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Abstract. Finding bugs due to race conditions in multi-threaded pro-
grams is difficult, mainly because there are many possible interleavings,
any of which may contain a fault.

In this work we present a methodology for testing multi-threaded pro-
grams which has minimal impact on the user and is likely to find inter-
leaving bugs. Our method reruns existing tests in order to detect synchro-
nization faults. We found that a single test executed a number of times in
a controlled environment, may be as effective in finding synchronization
faults as many different tests. A great deal of resources are saved since
tests are very expensive to write and maintain. We observed that simply
re-running tests, without ensuring in some way that the interleaving will
change, yields almost no benefits.

We implemented the methodology in our test generation tool — ConTest.
ConTest combines the replay algorithm, which is essential for debugging,
with our interleaving test generation heuristics. ConTest also contains
an instrumentation engine, a coverage analyzer, and a race detector (not
finished yet) that enhance bug detection capabilities. The greatest ad-
vantage of ConTest, besides finding bugs of course, is its minimal effect
on the user. When ConTest is combined into the test harness, the user
may not even be aware that ConTest is being used.

1 Introduction

The increasing popularity of concurrent Java programming — on the Internet as
well as on the server side — has brought the issue of concurrent defect analysis
to the forefront. Concurrent defects such as unintentional race conditions or
deadlocks are difficult and expensive to uncover and analyze, and such faults
often escape to the field.

One reason for this difficulty is that the set of possible interleavings is huge,
and it is not practical to try all of them !. Only a few of the interleavings actu-
ally produce concurrent faults. Thus, the probability of producing a concurrent
fault is very low. Another problem is that since the scheduler is deterministic,
executing the same tests many times will not help, because the same interleaving
is usally created. This is true for simple tests, regardless of the environment, and

! Trying all of the possible interleavings has in fact been done for small programs in
[2] and [3].
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for tests of average complexity reexecuted in a similar environment. The problem
of testing multi-threaded programs is compounded by the fact that tests that
reveal a concurrent fault in the field or in stress test are usually long and run
under different environmental conditions. As a result, such tests are not neces-
sarily repeatable, and when a fault is detected, much effort must be invested in
recreating the conditions under which it occurred.

Research on finding concurrent faults focuses on detecting actual data races
(e.g., [12], [13], [7] and many others), using algorithms for efficient identification
of race conditions that actually occurred in the current run. As mentioned above,
the chance that a race condition will occur is low, and an actual race detection
tool does nothing to improve it. Moreover, if the race is intentional, false alarms
will result. Some concurrent defects are not captured by the formal definition of
a race condition. For example, one could write a faulty program that depends on
the scheduling order [9]. Data race reports generated by most existing methods
can potentially include many artifacts, which can overwhelm the programmer
with irrelevant information [10]. A false alarm or artifact is a detected race
condition that does not represent a program defect. False alarms may result from
numerous causes, for example, infeasible data races, implicit synchronization,
data that does not affect program outcome and/or limitations and shortcomings
of the particular race detection method used.

Research has also looked at the problem of replay in several distributed and
concurrent contexts. This problem was solved for the Java language in [1]. Model
checking has been applied to testing of multi-threaded Java programs in [14], but
systematic state space exploration has inherent scalability issues. In [5] model
checking for large programs to detect race conditions was attempted however
many problems remain most notably the false alarms.

In previous work [4] we studied the problem of generating different interleav-
ings for the purpose of revealing concurrent faults. Since the size of the search
space is exponential in the program length, we take a heuristic approach. We
seed the program with conditional sleep statements at shared memory access
and synchronization events. At run time, we make random, biased random, or
coverage-based decisions as to whether seeded primitives are to be executed. Us-
ing the seeding technique, we dramatically increased the probability of finding
typical concurrent faults [9] injected in Java programs.

In this work, we report on a multi-threaded bug detection architecture that
combines a replay algorithm, which is essential for debugging, with our seed-
ing technique, as well as other smaller components such as coverage and race
detection. We call this architecture ConTest.

