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ABSTRACT
Jackal is a fine-grained distributed shared memory implementation
of the Java programming language. Jackal implements Java’s mem-
ory model and allows multithreaded Java programs to run unmodi-
fied on distributed-memory systems.

This paper focuses on Jackal’s runtime system, which imple-
ments a multiple-writer, home-based consistency protocol. Proto-
col actions are triggered by software access checks that Jackal’s
compiler inserts before object and array references. To reduce
access-check overhead, the compiler exploits source-level infor-
mation and performs extensive static analysis to optimize, lift, and
remove access checks. We describe optimizations for Jackal’s run-
time system, which mainly consist of discovering opportunities to
dispense with flushing of cached data. We give performance re-
sults for different runtime optimizations, and compare their impact
with the impact of one compiler optimization. We find that our
runtime optimizations are necessary for good Jackal performance,
but only in conjunction with the Jackal compiler optimizations de-
scribed in [25]. As a yardstick, we compare the performance of
Java applications run on Jackal with the performance of equiva-
lent applications that use a fast implementation of Java’s Remote
Method Invocation (RMI) instead of shared memory.

1. INTRODUCTION
Jackal is a compiler-supported, fine-grained distributed shared

memory (DSM) system for Java. The system can run unmodi-
fied, multithreaded Java programs on a cluster of workstations. To-
gether, Jackal’s compiler and runtime system (RTS) hide the dis-
tributed nature of the cluster: Jackal programs use threads and
shared variables instead of message-passing abstractions like Re-
mote Method Invocation [21]. This paper focuses on the imple-
mentation of the RTS and its optimizations, which mainly consist
of discovering opportunities to dispense with flushing of cached
data to main memory.

Jackal resembles fine-grained DSM systems like Shasta [26] and
Sirocco [15] in that it uses a small unit of coherence that is managed
entirely by software. In Jackal, the unit of coherence is called a
region. Each region contains either a complete Java object or a sec-
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tion of a Java array. In contrast with page-based DSMs, Jackal uses
software access checks to determine if a region is present in local
memory and up-to-date. If an access check detects that a region is
absent or out-of-date, it invokes Jackal’s runtime system which im-
plements a multiple-writer cache coherence protocol that resolves
read and write misses. A region is managed by its home node,
which is the processor that created the associated object. Jackal
does not use a single-writer protocol, because that would require
the compiler to inform the runtime system when a read/write op-
eration has finished; that would increase code size and protocol
overhead, and pose complications for the compiler in (re)moving
access checks.

Jackal conforms to the Java memory model, which allows caching
of objects in (thread) local memory and logically requires complete
flushing of local memory upon each entry and exit of a synchro-
nized block. In our system, main memory equates to an object’s
home node, and local memory to the requesting machine’s mem-
ory. Flushing regions and subsequently requesting them again may
cause a large overhead under a naive implementation (especially
using the class libraries which perform many unnecessary synchro-
nizations [2]). To reduce this overhead, we investigate possibilities
offered by the Java memory model to cache regions across a syn-
chronization operation. This is possible for regions that are read-
shared and regions that are accessed by a single machine.

Jackal uses an optimizing Java compiler to generate access checks.
In the optimization passes of the compiler, access checks may be
removed, lifted or combined. For example, array accesses may be
combined and lifted from a loop that (partially) traverses the ar-
ray, or accesses may be aggregated when the compiler determines
that an object is used together with its referenced subobjects. The
compiler opimizations are described in detail in [25].

The contributions of this paper are as follows:
� We describe various RTS optimizations to reduce the number

of region flushes.
� We measure the impact of the RTS optimizations for several

Java applications and compare them to the impact of compiler
optimizations.

The paper is structured as follows. Section 2 treats Java’s mem-
ory model. Section 3 describes Jackal and its implementation. Sec-
tion 4 summarizes Jackal’s compiler optimizations and describes
our new RTS optimizations. Section 3 and an extended version of
Subsection 4.1 appeared earlier in [25], but we repeat these intro-
ductory sections here to make this paper self-contained. Section 5
studies the impact of the RTS optimizations on Jackal’s perfor-
mance on a Myrinet-based cluster computer. Section 6 discusses
related work. Finally, Section 7 concludes.



2. JAVA’S MEMORY MODEL
We briefly summarize Java’s memory model; for a detailed de-

scription we refer to the language specification [12], Pugh’s cri-
tique of the memory model [24], and the revised memory model
proposed in JSR 133 [1],

Java’s memory model specifies that each thread has a working
memory, which can be considered a thread-private cache. The en-
tire program has a main memory which is used for communica-
tion between threads. The data modified by a thread is flushed
to main memory upon encountering a synchronization point. (In
this respect, the model resembles release consistency [10, 18].)
Synchronization points in Java correspond to the entry and exit
of synchronized blocks. These are implemented as calls that lock
and unlock an object. A lock operation conceptually copies all of
a thread’s working memory to main memory and invalidates the
working memory. For each storage location, the first access to that
location after a lock operation will copy the storage location’s value
from main memory into working memory.

Both lock and unlock operations must flush a thread’s working
memory, but an implementation is allowed to flush earlier, even af-
ter every write operation. If a thread updates an object from outside
a synchronized block, Java does not specify when other threads will
see the update.

In contrast with entry consistency [5], Java’s memory model
does not couple locks to specific objects or fields. In particular,
different fields of one object may be protected by different locks,
so that those fields can be updated concurrently without introducing
race conditions.

Because the current Java Memory Model contains some (unin-
tended) inconsistencies, omissions and problematic formulations,
the Java Memory Model is under revision and a new memory model
has been created. The new JMM is expected to become final some-
time in 2002. The new memory model, JSR 133, differs from the
original memory model by specifying everything in terms of writes
made by a thread and which writes by other threads it can see at any
time. As in the original formulation of the Java Memory Model,
upon synchronization the cache is flushed, and the set of writes per-
formed by thread T is committed to main memory. Additionally,
when accessing a volatile variable, a thread’s working memory is
flushed to main memory.

In JSR 133 terms, a write is a tuple: hvalue, globally unique write
id, object field (or variable)i. In the JSR 133 model, a set of all
writes to a variable v is maintained during execution: allWrites(v).
A set of writes to a variable v that thread T has seen, is maintained
in set Previous(T;v). For each thread T a list of overwritten writes
that it has seen is also maintained: overWritten(T;v). The set of
possible values that thread T can then see at any time it accesses
variable v is allWrites(v) - overWritten(T;v). In a properly syn-
chronized program, the size of this set for variable v is one at any
access to v, so it is deterministic which value is read.

In this paper, we will assume JSR 133 semantics as it more
clearly defines program semantics in the presence of thread cre-
ation, termination and static and volatile variables.

3. IMPLEMENTATION
Jackal consists of an optimizing Java compiler and a runtime sys-

tem. The compiler translates Java sources directly into executable
code rather than Java bytecode. (The Jackal runtime system, how-
ever, contains a dynamic bytecode compiler [21] to support dy-
namic class loading.) The compiler also generates software access
checks and performs several optimizations to reduce the number
and cost of these checks. The runtime system implements Jackal’s
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Figure 1: Array layout.

multiple-writer cache-coherence protocol. The following sections
describe the main components of the implementation. Optimiza-
tions are described separately in Section 4.

3.1 Regions
A region is Jackal’s unit of coherence. A region is a contiguous

chunk of virtual memory that contains one Java object or a contigu-
ous section of a Java array. Jackal partitions arrays into fixed-size,
256-byte regions (to reduce false sharing inside large arrays).

Every region has a region header that contains a pointer to the
start of the Java data stored in the region, a pointer to the region’s
twin (see Section 3.3), and DSM status information. Each object or
array has a Java object header that contains a pointer to a virtual-
function table and object status flags. To keep array data contigu-
ous, regions and their headers are stored separately (see Fig. 1).

