
Automatic Translation of Fortran to JVM Bytecode

Keith Seymour Jack Dongarra
Department of Computer Science
University of Tennessee, Knoxville

Knoxville, TN 37996

ABSTRACT
This paper reports on the design of a Fortran-
to-Java translator whose target language is the in-
struction set of the Java Virtual Machine. The
goal of the translator is to generate Java imple-
mentations of legacy Fortran numerical codes in

a consistent and reliable fashion. The bene�ts of
directly generating bytecode are twofold. First, it
provides a much more straightforward and eÆcient
mechanism for translating Fortran GOTO state-
ments. Second, it provides a framework for pursu-
ing various compiler optimizations, which could be

bene�cial not only to our project, but to the Java
community as a whole.

1. INTRODUCTION
The Java programming language [1] has grown dras-
tically in popularity in recent years, in industry
as well as academia. The properties of Java, such

as portability, memory management, and security
make it an attractive programming environment for
a wide range of applications. Despite some prop-
erties that would make Java seem less attractive
to programmers in the high-performance and sci-

enti�c computing community (such as the lack of a
complex primitive data type and the lack of opera-
tor overloading), interest in using Java for scienti�c
and engineering applications has also increased, as
evidenced by the number of mathematical libraries
developed in Java over the past few years [2, 3, 4,

5, 6].

The primary by-product of our work on the
Fortran-to-Java translator has been one such math-
ematical library { JLAPACK [7]. The JLAPACK

library provides Application Programming Inter-

faces (APIs) to numerical libraries from Java pro-
grams. The numerical libraries will be distributed
as class �les produced by a Fortran-to-Java trans-
lator, f2j. The �rst version of f2j was used to trans-
late the BLAS [8, 9, 10] and LAPACK [11] nu-
merical libraries from their Fortran 77 reference

source code to Java source code and subsequently
distributed as a library of class �les. These libraries
are established, reliable, and widely used linear al-
gebra packages, and are therefore a reasonable �rst
testbed for f2j. Many other libraries of interest are

expected to use a very similar subset of Fortran
77. This report describes an extension to the f2j
compiler that allows directly generating class �les
from Fortran source code.

2. MOTIVATION
First we describe the motivation behind writing a
Fortran-to-Java translator and then describe why
we have chosen to extend the code generator to
directly emit bytecode.

The original goal of f2j was to facilitate the
translation of legacy Fortran numerical libraries
to Java, with LAPACK and BLAS being the pri-
mary libraries of interest. Given the goal of pro-

ducing a Java implementation of LAPACK, there
are three options:

1. Wrap the native routines in Java interfaces

2. Rewrite the routines in Java from scratch

3. Develop a tool to automate the translation

We avoided the �rst method because we wanted
the Java version of LAPACK to be used by ap-
plets as well as applications, thus requiring a pure
Java implementation. The second option would
have required hand-translating, testing, and debug-

ging hundreds of routines. Given the large amount
of code in LAPACK, the second option could be
very time-consuming and error-prone. We chose
the third option because it allows us to generate

pure Java code in a consistent and reliable way from
the original Fortran source. In addition, after pur-

suing the third option, we have a tool which could
be applied successfully to other numerical libraries
and eventually to a wide range of Fortran code.

There are two primary factors motivating the
development of a bytecode generator for f2j { han-

dling GOTO statements and exploring code opti-
mization techniques.

The handling of Fortran GOTO statements
has been a diÆcult problem due to Java's lack of
a goto statement. As described in [7], we can use

Java's labeled break and continue statements to
translate certain types of Fortran GOTOs, but
there are still some branches that do not correspond
to a break or continue statement. For these GO-
TOs, the technique we have been using is to gen-
erate \placeholders" in the Java source code. The

placeholders are method calls which specify the tar-
get of the GOTO statement. For example, the fol-
lowing Fortran statement:

GO TO 100

would be translated to the following Java method

call:
Dummy.go_to("Progunit",100);

whereas the corresponding label becomes:
Dummy.label("Progunit",100);

The �rst argument is the name of the current pro-
gram unit and the second argument is the branch

target or label number. Once the resulting Java
source code is compiled with javac, we use a GOTO
translation tool to parse the bytecode and identify
the placeholders, which are then emitted as JVM
branch instructions. This is discussed in muchmore
detail in [7].