We utilize the test suites employed in function test and system test to detect
concurrent faults. A test suite definition includes the expected results, which are
used to indicate if a fault occurred. We rerun each test many times; The seeding
technique causes different interleavings to occur. The final results are then exam-
ined to determine if a fault was observed and therefore false warnings are never
issued. This approach integrates seamlessly into standard testing practices. The
automated tests are simply reexecuted.
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Section 2 starts with an explanation, from the user’s point of view, of how our
technology is used by testers of multi-threaded Java applications. We show that
the tester does not have to do much, and has to know even less. Section 3 details
an insider’s view of what really happens when ConTest is used and includes
a brief description of ConTest components. Section 4 present a very minimal
implementation of ConTest called ConTest-Lite that is easier to deploy. Section
5 sheds some light on the implementation of ConTest and is of special interest
to tool developers. It may be skipped by people less familiar with the Java
language. Section 6 presents experiments in which typical concurrent defects are
revealed using ConTest, as well as some real bugs found. We present conclusions
in Section 7.

2 User Perspective

In this section we explain how ConTest fits into the general testing scheme.

When testing a program, a set of tests is selected and each is executed.
For every test, if a defect is revealed, the program is debugged and the test is
executed again. In the normal course of things the test will be executed only
once (Figure 1.A).

When ConTest is used, the difference (see Figure 1.B) is that after the test
is executed, ConTest is used to decide whether the same test should be executed
again. The test may be executed many times until ConTest does not require a re-
execution. The reason for re-execution is discussed in the next section; however,
from the user’s perspective, it is a fully automated process.

The only requirement from the user is to have a test whose result can be
checked automatically, when it is executed multiple times. This is usually the
case if the test is part of a regression bucket. When testing is manual, ConTest
may still be used if we know that the test should produce the same results every
time it runs and the test result is captured with some capture-and-replay 2 tool.
If this is done the test may be executed many times and the result compared to
the results of the first run.

In addition to finding more bugs with no additional human intervention,
ConTest supplies additional benefits. Concurrent Coverage is measured and can
be reported to the user, and when a fault is observed, the debugging process is
greatly facilitated by ConTest’s replay and debugging support.

One of the most important design goals of ConTest was to be as unobtrusive
as possible. The only additional work entailed is instrumenting of the Java byte-
code and interfacing ConTest with the test harness to determine if a test should
be re-executed. If a ConTest enabled test harness is used, then the user may be
totally oblivious to it’s existence.

2 Capture-and-replay tools refer to tools that capture the inputs to tests, usually to a
GUI, and can replay them. Capture-and-replay tools are mainly used to automate
regression buckets.
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Fig. 1. Modification in Testing Practice using ConTest.

3 Insider View

This section explains what really happens when ConTest is used. We start by

explaining the different components of ConTest. We show how they mesh with

each other, and with the test harness, to produce the required results. There is

a lot hidden ”under the cover”. The reason we can do so much without being a

burden on the user is that the instrumented application is executed, as opposed

to the original application, and therefore ConTest has a high degree of control.
ConTest is composed of the following components:

— An instrumentation engine. This component adds irritator calls to the ap-
plication’s bytecode. The irritator in turn calls the coverage component and
the replay component. The instrumentation engine is used once on the ap-
plication. The instrumented application remains functionally unchanged.

— A coverage enabled irritator. The irritator function is to cause interesting
interleavings to occur. Interleavings are caused by adding conditional sleep()
statement in ”concurrent” events, that is synchronization events and shared
memory accesses (see also section 4). A number of heuristics are used to
decide when to cause a thread switch via the sleep() statement. The heuristics
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range from being very simple ones such as sleep() with a probability of .5,
to complex ones using multi-threaded coverage models as a base for the
decision. We observed that without the irritator, running the program under
test multiple times cause only a small number of interleavings to occur, while
with the irritator many interleavings occur.

— Capture and replay component. When a test is executed, the generated in-
terleaving is captured and the information required for replay is written to a
file. If it is later decided to execute the same test with the same interleaving,
the replay component may be used. Our implementation is environment,
JVM, JDK and operating system independent so that a test whose behavior
was captured in one environment may be replayed in another.

— Coverage. Coverage is used for three different functions in ConTest. The
first, which is invisible to the user but very important internally, is that it
enables coverage-based heuristics used by the irritator. The heuristics used
by the irritator can use coverage information to decide if a given sleep() will
be executed and how long it will last. The second function is to report to
the user which concurrent event has been reached so far, similar to the way
coverage is used by other coverage tools. The third function is the decision
of how many times each test needs to be executed before we start working
on the next test.

— Race Detection. A race is usually defined as two accesses to the same mem-
ory, at least one of which is a write, done by two different threads with no
synchronization between the accesses. Unlike all other race detection tools,
in ConTest the race detection component never reports on races to the user.
When this component finds a race, it communicates with the replay and ir-
ritator components to ensure that the test is re-executed; this time the race
will be forced to occur in the opposite order. If the race results in a bug, the
user can view any execution that caused the bug with a debugger, and to
stop at a breakpoint just before the race occur.

The interplay of the different components and the test harness is shown in
Figure 2. For clarity, the scheme is shown for a single test case. The first step in
using ConTest is to instrument the application. The test harness then uses the
instrumented application instead of the original application.

The solid line denotes the main path that is followed when neither bugs
nor races are found. In this path the test is executed using the irritator which
creates interesting interleaving using one of the ConTest interleaving generation
heuristics. As the test is executed, coverage is measured, races are searched
for and the interleaving is recorded. If the test contains no race and the test
passed, this specific execution (combination of test and interleaving) of the test
is completed. A stopping criteria is used to decide if the same test will be executed
again. In ConTest this stopping criteria is based on coverage but it could have
been as simple as "execute the test at least 10 times.”

If, on the other hand, a race is found, we execute the test again. This expla-
nation follows the broken line. This time around we use replay to ensure that
the exact same interleaving will occur until we reach the location in which the
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Fig. 2. Modification when using ConTest.

race was detected. We use the irritator to force the other interleaving for the two
concurrent events that formed the race (this is possible due to the definition of a
race condition). If both executions of the test passed we revert to the main path
and the location where it is decided if the test should be re-executed. Although
we found a race we do not report it to the user since we could not show that this
race causes a bug. Our approach, based on past experience with testing tools, is
that it is better not to report on potential bugs when there is a likelihood of the
report being wrong. The reason is that after a few wrong reports, the user will
stop using the tool.

If a bug is found (the dotted line), the test in which the bug was found is
debugged. The replay information is used to ensure that as it is being debugged
it will follow the original interleaving in which the bug was found. Further, if
the bug occurs in a test that contains a race, a break point is installed at the
location of the race to facilitate debugging. After the bug is fixed the modified
application is instrumented and the process is repeated on this test, and possibly
also on the other tests to ensure that no new bugs were introduced.
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Ideally, Figure 2 would illustrate a set of tests and coverage would be added
only after the test is found to yield correct results but this small inaccuracies
were glossed over to make the figure and the explanation simpler.

4 ConTest-Lite

We have created a light version of ConTest called ConTest-Lite. The objective
of ConTest-Lite is to make multi-threaded bugs materialize while having min-
imal impact on the user. In addition, we wanted ConTest-Lite to have little
performance impact.

Since it is a design goal of ConTest-Lite to be invisible to the user any
feature which requires user intervention is ruled out. The main feature which
was removed is replay, and this removal greately simplfies the design.

When replay is not required, the design relaxed and we get the following
benefits compared to the complete ConTest architecture:

— Not every concurrent location needs to be instrumented. As a result only
part of the application may be instrumented resulting in a performance im-
provment. ConTest-Lite may be aplied to applications containing a number
of computer languages or to application with parts that may not be instru-
mented.

— There is no need to record anything and therefore ConTest-Lite does not
need to write replay information to files. Again this benefits performance.

— There is no need to synchronize threads. This is especially important in
distributed application where synchronization has a very strong effect on
performance.

In our first implementation we went for a very clean implementation that cre-
ates no additional ”artifacts”. This ruled out coverage as collecting the coverage
information creates ”artifects”. It also ruled out history dependent heuristics
that base the decision on information collected in previous executions of the
application. However it seems that many users wanted coverage and deadlock
support. For deadlock support an API is supplied to the user. The API is trig-
gered by the user through an auxilary thread when a deadlock occurs and gives
information that aides the debuging proces. The auxilary thread is typically sup-
plied by a test harness such as JEF[6]. We have found ourselves susceptible to
this ”feature creep” because even though the design is not as clean these features
are very useful.

Applying ConTest-Lite to an application requires that the application, or
part of the application, be instrumented using ConTest-Lite. As ConTest-Lite
just adds irritators wherever it is applied it can be added to the Java part of a
multi-language application. As there is no learning curve to using ConTest-Lite
it takes less than an hour to apply.

When ConTest-Lite is integrated into a Java Execution Framework the ap-
plication is instrumented by the framework before the tests are executed. The
user, even though she might not even be aware that ConTest-Lite is being used,
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is more likely to find race conditions and deadloacks. This likelyhood is further
increased if the execution framework executes each test multiple times.

5 Tips from Developers

This section discusses implementation details of the various components which
are Java specific. Here our developers present their ingenious solutions to inter-
esting problems.

5.1 Instrumentation

Replay must be supported to enable the debugging of the bugs found by Con-
Test in multi-threaded programs. All replay algorithms require that appropriate
code is inserted before and after any concurrent event. In [1], a replay algorithm
was designed and implemented inside a JVM. Capturing concurrent events in-
side the JVM is relatively easy, however, the implementation becomes JVM
and platform specific. Since ConTest is a platform independent tool we had to
perform the instrumentation either at the bytecode level or at the source code
level. We have created instrumentations at both the bytecode and the source
code level. In the source code, we used our own instrumentor, and in the byte-
code we used an instrumentor called CFParse available from alphaWorks (see
http::/www.alphaWorks.ibm.com). Source code level implementation is more
portable, however bytecode implementation has the advantages of being sim-
ple, fast and very safe.

There are a number of difficulties inherent in source code instrumentation.
Partly due to these difficulties, and after considerable experimentation, we pre-
ferred the bytecode instrumentation. The first difficulty is that a Java expression
is not atomic, and naive instrumentation may not capture all concurrent events.
Therefore, expressions require complex instrumentations. Every read of variable
v is replaced by: (type of v)after_read(before_read(id), v, id). This enables the
passing of control to ConTest just before and after the read of the variable v,
and still meets the semantics of the expression. Any part of the expression which
represent a write, v = SomeExpression, is replaced by:

(type of v)after_write((v = (type of v)before_write(SomeExpression, id)),id),

which also maintain the expression semantics, and enables passing the control
to ConTest just before and after the write. Another difficulty is that different
concurrent events are implicit at the source level. For example, if an i++ appears
in a Java expression, the addition to ¢ should occur before the next access to i
in the expression. During this time, a context switch might occur and ¢ might
be accessed by a different thread. Simulating such an interleaving at the source
code level is difficult. Yet another problem is that it is not easy to distinguish
between global variables (which should be instrumented) and local variables,
since Java allows multiple references to the same object.

A decision had to be made where to use the irritator. If a context switch is
forced before or after a concurrent event, and the replay algorithm is correctly
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redesigned, we get a legal interleaving of the original program. But the other
direction is also true. Any legal interleaving may be obtained by forcing context
switches at the appropriate concurrent events. Thus, it is enough that the irri-
tator executes sleep()s before and after concurrent events and not at any other
program location. Indeed this is how ConTest is implemented.

5.2 Replay

The irritator component introduces sleep()s before and after concurrent events.
The replay algorithm introduced in [1] is broken if we introduce the sleep()
primitive before and after concurrent events in a naive way. Every Java thread
has a related interrupt bit. Any thread can set this bit if it has the right security
permission. In addition, this bit can be inspected by any thread that has the right
security permission. The sleep() primitive can take an interruptedException if
this bit is turned on, after which the bit is turned off. It follows that combining
the replay algorithm in [1] with a naive irritator which uses the sleep() primitive,
might introduce side effects, and the user will receive reports for faults that
can never occur in the un-instrumented program. To overcome this problem we
redesigned the replay algorithm in [1]. We implemented a program invariant:
regular Java interrupts can only be executed when we are not executing the
irritator’s sleep(). When the irritator’s sleep() is being executed, Java interrupts
are handled through ConTest’s internal interrupt mechanism which keeps the
semantics of Java interrupts, but eliminates the possible side-effects.

During the implementation of ConTest, we modified the replay algorithm in
[1] in various other ways. For a given run, a concurrent segment ([1]) is a maxi-
mal list of concurrent events that are executed in that order and belong to the
same thread. In [1], the end of a concurrent segment is identified through the
use of global and thread scoped counters. We simplified the capture of replay
information so that the end of a concurrent segment is identified by a thread
change. As a result we eliminated the need to maintain a complex data struc-
ture. The replay algorithm was also re-implemented to avoid any kind of busy
waits. Finally, we implemented a special facility that consistently saves the re-
play information if the program blocks due to a deadlock or an exit operation,
or if a user requests it. This is implemented by an auxiliary thread, which, upon
request, loops over all the living threads and prints their replay information.
Caution should be taken to print this information consistently, as there may be
concurrent events that did not finish at exit or deadlock time.

In order to obtain correct replay, we must make sure that inputs to the pro-
gram are the same as they were in the original execution. Apart from ”obvious”
inputs (interface with user, files) there are inputs from the java envirornment,
which might be hidden. Two examples for this (which indeed pose a problem
for correct replay) are random, and hash code. If the program contains a call to
random() method, we must make sure we give the same result in replay. This is
done by logging the result in the record phase, and returning the recorded result
(rather than true random) in replay. As for hash code, this is more ocmplex. By
default, java computes hash code based on an object’s true memory location, so
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this introduces indeterminacy. Simply logging the result (as was done for ran-
dom) is harder, since most calls to hash code are implicit (they are done by
methods of hash-table, for example). The solution is to override the hash code
method completely, and make it return a deterministic value

5.3 Coverage Directed Test Generation

ConTest has heuristics that use coverage information to direct the irritator and
determine whether a sleep() operation is executed and for how long. The coverage
models are derived from general defect pattern.

A synchronized method is typically obtained in Java by adding the synchro-
nized keyword to a method’s prototype. At runtime, a lock is captured before a
synchronized method is executed and released afterwards. A typical concurrent
defect occurs when a method that should have been synchronized is not. This
is usually due to an oversight, but the synchronized keyword is sometimes in-
tentionally dropped to improve performance. For a race to happen we need two
accesses to the same memory location. For this reason it is most common when
two methods that belong to the same class, usually two instances of the same
method, interact when a synchronized should have been in place. We attempt to
capture this defect pattern by the following coverage model.

A coverage model determines whether a method’s execution was interrupted
by any other method in that class. A coverage task of the form (method A,
method B) where method A and B are in the same class is covered if in method
A a context switch occurred, and before control returned, method B was executed
by a different thread.

To generate interleavings for this model, first we create the task list that
includes all possible pairs of methods in the same class. At run time, assume that
the program is currently executing method M, that other threads are executing
methods N, K, ..., L, and that we are about to decide whether or not to force
a context switch. We force a context switch if either < M, N > or < M, K >
, -y < M, L > satisfy new coverage tasks or there are uncovered coverage tasks
starting with NV or K, ..., L. In this way, every context switch either covers new
tasks from the set {< M,N > < M,K >,....< M,L >} or prepares the way
for new tasks that start with the methods {N or K,...,L} to be covered. The
decision to force a context switch is non-deterministic; if there is a possibility of
satisfying a new coverage task, it is done with high probability.