The processor that allocates a region is called the region’s home
node. The home node always provides storage for the region and
plays an important role in Jackal’s coherence protocol (see Sec-
tion 3.3). Non-home nodes can cache the region and may discard
their copy and its memory when they see fit (e.g., during garbage
collection).

3.2 Address-Space Management
Jackal stores all regions in a single, shared virtual address space.

Each region occupies the same virtual-address range on all proces-
sors that store a copy of the region. Regions are named and ac-
cessed through their virtual address; this scheme avoids translation
of object pointers.

Fig. 2 shows a processor’s address-space layout. The shared vir-
tual address space is split into P equal parts, where P is the number
of processors. Each processor owns one of these parts and creates
objects and arrays in its own part. This way, each processor can
allocate objects without synchronizing with other processors.

When a processor wishes to access a region created by another
machine, it must (1) potentially allocate physical memory for the
virtual memory pages in which the object is stored, and (2) retrieve
an up-to-date copy of the region from its home node. Region re-
trieval is described in Section 3.3. Physical memory is allocated us-
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ing the mmap() system call. Unmapped pages are detected through
MMU traps which result in an operating-system signal that is pro-
cessed by Jackal’s runtime system. If a processor runs out of free
physical memory, it initiates a global garbage collection that frees
both Java objects and physical memory pages.

3.3 Coherence Protocol and Access Checks
Jackal employs an invalidation-based, multiple-writer protocol

that combines features of HLRC [29] and TreadMarks [17]. As
in HLRC, modifications are flushed to a home node; as in Tread-
Marks, twinning and diffing is used to allow concurrent writes to
shared data. Unlike TreadMarks, Jackal uses software access checks
inserted before each object/array usage to detect non-local and stale
data. The run-time data structures related to the coherence protocol
are shown in Fig. 3.

The coherence protocol allows processors to cache a region cre-
ated on another processor (i.e., the region’s home node). All threads
on one processor share one copy of a cached region. The home
node and the caching processors all store this copy at the same vir-
tual address.

Although all threads on a processor access the same copy of a
given region, each thread maintains its own cache-state vector for
that region. This is required because Jackal allows multiple threads
per processor and the JMM is defined with respect to threads, not
processors. For this purpose, each thread maintains a present and a
dirty bitmap, each of which contains one bit per 64 bytes of heap.
Objects are 64-byte aligned to map a single object to a single bit in
the bitmap. To reduce memory usage, pages for these bitmaps are
allocated lazily.

The present bit in thread T ’s bitmap indicates whether thread
T retrieved an up-to-date copy of region R from R’s home node.
A dirty bit in thread T ’s bitmap indicates whether thread T wrote
to region R since it fetched R from its home node. If the present
bit is not set, the access-check code invokes the runtime system to
retrieve an up-to-date copy from the region’s home node. When
the copy arrives, the runtime system stores the region at its virtual
address and sets the accessing thread’s present bit for this region.
This cached region copy is called a processor’s working copy of a
region. The runtime system stores a pointer to the region in the
accessing thread’s flush list. In the case of a write miss, the runtime
system also sets the region’s dirty bit and creates a twin, a copy of
the region just retrieved, unless such a twin already exists.

A cached region copy remains valid for a particular thread until
that thread reaches a synchronization point. At a synchronization
point, the thread empties its flush list. All regions on the thread’s
flush list are invalidated for that thread by clearing their present
bits for that thread. Regions that have their dirty bits set are written
back to their home nodes in the form of diffs, and the dirty bits are
cleared. A diff contains the difference between a region’s working
copy and its twin. The home node uses the incoming diff to update
its own copy. To speed up flushing, region flushes to the same home
node are combined into a single message.

When two threads on a single processor miss on the same re-
gion, both threads must request a fresh copy from the home node,
because region state is maintained per thread, not per processor.
The data accessed by the second thread may have been modified
on another processor after the first thread requested its copy. (As
explained in Section 2, this is not a race condition if these parts
are protected by different locks.) To see the modification, the sec-
ond thread must fetch an up-to-date copy from the home node. The
second copy is stored at the same virtual address; the newly arrived
data is merged into the twin and into the working copy.

4. OPTIMIZATIONS
To improve performance, Jackal removes superfluous access checks,

prefetches regions, flushes regions lazily, and employs computation
migration to improve locality. The compiler optimizations are de-
scribed in detail in [25] and are briefly summarized here. The RTS
optimizations are described in detail below.

4.1 Compiler Optimizations
Jackal’s front-end inserts access checks before all heap accesses.

Since these access checks add considerable runtime overhead, the
backend’s optimization passes try to remove as many checks as
possible.

The compiler performs interprocedural program analysis to dis-
cover opportunities to lift access checks. The front-end of Jackal’s
compiler can determine sets of virtual-function call targets and main-
tain label lists for switch statements. This information is passed on
to the compiler back-end which uses it to remove access checks.
An access check for address a at program point p can be removed
if a has already been checked on all paths that reach p, but only if
no path contains a synchronization statement.

Access checks to array elements that are accessed in a loop may
be lifted into one aggragate array check before the loop.

The compiler also performs heap analysis [11] to discover when
subobjects referenced by an object are always accessed through that
outer object. If this is the case, an aggregate access check is gen-
erated to fault in the outer object and all its referenced subobjects.
This may greatly increase granularity, and may save a number of
network round-trips. The applicability of this optimization strongly
depends on interprocedural analysis. Escape analysis [8] in combi-
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nation with heap analysis is used to remove checks on objects that
remain local to the creating thread.

The compiler may generate code for computation migration [14]:
part or all of a method invocation is moved to the machine where
the data resides. This may be especially effective for synchronized
blocks and thread object constructors.

In Jackal, the home node of the lock object acts as the manager
of the lock. Lock, unlock, wait and notify calls are implemented as
control messages to the lock’s home node. When the data protected
by the lock resides on the same node as the lock, it is often more
efficient to ship the whole synchronized computation to its home:
only two messages are involved.

A comparable optimization is applied to calls to thread object
constructors. These constructor calls are shipped to the machine
where the new thread will run. The result is that the thread object
and data created from the constructor have the machine where the
thread will run as their home node.

4.2 Runtime Optimizations: Adaptive Lazy
Flushing

The coherence protocol described in Section 3.3 invalidates and
possibly flushes all data in a thread’s working memory at each syn-
chronization point. That is, the protocol exactly follows the speci-
fication of Java’s memory model, which potentially leads to much
interprocessor communication. The implementation, however, can
relax this protocol without violating the memory model. In particu-
lar, it is not necessary to invalidate or flush a region that is accessed
by a single processor, or that is only read by any accessing threads.
This covers several important cases:
� home-only regions that are accessed only at their home node,
� read-only regions that are accessed in read mode only,
� exclusive regions that have been created and initialized by one

node, but are currently accessed by one other node.
Each of these cases corresponds to a region state. In general, a

region is in shared state; if a region is in any of the other states,
the thread(s) holding the region apply lazy flushing: the region is
not flushed on a synchronization operation. Home-only is a special
case of exclusive. It is profitable to make this distinction, however,
since the protocol to support home-only is much simpler than the
protocol for exclusive.

A processor is said to share a region if the region occurs in the
flush list of one or more of the threads on that processor. In its
optimized version, the RTS tracks which machines share a region;
moreover, it distinguishes between read and write sharers.

The optimized version brings a performance trade-off. In the un-
optimized version, regions are always mapped at their home node;
they are never faulted or flushed by the home node. To detect any
of the other states, the RTS must be aware whether the home node
also shares the region (for read-only, it must monitor whether the

home node is a writer). Now, threads must also flush and fault
regions at their home node: present or dirty bits must be set and
cleared in home node thread bitmaps, and a pointer to the region
must be added to the threads’ flush list. However, lazy flushing
may be capable of removing most of the flushes and faults at the
home node.

A second penalty for the optimized version is that non-home ma-
chines must track the number of threads that share a region; if this
number drops to zero, the home node must be notified, even when
the region has been mapped for read access only. We alleviate this
penalty by combining release notices during a flush into a single
message per home node, like we did with diff messages.

A region state can be changed by its home node only when a new
sharer requests the region, or when a machine gives notice that it no
longer shares the region. The new state is computed based on the
number of read or write sharers, with the home node as a special
case. Some state changes have only local effect (to and from home-
only), for some state changes the information can be piggy-backed
on the data reply (to read-only).

Two state transitions bring extra communication with them. First,
for a region that goes from read-only state to shared state, all shar-
ers must be notified; the region is restored on the flush lists of
all threads that access the region on all sharer machines. Second,
transitions to and from exclusive state are rather complicated (see
Fig. 4). If a region is shared by zero nodes and some node requests
a copy for write access (1), then the home node makes the request-
ing node the region’s owner and gives it an exclusive copy (2). The
region remains in exclusive state until another node requests an-
other copy from the home node (3). In that case, the home node
first sends a message to the owner, informing it to move the region
to shared state (4). The owner replies with an acknowledgement
or a diff (5). The home node merges the diff into its own copy
and sends the resulting copy to the requesting node (6). Since the
region is now in shared state, modifications will be flushed to the
home node at synchronization points (7). The region remains in
shared state until there is only one sharing node, or there are only
read sharers left. If any node no longer shares the region, the node
informs the home node that there is one sharer less (8). If the last
thread on this node had write access to the region, this information
is piggybacked onto the diff that is sent home. When only one write
sharer remains, the home node puts the region in exclusive state and
informs the remaining sharer that it is now the region’s owner (9).
Since the new owner will not invalidate the region from now on,
its copy must be brought up to date, so the home node includes the
region data in message (9). When only read sharers remain after
a release notice, the home node puts the region in read-only state;
sharers are not explicitly notified, and they will find out the next
time the region is accessed.

Frequent transitions to and from exclusive state may cause thrash-



ing. We arbitrarily limit the number of times a region is allowed to
go to exclusive state to 5. From then on, such a region is allowed to
go to all region states except exclusive state.

5. PERFORMANCE
In this section we study the impact of RTS optimizations on

Jackal’s performance. All tests were performed on a cluster of
200 MHz PentiumPros, running Linux, and connected by a Myrinet [7]
network. We use LFC [6], an efficient user-level communication
system. On our hardware, LFC achieves a null roundtrip latency of
20.8 µs and a throughput of 27.6 Mbyte/s (for a 256 byte message,
including a receiver-side copy).

Jackal was configured so that each processor has a maximum
of 32 Mbyte of local heap and 32 Mbyte of cache available for
mapping pages from other processors.

We quote results on Jackal’s basic performance from [25]. The
time to fault and retrieve a region that contains only one pointer as
data is 35 µs. Throughput for a stream of array regions is 24 MByte/s
(768 user bytes per 1K packet). Jackal’s compiler generates good
sequential code; sequential speed of code without access checks is
at least as good as the performance of IBM’s JIT version 1.3 for
Linux, which is the fastest JIT compiler system currently avail-
able [9, 27]. Generation of access checks without optimization
creates a large performance penalty: up to a factor of 5.5 for the
applications described below. The compiler optimization passes
reduce the overhead for access checks to 9 % on average for these
applications.

5.1 Application Suite
Our application suite consists of four multithreaded Java pro-

grams: ASP, SOR, TSP, and Water. Besides the multithreaded,
shared-memory versions of these programs, we also wrote equiva-
lent RMI (message-passing) versions of these programs. The data
set for each application is small. Fine-grained applications show
protocol overhead much more clearly than coarse-grained applica-
tions, which communicate infrequently. The differences for the var-
ious optimizations come out markedly; also, the comparison with
the RMI implementations becomes extremely competitive, since
our RMI implementation has substantially smaller protocol over-
head.