The post-processing has worked acceptably ex-
cept that the multi-stage process is cumbersome
and something that many users �nd confusing. In
fact, it is so easy to forget to run the GOTO transla-
tion tool that we implemented the Dummymethods

such that they warn the user when GOTO trans-
lation has not been performed. The �rst argument
is used to inform the user which program unit has
not been transformed. The GOTO translation pro-
cess has remained separate from f2j for two rea-

sons. First, we wanted to allow the users to modify
the resulting Java source before GOTO translation.
Second, since the GOTO translation requires Java
compilation before the patching, we kept the pro-
cess separate from f2j to allow for users to choose
their own Java compiler and ags.

Since the JVM instruction set includes an un-
conditional branch instruction, generating the byte-
code directly does not require any tricky manipula-
tion or post-processing. This greatly simpli�es and
speeds the translation process.

Another bene�t to generating bytecode is that
it allows us to explore various optimization tech-

niques since we can directly control how the stack
is used, which instructions are generated, and in
which order. We plan to employ traditional com-
piler optimizations such as loop unrolling and code
motion, for which well-understood optimization tech-
niques exist [12], as well as exploring alternate tech-

niques which may be speci�c to Java.

While there are several Java assembler formats
available (one popular example being Jasmin [13])
which would make debugging a bit easier, we chose
to generate the bytecode directly in order to min-

imize the dependence on external packages. The
bene�t to the user is that there is one less package
to install and the bene�t to us (the developers) is
that we do not depend on ongoing support for any
external packages.

3. IMPLEMENTATION
The f2j compiler operates in four stages, as de-
scribed below and illustrated in Figure 1.

3.1 Lexing/Parsing
In this stage the lexer separates the Fortran source
code into tokens and the parser builds a complete

AST (Abstract Syntax Tree) and symbol tables for
each program unit. Subsequent compilation stages
obtain all information about the program structure
from the AST built during parsing.

3.2 Optimizing the Use of Scalar Wrap-
pers

In Fortran values are passed to functions and
subroutines by reference. This implies that if a

Fortran subroutine modi�es one of its parame-
ters, then that modi�cation also takes e�ect in the
calling routine. However, Java uses pass-by-value,
which implies that any modi�cations would not take
e�ect in the caller. In order to simulate pass-by-
reference in Java, we must wrap the scalar in an

object. Then instead of passing the integer value,
we would pass the object wrapper whose scalar �eld
may be modi�ed in the subroutine.

During the scalar \optimization" phase, f2j de-

termines which parameters of each subroutine ab-
solutely need to be wrapped. The rest are passed as
Java primitive data types (int, double, etc) in or-
der to improve access times and save memory. The
determination is made as follows:

A variable must be wrapped if:

1. The variable is an argument to this function
and it is on the left side of an assignment
statement in this program unit

Lexical/Syntactic
Analysis

Code
Generation

Intermediate
Stages

Abstract
Syntax
Tree

Annotated
AST

javac

JVM
Bytecode

Java
Source

GOTO
Translation

Transformed
Bytecode

Java Virtual
Machine

F77 Source

f2j

Bytecode

Figure 1: Stages of Translation

2. The variable is an argument to this function
and it is an argument to a READ statement

3. The variable is passed to a function or sub-
routine that modi�es it

The last rule implies that every function or
subroutine that the current program unit depends

on must be checked before this unit can be com-
pletely veri�ed. f2j resolves the dependencies before
continuing to check the current unit. Of course, the
assumption is that there are no cycles in the depen-
dency graph.

3.3 Type Assignment
This stage is not "typechecking" in the semantic

analysis sense. In this stage, f2j performs a traver-
sal of the AST and assigns type information to each
node, propagating information up the tree. For ex-
ample, f2j looks at both sides of an addition op-
eration and assigns the widest type to the addi-
tion node and so on up the tree. This information

helps the code generator emit the appropriate type-
speci�c opcodes and type casts when necessary.