The coverage enabled irritator uses the sleep() primitive to force a context
switch. In our experiments we found out that the sleep() primitive worked better
as an irritator than the yield() primitive, and of the changing of thread priority.
Thus, we only use the sleep() primitive in our heuristics.

5.4 Distributive Java Programs

ConTest is currently implemented for concurrent Java programs. In the case of
distributive Java programs, ConTest can be used similarly and effectively for any
part of the distributed program, but without a deterministic replay of the entire
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distributed environment. Building on the replay algorithm introduced in [11],
ConTest can be generalized to replay distributed Java programs. In distributed
environments test heuristics can be implemented to mutate the order of events
arriving at the server.

6 Bugs Finding with ConTest

In this section we show how ConTest reveals concurrent faults in fault-injected
and real-life multi-threaded Java programs. Our goal is to describe common bugs
and explain how these bugs can be found and debugged using ConTest. We also
explain why these bugs are very hard to find in a normal testing environment.
In [4] we give further details on the experiments executed in the development of
the different heuristics used to create interesting interleaving, and show a larger
selection of programs and other interesting bugs.

6.1 Race and Setup Problems

We use the example in Figure 3 to show how races can occur. In this simple
example, five threads are created. Each is assigned a local variable with values
1,10,100,1000 and 10000 respectively. A global variable, Global is created and
initialized to zero, then all the threads are run. When a thread is run, it adds
the local variable to Global and terminates. The main thread waits for a long
time and then prints Global. When this program is executed it always prints the
expected result of 11111 as output 3.

However, there is a bug hiding. Method add() containing the command ez-
ample.Global += Local is not atomic. Looking at the bytecode at the end of
Figure 3 we can see that first Global is put into the method local variable, then
local is put into the method local variable. The two are added and only then the
result is put back into Global. If a thread switch occurs between the time that
Global is copied to the method’s local variable and the time the result is written
back into Global, any change that occurs in Global during the thread switch will
be erased once the method regains control and writes the result to Global. This
bug is never found when the program is executed stand-alone since every thread
is very short. In fact every thread is much shorter than the time slice — the time
assigned to the thread with no change of control occurs — and therefore runs
to completion. Such a bug may be found in the field if, for example, a higher
priority application is running and it steals the control at the right time.

We wrote this program with this specific bug in mind and expected to see
every combination of five digit numbers composed of zero’s and ones written
(with at least one 1 present) as a final result when run under ConTest. For
example the number 00100 will be the final result if the third thread mask all
the other threads. Once we have run it 1000 times we have seen every combi-
nation with some combinations being more common than others. However, we

3 The program is so simple that the reader is encouraged to run it and see for himself
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class Adder extends Thread{

public class exampleq public int Local;
static final int NUM = 5; Adder(int i){
static int Global = 0; Local = i;

}

public static main(String[] argv){
public void add(){

Adder[] threads = new Adder[NUM]; example.Global += Local;
}

Global = O;

threads[0] = new Adder(1); public void run(){

threads[1] = new Adder(10); add();

threads[2] = new Adder(100); }

threads[3] = new Adder (1000); }

threads[4] = new Adder(10000);
ByteCode for Method add()
for(int i=0;i<NUM;i++){

threads[i] .start(); .
} Method void add()

try{ Thread.sleep(1000); } getstatic #3 <Field int Global>

catch(Exception exc){} aloaq_O . .
System.out.println(Global) ; getfield #2 <Field int Local>

} iadd
} putstatic #3 <Field int Global>
return

Fig. 3. Program and ByteCode

were surprised to see the value 00000, which is not explained by this bug. After
some thought, we found that we inadvertently introduced another bug, which
is not uncommon, with our ”long” sleep (see Figure 3). We assumed that all
the threads will be done before we print, which is not necessarily the case in
practice. For example, it could have been the case that main() went to sleep,
another application altogether got the control and when control returned, it was
returned to main(). One of the heuristics implemented in ConTest reduces, or
sometimes completely removes sleep() in the application under test. Due to this
heuristic, which we forgot about while writing the sample program, the program
prints 00000 with a probability of about one in five hundred. We think of this as
a unique privilege that at least some of the bugs that we write turn into features
in our sample programs.

6.2 Bugs Due to Java Thread Policy

In this experiment, a program creates n threads recursively. If control shifts to a
new thread immediately after it is created, the new thread looks for the received
parameter in a hash table before the hash table entry is set by the creating
thread. This causes an exception which is handled by the program. Interestingly,
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in AIX version 4.3, when the main thread — the thread that executes main()
— creates a new thread, the probability that control will immediately switch to
this thread is about one-third. When any thread, other than the main thread,
creates a new thread, control does not immediately shift to the new thread. In
Windows NT, the probability that the control will immediately shift is very low
(we have never seen it) for any thread, including the main thread.

If the control shifts to the new thread as the threads are created, the program
generates concurrent Thread_Number threads. If control does not shift to new
threads, only one thread at a time is created. We found that we rarely have more
than one thread in normal uninstrumented execution. We almost always have
one executing thread and one that is waiting for its turn. The exact interleaving
depends on the hardware/software combination on which we execute, but tends
to be consistent for any such combination. Due to this consistency, without
ConTest, we will see only one of the many possible behaviors, all of which satisfy
the Java thread behavior requirements.

With ConTest we see many possible behaviors. For example when the Con-
Test instrumented program executes a sleep() before passing the parameter to
the new thread forcing a thread switch, control will always shift and an exception
(the manifestation of a defect in this program) will always be observed.

It is interesting to note that if a yield() is used instead of sleep(), control will
shift most of the time. The reason for the difference is that whenever the only
running thread performs a yield() it has no effect, while sleep() performed by
the only running thread introduces a delay and may result in a context switch.

This experiment shows that behavior of multi-threaded programs greatly
depends on the system in which they are executed. If a ConTest-like tool is
used, the dependency can be reduced. The ramifications of this are discussed in
the conclusions.

6.3 Dining Philosophers and Deadlock Detection

ConTest is also useful for deadlock detection. To demonstrate this, we imple-
mented the classical symmetric dining philosophers algorithm where the sym-
metry of the algorithm may cause it to run into a deadlock. While the deadlock
did not occur when we run the symmetric dining philosophers algorithm without
ConTest for a quarter of an hour, it occurred almost immediately in every run
using ConTest.

In the dining philosopher problem there are n philosophers who sit around a
round table and think. Between each pair of philosophers there is a single fork.
From time to time a philosopher gets hungry. In order to eat, the philosopher
requires exclusive use of two forks, the one to the immediate right and the one
to the immediate left. After eating, the philosopher relinquishes the two forks.

Each philosopher executes the same symmetric algorithm. For example, each
philosopher may attempt to pick up the left fork. If successful, the philosopher
then picks up the right fork and eats. The philosopher will not release the left
fork until it has taken the right fork and has eaten. A deadlock occurs if all of
the philosophers pick up their left fork and then all wait for there right fork to be
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released. For a deadlock to occur, the probability of executing a context switch
after the left fork is picked has to be increased. ConTest increases the probability
of such event and as a result, the probability of observing the deadlock increases.

This bug will never be detected by a race detection algorithm for the simple
reason that no race occurs. In this program races can not occur as all methods
(e.g., pick fork) are synchronized. The result of the program depends on the
execution order, a legal but dangerous programming practice.

6.4 A Real-life Race Condition Defect

We tested ConTest on a crawler algorithm embedded in an IBM product. The
crawler algorithm is implemented using a worker thread design pattern (see [8]
pages 290-296). Thus, the implementation uses synchronization primitives, such
as synchronized block, wait() and interrupt(), for worker and manager coordi-
nation. The worker’s objective is to search for relevant information.

A skeleton of the crawler algorithm was tested. The skeleton has 19 classes
and 1200 lines of code. Although the code skeleton has a small number of lines,
it is complicated by the worker and manager communication protocol. In fact,
worker threads wait() for connection, and the connection manager wait()s for live
connections to be released. A queue of connections is handled by the manager.
If the queue is either full or empty, threads must wait() and are eventually inter-
rupted by the manager. In addition, idle workers are retrieved by the manager.
Finally, access to shared data structures by different workers are synchronized
to merge retrieved information in a consistent manner.