5.2 Parallel Performance
This section compares, for each application, the performance of

various Jackal configurations, and presents the performance of an
equivalent, hand-optimized RMI program as a yardstick. The RMI
programs use a highly optimized RMI implementation [21] and
run on the same hardware and communication platform (LFC) as
Jackal. On this platform, an empty RMI costs 38 µs. Both the
Jackal and the RMI programs were compiled using Jackal’s Java
compiler.

RMI has its own sources of overhead: parameters and return val-
ues must be marshaled and unmarshaled and at the server side a
thread is created to execute the method invoked by the client. Nev-
ertheless, RMI has several important advantages over Jackal: data
and synchronization traffic can be combined; large arrays can al-
ways be transferred as a unit; and object trees can be transfered as
a single unit. Furthermore, our implementation of object serializa-
tion is written in “C”, our network protocol has been slimed down
to reduce network traffic and finally, our parameter unmarshalling
implementation has some escape analysis support to delete unmar-
shalled, non escaping parameter objects after the RMI has finished.

In certain circumstances, Jackal’s compiler is also able to iden-
tify these optimizations [25]; however, the programmer has no op-

portunity to fine-tune them, since he completely depends on the
automatic optimization passes of the compiler.

Below, we discuss the performance of each application. All
speedups are relative to the sequential Jackal program compiled
without access checks.

We vary RTS optimizations by successively allowing more cases
of lazy flushing:
� basic: no lazy flushing
� home-only
� home-only and read-only
� home-only, read-only and exclusive

Compiler optimizations are all enabled, except for computation mi-
gration, which is toggled to allow comparison of RTS optimizations
with compiler optimizations. We toggle only one of the compiler
optimizations because switching off many of the compiler opti-
mizations (access check lifting, escape analysis, etc) severely im-
pairs sequential performance, which makes performance evaluation
useless. Computation migration has no impact on sequential per-
formance.

To access the impact of RTS vs. compiler optimizations, we
present two sequences of measurements: in the first sequence, we
start with basic, then computation migration is enabled, then the
series of lazy flushing states is successively enabled. In the second
sequence of measurements, first all states of lazy flushing are suc-
cessively enabled, and finally computation migration is enabled. If
lazy flushing has a far larger impact on performance than the com-
piler optimization, these two sequences will resemble each other
in their performance data. If, however, compiler optimizations are
more important, the sequences will differ in their performance data.

Fig. 5 shows the relative data message counts, control message
counts (which includes lock and unlock messages) and network
data volumes for all application variants on 16 processors. The
RMI data is used to normalize the statistics.

ASP. The All-pairs Shortest Paths (ASP) program computes the
shortest path between any two nodes in a 500-node graph. Each
processor is the home node for a contiguous block of rows of the
graph’s shared distance matrix. In iteration k, all threads (one per
processor) read row k of the matrix and use it to update their own
rows.

The communication pattern of ASP is a series of broadcasts from
each processor in turn. Both the RMI and the Jackal program im-
plement the broadcast with a spanning tree. A spanning tree is used
for the shared-memory (Jackal) implementation to avoid contention
on the data of the broadcast source. The RMI implementation in-
tegrates synchronization with the data messages and uses only one
message (and an empty reply) to forward a row to a child in the
tree. This message is sent asynchronously by a special forwarder
thread on each node to avoid latencies on the critical path.

In the compiler-optimized Jackal version (with computation mi-
gration and array access check lifting enabled), transmission of a
broadcast row is reduced to only one round-trip. The speedup
of the RMI program remains better because it uses asynchronous
forwarding of rows in its spanning-tree broadcast. An alternative
RMI implementation with synchronous forwarding gives the same
speedup as the Jackal version.