3.4 Code Generation
Code generation is by far the largest and most com-
plicated stage in the translator. In this stage, f2j
traverses the AST, generating code as it traverses
through the tree. The code generator depends on

the information determined in all the prior steps to
generate correct code. Currently, Java source code
and JVM bytecode are generated during the same
pass (over the AST) because using separate passes

would have resulted in a lot of duplicated code and
made maintenance more diÆcult.

4. GENERATING BYTECODE
This section elaborates on the design and imple-
mentation of the �nal stage of the translator, the

code generator.

4.1 Design
In this section, we briey mention some of the de-
sign considerations made during the development
of f2j.

4.1.1 General
Each Fortran program unit is generated as a sep-
arate Java class containing a single static method.
For example, the Fortran subroutine DGEMM would
be translated to a Java class named Dgemm contain-

ing only a single method named dgemm.

All arrays are declared in column-major fash-
ion, with two-dimensional Fortran arrays being
translated as linearized one-dimensional Java ar-
rays.

4.1.2 GOTO Statements
Java source code does not provide a GOTO state-
ment, thus we must perform some post-processing
on the class �les that were generated from Java
source (using javac or equivalent Java compiler)

in order to correctly generate the goto statements.
However, Fortran GOTO statements are easily
translated to JVM bytecode since there exists a
goto opcode.

4.1.3 Variables
All variables are emitted as static class variables
and initialized in a special class initialization method
named <clinit>. Thus, any SAVE statements in
the Fortran source may be ignored since essen-
tially all variables are already saved. This was orig-
inally done for simplicity so that the code generator

could emit all variables at the same time and in the
same manner. However, such convenience usually
comes at a price and in this case, the price is perfor-
mance. We �nd that the JVM instruction to load a
static class variable takes longer than the instruc-
tion to load a local variable, thus decreasing the

overall performance of the generated code.

As mentioned in Section 3, all variables are
emitted as primitives unless f2j determines that they
must be wrapped in objects.

4.1.4 DATA Statements
The initialization performed by DATA statements
is emitted as part of the special method named
<clinit>. This works well under the current as-

sumption that all variables are all emitted as static
class variables.

4.1.5 Intrinsic Functions
Some Fortran intrinsic functions may be trans-
lated directly to a corresponding method in the
Java core API. However, many intrinsics do not di-
rectly correspond to any existing Java method and
in these cases, we have implemented the intrinsics
in Java.

4.1.6 Common Blocks
Each common block in the Fortran source is emit-
ted in a separate class �le, containing all the vari-

ables of the original common block as static vari-
ables. If multiple declarations of the same com-
mon block exist in the Fortran source, f2j merges
the variable names from each declaration into one
name.

4.1.7 EQUIVALENCE Statements
Generally, EQUIVALENCE statements are diÆcult
to translate since Java does not allow overlapping
memory regions. However, f2j can handle a lim-

ited form of EQUIVALENCE as long as the vari-
ables being equivalenced do not di�er in type and
are not o�set from each other. This restriction im-
plies that any two arrays being equivalenced must
specify indices of 1. However, it is allowable to
equivalence arrays of di�erent dimensions (e.g. a

one-dimensional integer array to a two-dimensional
integer array), as all arrays are linearized to one
dimension and the access is basically the same re-
gardless of the number of dimensions.

To handle the limited EQUIVALENCE, we sim-
ply merge the equivalenced variable names into a

single variable. Then this single variable is loaded
in place of any of the variables that were previously
equivalenced.

4.1.8 I/O Statements
While I/O is not the most critical aspect of translat-
ing numerical libraries such as LAPACK, we have
found it useful to partially implement Fortran

I/O in order to translate the test routines, which
read in the parameters and write out the results.
Unformatted WRITE statements are easily imple-
mented with Java's println() method, but for-
matted WRITE statements require �rst analyzing

the corresponding FORMAT statement and creat-
ing a StringBuffer to hold the output before call-
ing println(). READ is implemented using an
external library, EasyIn [14]. File I/O is not yet
implemented.

4.1.9 Passing Functions as Arguments
Passing a function name as an argument to an-

other function, as done in Fortran, is not possible
in Java. A Java programmer may pass a class as
an argument, but not an individual method. The
closest Java analogue is passing an interface which
implements a method with a pre-determined name.

That technique is not really suitable for use with f2j
because every generated class �le would be forced
to implement the interface whether it was actually
intended to be passed to another function or not,
thus adding extra overhead even if the implemen-
tation is simply a call to the translated Fortran

routine.

Rather than using interfaces, f2j uses Java's
\reection" mechanism to determine the appropri-
ate method to invoke, based on the assumption that
f2j always places the generated Fortran routine in

the �rst method of the class. The caller only needs
to pass a new instance of the class corresponding
to the translated Fortran routine.

4.1.10 Other Limitations
Aside from the limitations already mentioned (I/O,
EQUIVALENCE, etc.), f2j does not currently sup-

port multiple entry points (ENTRY statement), al-
ternate returns, statement label assignment, or com-
plex arithmetic.

4.2 Implementation
The code generator is implemented in two passes.
The �rst pass generates the appropriate instruc-
tions and the second pass calculates the maximum

stack depth and �lls in any branch targets that were
not known during the �rst pass. There are back-
patching techniques that would allow �lling in the
branch targets in one pass, but since we are using

two passes in any case, we can more easily perform
this task during the second pass.

4.2.1 Instruction Generation
First, the code generator traverses the abstract syn-
tax tree, generating Java source code as well as the
JVM opcodes, but at this point the opcodes have
empty operand �elds for branch target addresses.
The reason being that for forward branches, we do
not yet know the address of the target instruction

because it has not been generated. In such cases,
we simply save a pointer to the current node and
update its branch target pointer after generating
the nodes in between the current node and the tar-
get. This is useful when the GOTO is \implicit" in
the sense that it never appeared as a GOTO in the

original source (i.e. it is used to implement some
Fortran control structure such as a DO loop).
GOTO statements which appear explicitly in the
Fortran source require slightly di�erent handling
since the branch target is an arbitrary label whose

corresponding node we do not have access to at this
point. Also there is no inherent structure as with a
DO loop, where the goto always branches to a spe-
ci�c instruction. Thus, during this phase, we create
a table which maps the labels in the original source
to the corresponding instruction addresses. Then

in the next phase, we can easily �ll in the branch
target address for any GOTO statement by looking
up its branch label.

4.2.2 Calculating Stack Depth and Branch
Targets

At this point, the AST has been fully traversed, we

have generated the Java source code, and we have
built a control ow graph representing the byte-
code. Each node may have pointers to other nodes,
which represent the branch targets. Each instruc-
tion may or may not have a single branch target
depending on the instruction type1. For example,

an iload instruction has no branch target whereas
icmpeq, being a conditional branch, does have a
branch target. Now as we traverse this graph, we
can �ll in the empty branch target o�sets by follow-
ing the pointer to the target node and examining
its address.

Also during this phase, we maintain informa-
tion about the current stack depth at each node
because the class �le format requires specifying the
maximum stack depth that will be encountered dur-
ing execution of the method. The stack depth at

any given node is a function of the stack depth at
the prior node and the characteristics of the current
instruction (e.g. iadd would pop two integers o�

1We are conveniently ignoring tableswitch which
has many branch targets because f2j never actually
generates this opcode.

the stack and push one integer on, for a net di�er-
ence of one). This also provides a nice opportunity

for sanity checking | for example, if the current
instruction branches back to another instruction
for which the stack depth has already been cal-
culated, then we can check whether the expected
stack depth matches the current stack depth. In
other words, a given instruction could be the target

of multiple other instructions and the stack depth
at all of those instructions must be consistent (oth-
erwise, this indicates an error in the code genera-
tor).

Finally, at this point we have built a complete

data structure representing the class �le | this in-
cludes constant pool, �elds, and methods | which
we emit in the format dictated by the Java Virtual
Machine Speci�cation [15].

4.3 Differences in Code Generation
Since we did not want to eliminate the existing code
generator (which emits Java source), we designed
the new code generator to emit both Java source
and JVM bytecode during the same pass. For the
most part, the bytecode can be generated simulta-

neously with the Java source code, but there are
some exceptions:

� Obviously GOTO statements are handled dif-

ferently in bytecode since we can easily emit a
goto JVM instruction, but we must generate
\dummy" method calls in Java source.

� DO loops are emitted as for loops in Java
source, with the initial, terminal, and incre-
mentation parameters straightforwardly trans-
lated to Java-style loop control expressions.

However, when translating a DO loop directly
to bytecode, we follow the sequence outlined
in the Fortran 77 speci�cation [16] and cal-
culate the iteration count2 before entering the
loop. Then at each iteration, the iteration
count is decremented until it reaches 0, at

which point the loop is terminated.

� Variable declarations are handled a bit dif-
ferently in bytecode. Each variable must be
stored in the �elds table of the current class,
but explicit initialization code is only gener-
ated for array and reference data types. When
generating bytecode, we must create a special

method named <clinit> into which we place
the initialization code. However, with Java
source, this is handled by javac.

2The iteration count is de�ned as max(int((m2 �

m1+m3)=m3); 0), where m1 is the initial value, m2

is the terminal value, and m3 is the incrementation
value [16].

Calling FUNC1 Calling FUNC2

getstatic #15 <Field Hello.x:int[]> getstatic #15 <Field Hello.x:int[]>

iconst_5 iconst_5

iconst_1 iconst_1

isub isub

iaload invokestatic #28

invokestatic #22 <Method Func2.func2(int[],int):void>

<Method Func1.func1(int):void>

Table 1: Di�erences in Argument Passing.

� Type casts are much more important when
generating bytecode than Java source since

each instruction is type-speci�c. Thus, in the
many instances that we could \get away" with
generating an expression in Java without any
explicit casts, we must generate type conver-
sion instructions in bytecode.

When the code generator needs to toggle be-
tween modes | such as to suspend Java source code

generation and begin generating code in bytecode
only | we simply set the appropriate global �le
pointer to /dev/null and call the routine as usual.
There is no need for any modi�cation to the code
generation routines.

4.4 Resolving Calls to External Func-
tions

This section describes a technique for resolving calls

to functions or subroutines which do not appear in
the original source �le. By \resolving", we mean de-
termining the correct calling sequence for the func-
tion call, which depends on its method signature.
For example, consider the following Fortran pro-
gram segment:

INTEGER X(10)

CALL FUNC1(X(5))

CALL FUNC2(X(5))

[...]

SUBROUTINE FUNC1(A)

INTEGER A

[...]

SUBROUTINE FUNC2(A)

INTEGER A(*)

The �rst subroutine, FUNC1, expects a scalar
argument, while FUNC2 expects an array argument.
These two calls would be generated identically in
a standard Fortran compiler, regardless of how
FUNC1 and FUNC2 were de�ned | the address of the

�fth element of X would be passed to the subroutine
in both cases. However, things are not so simple in
Java due to the lack of pointers. To simulate pass-
ing array subsections, as necessary for the second

call, we actually pass two arguments | the array
reference and an additional integer o�set parame-

ter, as shown in the right column of Table 1.

However the �rst subroutine expects a scalar,
so we should pass only the value3 of the �fth el-
ement, without any o�set parameter, as shown in
the left column of Table 1.

Notice that the primary di�erence between the
two calling sequences is that when calling FUNC1,
the array is �rst dereferenced using the iaload in-
struction. Also note that the purpose of the arith-

metic expression is to decrement the index by 1 to
compensate for the fact that Java has 0-based in-
dexing whereas Fortran has 1-based indexing.

The only way to determine the correct calling
sequence for any given call is to examine the param-

eters of the corresponding subroutine or function
declaration. This is only possible if the declaration
had been parsed at the same time as the current
program unit, meaning that for code generation to
work properly all the source �les had to be joined
into a big monolithic input �le.

This was a serious limitation, especially for
large libraries, because a modi�cation to any part of
the code requires re-compiling all the source. There
are at least a couple of ways to solve this problem.
One way would be to obtain the parameter infor-

mation directly from class �les that have already
been generated. While this would work well, since
f2j is written in C and does not have access to nice
Java features like reection, it would require a lot of
extra code to parse the class �les. Instead, we use
a more lightweight procedure in f2j. At compile-

time, f2j creates a descriptor �le which is a text �le
containing a list of every method generated. Each
line of the descriptor �le contains the following in-
formation:

� Class name { the fully quali�ed class name
which contains the given method.

3In this case, assume that FUNC1 does not modify
the argument, otherwise things get even more com-
plex. See [7] for a description of handling that case.

Compilation Method Command Line Raw Performance Performance Relative
(Mop/s) to Optimized Fortran

Optimized Fortran f77 -O3 34.7 1.00

Unoptimized Fortran f77 14.1 0.41
Bytecode f2java 10.9 0.31

Bytecode (-server) f2java 25.9 0.75

Java Source f2java ; javac 10.3 0.30

Java Source (-server) f2java ; javac 27.9 0.80

Table 2: Performance on the double-precision Linpack Benchmark (n=500)

� Method name { the name of the method itself.

� Method descriptor { this method's descriptor,

which is a string representing the types of all
the arguments as well as the return type.

To resolve a subroutine or function call, we search
all the descriptor �les for the matching method
name and examine the method descriptor. Based
on the method descriptor, we can then correctly
generate the calling sequence. The code generator
locates the descriptor �les based on colon-separated

paths speci�ed on the command line or in the en-
vironment variable F2J SEARCH PATH.

5. EXPERIMENTAL RESULTS
When evaluating the results of our code generator,
the two aspects we are most concerned with are cor-
rectness and eÆciency of the generated code. Cor-
rectness means that the generated code produces
the same numerical results as the native-compiled
Fortran code, within a certain degree of tolerance

inherent in performing oating-point calculations
on di�erent systems. We also measure eÆciency in
terms of the original Fortran code, using the per-
formance of optimized Fortran as the standard by
which we evaluate the eÆciency of our code. Opti-

mized Fortran is almost certainly going to repre-
sent an upper-bound on the performance potential
of the code that f2j generates.

5.1 Correctness
To date, the BLAS and LAPACK libraries have
been the main testbed for f2j. Thus, when evalu-
ating correctness we are primarily concerned with
the results generated by the Java implementation of
the BLAS and LAPACK libraries. Fortunately the

original Fortran distributions of these libraries in-
clude comprehensive testing routines to verify the
numerical results of the computations. To deter-
mine the correctness of the code generated by f2j,
we translated all of the double-precision test rou-
tines to Java and ran them against the Java imple-

mentations of the BLAS and LAPACK libraries.
All the numerical tests passed within the default
thresholds given in the original LAPACK test in-
put �les.

5.2 Efficiency
To measure the performance of the code generated

by f2j, we translated the Fortran 77 source code
for the Linpack benchmark [17] in several di�erent
ways, as shown in Table 2. The �rst two entries
represent native-compiled Fortran code, both op-
timized and unoptimized. The third entry repre-

sents the performance of the JVM bytecode gener-
ated by f2j. The fourth entry is the same as the
third except that the -server ag was speci�ed
when running the benchmark. The last two en-
tries represent the Java source code generated by f2j
(which includes subsequent compilation with javac

and GOTO translation).

The test machine is a Sun Ultra-5 running So-
laris 2.7 with Sun's J2SE 1.3.0 (with HotSpot en-
abled). We used Sun's f77 5.0 compiler to obtain
the results for native-compiled Fortran code.

As Table 2 shows, the bytecode generated by
f2j achieves roughly one-third the performance of
optimized Fortran code in \client" mode and over
three-fourths the performance of optimized For-

tran code in \server" mode. Since f2j generates

the bytecode and Java source simultaneously, it
is convenient to compare the performance of the
directly-generated bytecode to the bytecode result-
ing from generating Java source and subsequently
compiling using javac. Depending on the JVM

used (and in the case of Hotspot, which JVM ag
is speci�ed), in some cases the Java source is faster
and in other cases the directly-generated bytecode
is faster.

