-398.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls

