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SUMMARY

Parallel Java environments present challenging problems for performance tools because

of Java's rich language system and its multi-level execution platform combined with the

integration of native-code application libraries and parallel runtime software. In addition

to the desire to provide robust performance measurement and analysis capabilities for

the Java language itself, the coupling of di�erent software execution contexts under a

uniform performance model needs careful consideration of how events of interest are

observed and how cross-context parallel execution information is linked. This paper

relates our experience in extending the TAU performance system to a parallel Java

environment based on mpiJava. We describe the complexities of the instrumentation

model used, how performance measurements are made, and the overhead incurred. A

parallel Java application simulating the game of Life is used to show the performance

system's capabilities.
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1. INTRODUCTION

With the nascent use of Java for high-performance parallel and distributed computing comes

the requirements that application developers and system managers have for performance

measurement and analysis tools. These requirements are not new { performance is a dominant

concern and the need for tools is fundamental. The Java language environment and how it is

used for high-performance computing, however, pushes the state of performance technology in

new respects. First, the Java Virtual Machine (JVM) presents a sophisticated shared memory

execution platform that is multi-threaded, supports the mapping of user-level threads to

system threads, allows just-in-time (JIT) compilation and dynamic loading of code modules,

and interfaces with distributed systems middleware. The combination of these features is

new. Second, the Java Native Interface (JNI) opens up the Java environment, making

inter-language execution possible. While this allows access to high-performance application

and communication libraries, it complicates the ability to track multi-level inter-language

performance events across di�erent execution contexts and to integrate those events in local and

global performance views. Lastly, because the Java language system is portable, the facilities,

tools, and interfaces that support performance measurement and analysis for Java need to be

portable as well.

In this paper, we share our experiences developing a prototype performance measurement

and analysis system for Java. The system is built upon our robust TAU (Tuning and Analysis

Utilities) performance framework for scalable parallel and distributed computing. TAU has
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INTEGRATION & APPLICATION OF TAU IN PARALLEL JAVA ENVIRONMENTS 3

been designed to support performance analysis for a general model of parallel computation.

It provides portable measurement interfaces and services, exible instrumentation, the ability

to observe multiple software layers and levels of execution, and certain provisions for mixed-

language programming. However, in all of these areas, TAU had to be extended in new ways to

accommodate Java software features and the hybrid execution model it allows. This experience

has been valuable in that we believe such characteristics will be more the norm in the future,

and the techniques we developed will contribute to the repertoire of methods applied to these

new performance technology challenges.

In Section 2, we briey describe the TAU framework and the general computation model it

supports. We decided to focus our attention on a (cluster-oriented) style of high-performance

computing that uses Java multi-threading for shared memory parallel computing on a

symmetric multiprocessing (SMP) node and MPI message passing for communications between

distributed nodes. Although not a comprehensive coverage of HPC Java environments [3], we

feel this style of multi-level parallel Java programming is representative of current trends. In

Section 3, we describe how the TAU framework has been adapted for this model. Following

these sections, we show examples of performance analysis for a parallel Java application,

highlighting the ability to capture performance information across execution levels and at

di�erent levels of parallelism. Sections 5 and 6 discuss recent features that enable more re�ned

performance measurements. Section 7 addresses the issue of instrumentation overhead and

quanti�es the costs of TAU measurements. Conclusions and thoughts for future directions are

given in Section 8.
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4 S. SHENDE, A. MALONY

Figure 1. General parallel computation model

2. THE TAU PERFORMANCE SYSTEM

The TAU performance system [13] provides robust technology for performance

instrumentation, measurement, and analysis for complex parallel systems [8]. It targets a

general computation model initially proposed by the HPC++ consortium [5]. This model

consists of shared-memory nodes where contexts reside, each providing a virtual address space

shared by multiple threads of execution; see Figure 1. The model is general enough to apply

to many high-performance scalable parallel systems and programming paradigms. Because

TAU enables performance information to be captured at the node/ context/thread levels, this

information can be exibly mapped to the particular parallel software and system execution

platform under consideration.
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INTEGRATION & APPLICATION OF TAU IN PARALLEL JAVA ENVIRONMENTS 5

Figure 2. TAU performance system

The TAU performance system is shown in Figure 2 TAU supports a exible instrumentation

model that allows access to a measurement API at several stages of program compilation

and execution. The instrumentation identi�es code segments, provides for mapping of low-

level execution events to high-level computation entities, and works with multi-threaded and

message passing parallel execution models. It interfaces with the TAU measurement model

that can capture data for function, method, basic block, and statement execution. Pro�ling
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6 S. SHENDE, A. MALONY

and tracing form the two measurement choices that TAU provides. Performance experiments

can be composed from di�erent measurement modules, including ones that access hardware

performance monitors. The TAU data analysis and presentation utilities are open; they o�er

text-based and graphical tools to visualize the performance data as well as bridges to third-

party software, such as Vampir [9, 12] for sophisticated trace analysis and visualization.

3. PERFORMANCE INSTRUMENTATION FOR PARALLEL JAVA

Scienti�c applications written in Java are often implemented using a combination of languages

such as Java, C++, C and Fortran. While this de�es the pure-Java paradigm, it is often

necessary since needed numerical, system, and communication libraries may not be available

in Java, or since the use of compiled native versions can o�er signi�cant performance

improvements [3]. Analyzing such hybrid multi-language programs requires a performance

measurement strategy that leverages instrumentation alternatives and APIs at several levels

of compilation, linking, and execution. To illustrate this point, we consider instrumentation

mechanisms employed for pro�ling and tracing Java programs that communicate with each

other using the Message Passing Interface (MPI) [4].

3.1. mpiJava

While there are several design issues that determine how a message communication interface

for Java is implemented[6], we considered mpiJava [2] for our work. mpiJava is an object-

oriented interface to MPI that allows a Java program to access MPI entities such as objects,

routines, and constants. mpiJava relies on the existence of native MPI libraries, but its API is
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INTEGRATION & APPLICATION OF TAU IN PARALLEL JAVA ENVIRONMENTS 7

implemented as a Java wrapper package using C bindings for MPI routines. In contrast, the

reference implementation for MPJ [1], the Java Grande Forum's MPI-like message-passingAPI,

will rely heavily on RMI and Jini for �nding computational resources, creating slave processes,

and handling failures; user-level communication will be implemented eÆciently, directly on top

of Java sockets, not a native MPI library. For mpiJava, when a Java application creates an

object of the MPI class, mpiJava loads a native dynamic shared object (libmpijava.so) in

the address space of the Java Virtual Machine (JVM). This Java package is layered atop the

native MPI library using the Java Native Interface (JNI) [14]. There is a one-to-one mapping

between Java methods and C routines. Applications are invoked using a script �le prunjava

that calls the mpirun application for distributing the program to one or more nodes.

3.2. Instrumentation Problems

The Java execution environment with mpiJava poses several challenges to a performance tool

developer. The performance model implemented by the tool must embed the hybrid-execution

model of the system where multiple Java threads within a virtual machine and multiple MPI

(native) processes execute concurrently. One faces two major problems instrumenting a hybrid

system consisting of MPI contexts and Java threads within each of those contexts. The �rst

involves how to expose the thread information to the MPI interface. The second involves how

to provide MPI context information to the Java interface. It is necessary to address these

problems so events can be tracked in the correct context and thread.

However, di�erent events occur in the di�erent software components (e.g., routine

transitions, inter-task message communication, thread scheduling, and user de�ned events),
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8 S. SHENDE, A. MALONY

and performance data should be collected to highlight the di�erent execution modes and the

inter-relationship of the software layers. For instance, the event representing a Java thread

invoking a message send operation occurs in the JVM, while the actual communication

send and receive events take place in compiled native C modules. Ideally, we want the

instrumentation inserted in the application, virtual machine, and native language libraries to

gather performance data for these events at their origin in a uniform and consistent manner.

This involves maintaining a common API for performance measurement as well as a common

database for multiple sources of performance data within a context of execution.

Below, we present our multi-level instrumentation approach for this parallel Java system

using the TAU performance framework. TAU applies instrumentation at both the Java virtual

machine level and the MPI library level to capture performance data and associate performance

events.