6. CONCLUSION
We have demonstrated that it is feasible to auto-

matically convert very large Fortran libraries to
JVM bytecode with reasonable performance. Cer-
tainly at this point the performance of the trans-
lated numerical code does not match hand-tuned
Java algorithms, but that is not the problem f2j
is designed to address. The f2j project intends to

bootstrap the use of Java for numerical and sci-
enti�c computing by providing the widest possible
range of useful and reliable numerical routines in a
pure Java format. However, having said that, we

think there is still a lot of opportunity for improv-
ing the performance of the generated code. Cur-

rently the bytecode is generated in a very straight-
forward manner, without any optimization. The
next stage in the development of the bytecode gen-
erator will be the implementation of a code opti-
mization stage to increase the performance of the
generated code. In particular, we would like to in-

vestigate the impact of various compiler optimiza-
tions on the performance of the JLAPACK library
routines. These techniques could be bene�cial not
only to our project, but to the Java community as
a whole.

We also plan to remedy some of f2j's limita-
tions | complex arithmetic support, better I/O
handling, and some syntactic restrictions inherent
in our parser. The eventual goal is to have a tool
with a usefulness more general than just translating
numerical libraries.

7. REFERENCES
[1] Sun Microsystems Inc. The Java Language

Environment. Sun Microsystems, Mountain
View, CA, 1995.

[2] Joe Hicklin, Cleve Moler, Peter Webb,
Ronald F. Boisvert, Bruce Miller, Roldan
Pozo, and Karin Remington. JAMA : A Java

Matrix Package, June 1999. Available on the
World-Wide Web at
http://math.nist.gov/javanumerics/jama.

[3] G.W. Stewart. JAMPACK : A Java Package
for Matrix Computations, February 1999.
Available on the World-Wide Web at
ftp://math.nist.gov/pub/Jampack/Jampack/

AboutJampack.html.

[4] B. Blount and S. Chatterjee. An Evaluation

of Java for Numerical Computing. Scienti�c
Programming, 7(2):97{119, 1999.

[5] DeriVision Inc. LinJa, April 2000. Available
on the World-Wide Web at
http://www.derivision.com/products/index.html.

[6] DRA Systems. OR-Objects, December 1999.
Available on the World-Wide Web at
http://opsresearch.com/OR-
Objects/index.html.

[7] D. Doolin, J. Dongarra, and K. Seymour.
JLAPACK | Compiling LAPACK Fortran

to Java. Scienti�c Programming,
7(2):111{138, 1999.

[8] C. Lawson, R. Hanson, D. Kincaid, and
F. Krogh. Basic Linear Algebra Subprograms
for Fortran Usage. ACM Transactions on

Mathematical Software, 5:308{325, 1979.

[9] J. Dongarra, J. Du Croz, S Hammarling, and
R. Hanson. An Extended Set of Fortran

Basic Linear Algebra Subprograms. ACM
Transactions on Mathematical Software,
14(1):1{32, 1988.

[10] J. Dongarra, J. Du Croz, I. Du�, and
S. Hammarling. A Set of Level 3 Basic Linear
Algebra Subprograms. ACM Transactions on

Mathematical Software, 16(1):1{17, 1990.

[11] E. Anderson, Z. Bai, C. Bischof, S. Blackford,
J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK
Users' Guide, Third Edition. SIAM,
Philadelphia, PA, 1999.

[12] A. V. Aho, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley Publishing Company,

Reading, MA, 1988.

[13] J. Meyer and T. Downing. Java Virtual

Machine. O'Reilly & Associates, Sebastopol,
CA, 1997.

[14] Peter van der Linden. EasyIn, May 1997.
Available on the World-Wide Web at
http://www.afu.com/EasyIn.txt.

[15] T. Lindholm and F. Yellin. The Java Virtual

Machine Speci�cation. Addison-Wesley,

Berkeley, CA, 1997.

[16] American National Standards Institute.

American National Standards Institute
programming language FORTRAN.
X3.9-1978, ANSI, New York, New York, 1978.

[17] J. Dongarra. Linpack Benchmark. [Online]
Available
http://www.netlib.org/benchmark/linpackd,
October 1992.