ConTest was able to find an unknown race condition defect in the algorithm
within one hour of its execution. The fault was a null pointer exception. The
finish() method of the Worker class has the following line:

if(connection ! = null) connection.setStopFlag();.

If the connection variable is not null and then a context switch occurs, the
connection variable might be set to null by another thread. If this happens
before connection.setStopFlag() is executed, a null pointer exception is taken.
To fix this defect, the above statement should be executed within an appropriate
synchronized block.

6.5 Deadlock Found in a Commercial Application

We describe a deadlock recently found by ConTest-Lite in a middleware dis-
tributed IBM program. The Deadlock was found almost every time the test
described at the end of this section was executed. It was never found without
ConTest-Lite in the lab. It occured in the field under different and hard to re-
construct conditions.

When a Hashtable instance is returned by a remote invocation of the program
under test it is written to a cyclic buffer and read by the thread that invoked the
remote call. If the returned Hashtable contains an entry with a reference to a
remote class instance, the program under test loads the class instance remotely.
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In this case additional Hashtable entries being loaded and the remote instance
class being loaded race. It might be the case that the thread that invoked the
remote call waits for the remote class instance to load while another Hashtable
entry is returned. If the cyclic buffer where Hashtable entries are written is full
and the next parameter wins the race a deadlock is created. The thread listening
on the port attempts to write to a full cyclic parameter buffer. This buffer is
never emptied as the thread that invoked the remote call is waiting for the remote
class instance (that should be written to a second buffer by the thread listening
on the port but is never written as this thread is waiting for the parameter buffer
to be emptied).

The deadlock just described is created if the following remote method invoked
on the server and returning a Hashtable is run using ConTest-Lite. Note that
the Hashtable contains an entry (”ccc”, app) which will subsequently create a
remote class load on the client side.

public Hashtable getHashApp() throws Exception {
/* App.class exists on server’s classpath but not on the client ! */
App app = new App();
int b1[] = new int[10000];
for (int i=0; i < bl.length; i++)
bi[i] = i;
int b2[] = new int[10000];
for (int i=0; i < b2.length; i++)
b2[i] = i;
Hashtable h = new Hashtable();
h.put("aaaa", bl);
h.put("ccc", app);
h.put("eee", b2);
return h;

7 Conclusions

Work on ConTest started after half a person year was spent chasing a single
intermittent bug which we knew existed but could not debug, mainly because it
was very rare in normal execution and became even less common when debuggers
or print statements were added. We decided to create a tool that would enable
replay and test generation in concurrent environment. With time and experience
we have become more ambitious and added a number of additional components.

In this work we describe an effective method for finding concurrent defects.
Concurrent defects are often hard to find in the testing environment and are
therefore found by the end user, or in stress test, which makes them very ex-
pensive. The major advantages of our method are that: bugs are found earlier
in the testing process, no additional user involvement is required, and no false
alarms are given.
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This technology has great potential as it enables the early detection of con-
current defects. The technology embodied in ConTest is currently applicable
to functional and system testing. The main requirement is that tests can be
executed automatically. This usually applies to regression testing and not to
unit testing. Coupling the technology with a tool that captures results and then
replays the test, will enable the use of ConTest in unit testing as well.

ConTest introduces artificial context switches which degrade performance.
This may be a show stopper in a few cases. However, most of the time this
degradation is not too bad and is irrelevant in testing small components.

In the future, ConTest can be used to simulate different environments. Dif-
ferent environments interpret the Java thread semantics in different ways (all of
which are legal). If the testing is done on one operating system, there is no guar-
antee that the application will work on another. Indeed the Java slogan ” write
once run everywhere” can be replaced by ”write once test everywhere”. Using
ConTest, we can reduce testing cost by emulating in a single environment all
other environments. This is accomplished by simulating different thread switch-
ing policies.
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