3.3. JVMPI

Instrumenting Java and the JVM poses several diÆculties. Conveniently, Java 2 (JDK1.2+)

incorporates the Java Virtual Machine Pro�ler Interface (JVMPI) [16, 15] which we have used

for our work. JVMPI provides pro�ling hooks into the virtual machine and allows a pro�ler

agent to instrument the Java application without any changes to the source code, bytecode, or

the executable code of the JVM. JVMPI provides a wide range of events that it can notify to

the agent, including method entry and exit, memory allocation, garbage collection, and thread

start and stop; see the Java 2 reference for more information. When the pro�ler agent is loaded

in memory, it registers the events of interest and the address of a callback routine to the virtual
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INTEGRATION & APPLICATION OF TAU IN PARALLEL JAVA ENVIRONMENTS 9

Figure 3. TAU instrumentation for Java source, virtual machine and mpiJava packages

machine using JVMPI. When an event takes place, the virtual machine thread generating

the event calls the pro�ler agent callback routine with a data structure that contains event

speci�c information. The pro�ling agent can then use JVMPI to get more detailed information

regarding the state of the system and where the event occurred.

Figure 3 describes how JVMPI is use by TAU for performance measurement. Consider a

single context of a distributed parallel MPI Java program. At start-up, the Java program loads

the mpiJava package as a shared object and the JVM loads the TAU performance measurement

library as a shared object, which acts as a JVMPI pro�ling agent. A two-way function call
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10 S. SHENDE, A. MALONY

interface between the JVM and the TAU pro�ler agent is established. The JVM noti�es TAU

of events and TAU can, in turn, obtain information about and control the behavior of the

virtual machine threads using the JVMPI thread primitives (e.g., for mutual exclusion).

When the TAU agent is loaded in the JVM as a shared object, a TAU initialization routine

is invoked. It stores the identity of the virtual machine and requests the JVM to notify it when

a thread starts or terminates, a class is loaded in memory, a method entry or exit takes place,

or the JVM shuts down. When a class is loaded, TAU examines the list of methods in the

class and creates an association of the name of the method and its signature, as embedded in

the TAU object, with the method identi�er obtained, using the TAU Mapping API (see the

TAU User's Guide [11]). When a method entry takes place, TAU performs measurements and

correlates these to the TAU object corresponding to the method identi�er that it receives from

JVMPI. When a thread is created, it creates a top-level routine that corresponds to the name

of the thread, so the lifetime of each user and system level thread can be tracked.

To deal with Java's multi-threaded environment, TAU uses a common thread layer for

operations such as getting the thread identi�er, locking and unlocking the performance

database, getting the number of concurrent threads, etc. This thread layer is then used by the

multiple instrumentation layers. When a thread is created, TAU registers it with its thread

module and assigns an integer identi�er to it. It stores this in a thread-local data structure

using the JVMPI thread API described above. It invokes routines from this API to implement

mutual exclusion to maintain consistency of performance data. It is important for the pro�ling

agent to use the same thread interface as the virtual machine that executes the multi-threaded

Java applications. This allows TAU to lock and unlock performance data in the same way
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INTEGRATION & APPLICATION OF TAU IN PARALLEL JAVA ENVIRONMENTS 11

as application level Java threads do with shared global application data. TAU maintains a

per-thread performance data structure that is updated when a method entry or exit takes

place. Since this is maintained on a per thread basis, it does not require mutual exclusion with

other threads and is a low-overhead scalable data structure. When a thread exits, TAU stores

the performance data associated with the thread to stable storage. When it receives a JVM

shutdown event, it ushes the performance data for all running threads to the disk.

3.4. MPI PROFILING INTERFACE

Given a means to capture Java-level execution events, we now consider MPI events. MPI

provides an interface [4] that allows a tool developer to intercept MPI calls in a portable

manner without requiring a vendor to supply proprietary source code of the library and without

requiring the application source code to be modi�ed by the user. This is achieved by providing

hooks into the native library with a name-shifted interface and employing weak bindings.

Hence, every MPI call can be accessed with its name shifted interface as well. Library-level

instrumentation can be implemented by de�ning a wrapper interposition library layer that

inserts instrumentation calls before and after calls to the native routines.

We developed a TAU MPI wrapper library that intercepts calls to the native library by

de�ning routines with the same name, such as MPI Send. These routines then call the native

library routines with the name shifted routines, such as PMPI Send. Wrapped around the call,

before and after, is TAU performance instrumentation. An added advantage of providing such

a wrapper interface is that the pro�ling wrapper library has access to not only the routine

transitions, but also to the arguments passed to the native library. This allows TAU to track
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12 S. SHENDE, A. MALONY

the size of messages, identify message tags, or invoke other native library routines. This scheme

helps a performance tool track inter-process communication events. For example, it is possible

to track the sender and the size of a received message in completion of a wild-card receive call.

Whereas JVMPI-based instrumentation can notify the pro�ling agent of an event such as an

mpiJava method entry, it does not provide the agent with arguments that are passed to the

methods. However, this information can be obtained using the TAU MPI wrapper library.

To expose thread information to the MPI interface, we decided to have the TAU

instrumentation access its runtime thread API layer within the MPI wrapper. As shown in

Figure 3, the MPI and Java modules within the TAU system use JNI 1.2 routines to gain

access to the Java virtual machine environment associated with the currently executing thread

within the JVM. It does so by using the virtual machine information stored by TAU when the

in-process pro�ling agent is loaded by the virtual machine during initialization, as described

in the previous section. Using the thread environment, the thread layer can invoke routines to

access thread-local storage to access the current thread identi�er, and invoke mutual exclusion

routines from the JVMPI interface to maintain consistency of the performance data. This

scheme allows events generated at the MPI or the Java layer to uniformly access the thread

API.

To allow the Java instrumentation to access the correct node and context information, we

instrument the MPI Init routine to store the rank of the MPI process in a globally accessible

data structure. The TAU instrumentation triggered by JVMPI event noti�cation (see Figure

3) then accesses this MPI information in the same manner as instrumentation requests from

any layer from any language. By giving access to the execution model information to all
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INTEGRATION & APPLICATION OF TAU IN PARALLEL JAVA ENVIRONMENTS 13

measurement and instrumentation modules in a well-de�ned, uniform manner, the performance

framework can be extended with a minimal e�ort to additional libraries and new evolving

execution models. A combination of instrumentation at multiple levels in TAU helps us solve

the hybrid execution model instrumentation problem.

3.5. TRACING HYBRID EXECUTION

Instrumentation of multi-threaded MPI programs poses some challenges for tracking inter-

thread message communication events. MPI is unaware of threads (Java threads or otherwise)

and communicates solely on the basis of rank information. Each process that participates

in synchronization operations has a rank. However, all threads within the process share the

same rank. For a message send operation, we can track the sender's thread by querying the

underlying thread system (in this case, through JVMPI) and we can track the receiver's thread

likewise.

Unfortunately, there still exists a problem with MPI communication between threads in

that the sender doesn't know the receiver's thread id and vice versa. To accurately represent

a message on a global timeline, we need to determine the precise node and thread on both

sides of the communication, either from information in the trace �le or from semantic analysis

of the trace �le. To avoid additional messages to exchange this information at runtime or to

supplement messages with thread ids, we decide to delay matching sends and receives to the

post-mortem trace conversion phase. Trace conversion takes place after individual traces from

each thread are merged. The merged trace is a time ordered sequence of events (such as sends,

receives, routine transitions, etc.). Each event record has a timestamp, location information
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14 S. SHENDE, A. MALONY

(node, thread) as well as event speci�c data (such as message size, and tags). During trace

conversion, each record is examined and converted to the target trace format (such as Vampir,

ALOG, SDDF or Dump). When a send is encountered, we search for a corresponding receive

operation by traversing towards the end of the trace �le and matching the receiver's rank,

message tag and message length. When a match is found, the receiver's thread id is obtained

and a trace record containing the sender and receiver's node, thread ids, message length, and

a message tag can be generated. The matching works in a similar fashion when we encounter a

receive record, except that we traverse the trace �le in the opposite direction, looking for the

corresponding send event. This technique is used later on in our example to produce Figure

5.

4. PERFORMANCE ANALYSIS FOR A PARALLEL JAVA APPLICATION

TAU supports both pro�ling and tracing performance analysis methodologies. Pro�ling

presents the user with summary statistics of performance metrics while tracing highlights

the temporal aspect of performance behavior, showing when and where events took place. To

provide a sense of how TAU's capabilities can be applied to parallel Java applications, we

present performance analysis of an mpiJava benchmark application that simulates the game of

Life. We use a simple application and run it on four processors mainly for purposes of brevity

and clarity in our discussion. However, it should be understood that TAU's capabilities can

extend and scale in respect to the complexity and requirements of applications and system

environments, including larger numbers of Java contexts and processors.
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INTEGRATION & APPLICATION OF TAU IN PARALLEL JAVA ENVIRONMENTS 15

Figure 4. TAU's pro�le browser RACY shows per thread performance data

In Figure 4, we see the pro�le of the mpiJava Life application obtained from TAU

measurement, as described in the previous sections. It shows seven Java threads running

on each node. Notice that events across di�erent levels and components of execution are

being observed. Thread 4 in each context is executing MPI calls for communication between

the four processes. Of particular interest is the well-known cascading behavior of the mpich

MPI Init routine seen in the MPI Init pro�le window. This illustrates how tasks are spawned

o� successively by MPICH. The performance of individual MPI routines is shown across each
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16 S. SHENDE, A. MALONY

Figure 5. Vampir global time display shows activities and inter-thread message communication

context and thread, as in the MPI Init pro�le window. A detailed performance pro�le for

each thread can be displayed graphically and textually, as shown in the two n,c,t 2,0,4 pro�le

windows for (t)hread 4 in (c)ontext 0 on (n)ode 2. Some of the other threads are performing

background JVM and mpiJava module tasks that the application developer would not directly

see.

To observe dynamic performance behavior, TAU can also generate event traces that are

visualized here using a third-party commercial trace visualization program called Vampir
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Figure 6. Vampir timeline display can show the depth of routine nesting of the callstack on a particular

thread

[9, 12]. Figure 5 illustrates how we can group threads within a node and show inter-thread,

inter-node message communication events as line segments that connect the send and receive

events within a global timeline. The user can zoom into interesting portions of the timeline

and can click on a message or a segment to get more detailed information (e.g., the node where

the events took place, the message tag, length, and bandwidth). Vampir provides a rich set of

views for exploring di�erent aspects of performance behavior. Figure 6 shows levels of nesting

along a timeline in each thread. Figure 7 shows a summary of performance data grouped in

higher level semantic groups (mpi, java, sun, and so forth) in the form of pie charts on a set

of threads within each node. Each thread could be an application or a virtual machine level

thread. Figure 8 shows a dynamic calltree on a selected thread. It shows the calling order of
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Figure 7. Vampir global activity chart illustrates thread grouping

routines annotated with performance metrics (inclusive, exclusive times, and number of calls).

A user can fold or unfold a segment of the tree to gain better insight. In Figure 9, we see a

communication matrix display with nodes and threads along the rows and columns marking

the senders and receivers, and the color-coded values in the matrix that show the extent of

inter-thread message communication.

Grouping performance data according to virtual machine and application level entities is not

new. It has been successfully demonstrated in Paradyn-J [10], a tool for detecting performance

bottlenecks in interpreted, just-in-time compiled Java programs, where data is separately

grouped in two distinct trees (one for the application, and another for the virtual machine).
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This approach allows both application developers as well as virtual machine developers to

gain valuable information regarding the interaction between the two groups. In contrast, as

illustrated in the performance displays, TAU gathers performance data from MPI and Java

layers in a seamlessly integrated fashion, showing the precise thread where MPI calls execute

and allowing data to be grouped in two hierarchies according to nodes and threads and semantic

groups. While providing a set of displays for pro�ling and tracing data, we can see the need

for other customized, user-de�ned multi-dimensional displays that may show data in more

e�ective ways. To accomplish this, TAU provides an open, documented interface for accessing

performance data that it generates and illustrates with examples how a user could transform

the data to commonly used performance data formats.

5. SELECTIVE INSTRUMENTATION

In examining the data output of a performance instrumented Java application, we notice that

there is a signi�cant amount of data about the internal workings of the JVM (e.g., see Figure 8).

While this may provide a wealth of useful information for the JVM developer, it could inundate

the application developer with superuous details when a more selective focus is desired. To

avoid making performance measurements for all system classes, the TAU Java instrumentation

system must be extended to selectively disable certain events from measurement. How is

TAU informed of which events to disable? Since Java classes are packaged in a hierarchical

manner, our approach is to allow the user to specify a list of classes to be excluded, on the

TAU instrumentation command line. For instance, if the user speci�ed java/lang, sun in
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20 S. SHENDE, A. MALONY

the exclude list, TAU should then eliminate all java/lang/* classes and sun/* classes from

consideration.

Figure 8. Vampir dynamic calltree display on each thread shows the calling order annotated with

performance metrics
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Figure 9. Vampir communication matrix shows the extent of inter thread communication

Shown below are the command line statements to run a java application, run a java

application with TAU instrumentation fully enabled, and run a java application with TAU

instrumentation selectively enabled:

% java <app> <args>

% java -XrunTAU <app> <args>

% java -XrunTAU:exclude=java/lang,sun <app> <args>

The implementation of this selective instrumentation in TAU is complicated by JVMPI

processing. JVMPI allows the in-process pro�ling agent to enable and disable the noti�cation

of events using its event API. However, if the agent tries to disable the noti�cation of the
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method entry or exit event, it a�ects all methods of a class, and not just methods that belong

to a certain class. That is, the disabling has to do with events of type \method," not particular

method events. This makes selective instrumentation diÆcult. Instead, TAU leaves method

events enabled, but implements selection by comparing the name of a class with the \exclude

list" speci�ed by the user. This comparison is done when a class is loaded at runtime. If the

class name is excluded, a ag is then maintained in each class method timer, indicating that

instrumentation is disabled. At runtime, when the method executes, JVMPI informs TAU

about method entry and exit events, and TAU in turn checks to see if its instrumentation is

disabled by examining this ag and processes the event accordingly. Currently, the level of

instrumentation granularity is the class, but we are looking into ways to re�ne the granularity

of selection to class methods.

6. SOURCE-LEVEL INSTRUMENTATION

For other programming languages that the TAU performance system supports (C, C++,

Fortran), standard routine entry/exit instrumentation is supplemented by the ability to specify

\user-de�ned" performance events. These events can be associated with any code points the

user desires. TAU provides an API to de�ne the events, and to start and stop event pro�ling

around code sections, including individual statements. However, in the �rst version of our Java

JVMPI-based instrumentation, we were only able to see Java method invocation events. The

de�nition and pro�ling of user events at the Java source level was not possible.

To accomplish this in TAU's current implementation for Java, we developed a source-level

API in the form of a TAU Java package for creating user-level event timers. This API is

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{7

Prepared using cpeauth.cls



INTEGRATION & APPLICATION OF TAU IN PARALLEL JAVA ENVIRONMENTS 23

consistent with similar capabilities TAU provides for other languages. The user can de�ne

events timers of a TAU.Profile class and then annotate the source code at desired places to

start and stop the timers. Below is a example code segment demonstrating the API's use:

import TAU.*;

// Create timer

static TAU.Profile t= new TAU.Profile("Tau Timer",

"test", "TAU_DEFAULT", TAU.Profile.TAU_DEFAULT);

t.Start();

// Code segment here

t.Stop();

The TAU Java package provides the API, but utilizes JNI to interface with the TAU

pro�ling library. This library is implemented as a dynamic shared object that is loaded by the

JVM or the TAU Java package. It is within the TAU pro�ling library that the performance

measurements are made. However, TAU captures performance data with respect to nodes and

threads of execution. What makes Java source-level instrumentation interesting is that node

identi�cation and JVM thread information is not accessible at the Java language level. Where

does TAU get this information?

To maintain a common performance data repository in which performance data from

multiple \streams" comes together and presents a consistent picture, we need instrumentation

at various levels to co-operate. As shown in Figure 3, the TAU pro�ling library uses JNI to
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Table I. TAU overhead for the parallel Java application Life

Operation Mean (�sec) Std. Deviation Samples Range (�sec)

Method pro�ling 30.28 7.12 123 20.14 - 70.14

Loading pro�ling + tracing 33.76 9.01 123 21.81 - 93.14

Method pro�ling 2.67 2.01 12860 1.14 - 50.14

Entry pro�ling + tracing 4.71 2.82 12860 3.14 - 190.14

Method pro�ling 1.16 0.31 12860 0.14 - 15.14

Exit pro�ling + tracing 2.85 1.29 12860 2.14 - 25.14

interface with the JVMPI layer to determine which JVM thread of execution is associated with

Java method events and with MPI events. In the same manner, TAU uses this mechanism to

determine thread information for user-de�ned events at the source level. To determine node

information, TAU queries the MPI library to �nd out its process rank.

Thus, TAU instrumentation occurs at the Java source level, at the MPI wrapper library

level, and at the virtual machine level. These di�erent layers together form a consistent view

of the execution model and thus must synchronize e�ectively to maintain the multi-threaded

performance data in a consistent state.

7. MEASUREMENT OVERHEAD

Software-based instrumentation schemes have a runtime overhead that intrudes on application

execution, possibly perturbing its performance [7]. It is impossible to completely eliminate this

overhead, but it can be quanti�ed and its e�ects evaluated to some extent. We have attempted
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to characterize the overhead that TAU generates in the execution of the Java application.

Since TAU instrumentation is typically triggered at entry, exit, and initialization of methods,

we break up the overhead in these three categories. We also consider the overhead when only

pro�ling is enabled, and when pro�ling and tracing is selected.

As described earlier, TAU requires the use of JVMPI for performance measurement for

two reasons. First, it gives a convenient mechanism for observing method entry/exit events

and other JVM actions. Second, even if an alternative instrumentation approach was used,

such as directly in the Java source or in JNI- linked libraries, JVMPI is the only current

mechanism to obtain thread information and JVM state data. In evaluating TAU overhead,

we are concerned with both the absolute overhead as well as the relative overhead in contrast to

the JVMPI overhead. Although a full characterization of JVMPI overheads is beyond the scope

of this paper, our experience is that a JVMPI-enabled application (without any performance

measurement) can see performance delays. Because TAU executes native code in the JVM

address space, its eÆciency should be high save for JVMPI interactions. If, in the future, the

JVMPI capabilities that TAU utilizes are o�ered by some other, more eÆcient means, the

overhead of having JVMPI enabled may be avoided.

The experimental apparatus to quantify TAU measurement overhead is based on how classes

are instrumented. Java supports dynamic loading of class bytecode in the virtual machine

during program execution. This allows TAU to instrument only those classes that are loaded

in the virtual machine, as opposed to all the classes. When a class is loaded, TAU examines the

names of methods and creates timers for each method. To determine this cost of instrumenting

a class, we can divide the time for loading a class by the number methods it contains to
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give an estimate of the �xed cost of method initialization. We measure all costs in terms of

elapsed wall-clock time obtained by the system call gettimeofday. In a similar fashion, we

measured overheads for method entry and method exit. All measurements take place after

JVMPI calls the TAU pro�ler agent. Here we consider the standard time measurement where

pro�le information is updated and trace data is optionally generated.

Table I shows the pro�ling overhead measurements in association with the overhead when

tracing is also enabled. The overhead seen in this table includes disk I/O for storing the pro�le

information at the end of the application or for saving per-thread trace bu�ers. We compute

the cost of the gettimeofday call on the system and compensate for it while measuring

the overhead associated with method loading, entry, and exit. The TAU overhead for each

method is di�erent and is inuenced by the time spent looking up the mapping table, string

operations that depend upon the length of a method name, load on the system, and other

platform speci�c parameters. However, we can compute average costs and give an estimate

for a speci�c platform. From the table, we see that method loading costs 30.28 microseconds

on the average, and it costs 2.67 microseconds for method entry and 1.16 microseconds for

method exit during pro�ling. The costs are a little higher when we generate both pro�les and

event-traces. The measurements were made on a quad Pentium III Xeon/550 MHz, 3GB RAM

symmetric multiprocessor machine with the following software environment:

� TAU version 2.8.11

� RedHat Linux 6.1 operating system with 2.3.40 Linux kernel,

� GNU gcc 2.95.2 C++ compiler that used the -O2 optimization ag, and
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� Blackdown JDK 1.2.2 Java runtime environment (version Linux JDK RC3) that used

the native threads package and the Sunw JIT compiler.

TAU currently does not employ any means for compensating for the perturbation caused by

the instrumentation. General techniques for compensating for instrumentation perturbation

are addressed in [7].

8. CONCLUSIONS

As more applications for parallel and distributed systems are developed using portable

hierarchical software frameworks, layered runtime modules, and multi-language software

components, the requirements for integrated portable performance analysis will grow more

complex. In particular, it becomes a challenge to observe performance events that occur

throughout the software hierarchy and across language components and then relate those

events to high-level execution abstractions and associated performance views.

Some of the challenges performance technologists face became apparent in our work with

Java and its use in a MPI-based parallel execution environment. The extensions we made to the

TAU system for unifying JVM versus native execution performance measurement, managing

multi-level multi-threading, utilizing di�erent instrumentation mechanisms for Java and

MPI, and providing source-level instrumentation, all demonstrate TAU's robust capabilities.

However, in the future, we also expect that new techniques for Java code parallelization will

introduce new requirements for integrated performance instrumentation.
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