As appears from Fig. 6, the performance of ASP without opti-
mizations is bad indeed. This is because ASP allocates its data
sets in its thread constructors; without thread constructor migra-
tion, machine 0 is the home node for all data. Even with all run-
time optimizations enabled, speedup is low (at most 2 on 16 proces-
sors), since machine 0 must service all data and control messages;
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see Fig. 5. Performance becomes reasonable only when the thread
constructor is migrated and at least read-only flushing is enabled.

SOR. Successive over-relaxation (SOR) is a well-known iterative
method for solving discretized Laplace equations on a grid. The
program uses one thread per processor; each thread operates on a
number of contiguous rows of the matrix. In each iteration, the
thread that owns matrix partition t accesses (and caches) the last
row of partition t � 1 and the first row of partition t + 1. We ran
SOR with a 2050�2050 (16 Mbyte) matrix.

The Jackal version of SOR attains excellent speedup (see Fig. 7).
This is entirely due to those Jackal compiler optimizations we did
not vary: the compiler determines that it can combine all access
checks in SOR’s innermost loop into a single check for all of a
row’s elements. The entire row is streamed to the requesting pro-
cessor after one request. In the Jackal version of SOR, the data set
is not allocated in the constructor of the worker-thread objects, but
in their run() method, which is not executed until the thread exe-
cutes on its target processor. Data is written only by home nodes;
neighbor rows are only read. This makes the DSM access patterns
already optimal even before lazy flushing is applied. Since data is
allocated from the run() method, computation migration brings no
improvement either.

TSP. TSP solves the well-known Traveling Salesman Problem
(TSP) for a 15-city input set. First, processor zero creates a list
of partial paths and a distance table between each city. Next, a
worker thread on every processor tries to steal and complete partial
paths from the shared, centralized, job queue. The cut-off bound
is encapsulated in an object that contains the length of the shortest
path discovered thus far. To avoid non-deterministic computation
(which may give rise to superlinear speedup), the cut-off bound has
been set to the actual minimum for this data set.

Communication in TSP stems from accessing the centralized job
queue, from flushing the current partial path, and from reading the
minimum object. The RMI program and the optimized Jackal pro-
grams transmit approximately the same amount of data.

The performance differences caused by the various optimizations
are small but telling (see Fig. 8). A leap in performance occurs
when computation migration is switched on, and the run-time op-
timizations add a smaller improvement. TSP is the one application
where support of the exclusive state offers discernible improve-
ment. Partial paths are handed out in write mode, and the thread

that evaluates the partial path is the only sharer of that path. Af-
ter its evaluation, the path is susceptible to lazy flushing only if
exclusive state is enabled. Read-only mode gives rise to improve-
ment because the distance table that describes the city topography
is read-only. This also appears clearly from the message statistics
in Fig. 5. When read-only lazy flushing is enabled, the data com-
munication volume is decreased by an order of magnitude.

Water. Water is a Java port of the Water-n-squared application
from the Splash benchmark suite [28]. The program simulates a
collection of 343 water molecules. Each processor is assigned a
partition of the molecule set and communicates with other proces-
sors to compute intermolecule forces.

Most communication in Water stems from read misses on Molecule
objects and the subobjects referenced by them (position vectors of
the molecule). A molecule’s force, acceleration, and higher order
vectors are stored in separate arrays, which are written only by their
owner thread.

Unlike the RMI version, the individual molecules are transferred
one at a time. Consequently, the Jackal program makes many more
roundtrips than the RMI program. In the future, we intend to extend
Jackal’s compiler with analysis to allow fetching of the entire sub-
array of molecules at once; this would enable bulk communication
for Water’s Molecule objects.

As in ASP and TSP, the major performance improvements stem
from the compiler optimizations; again, the run-time optimizations
do add significantly, but without compiler optimizations the perfor-
mance is bad indeed. Without compiler optimizations, lazy flush-
ing causes a performance deterioration compared to the basic ver-
sion. This may be attributed to the extra overhead described in
Section 4.2. Enabling of exclusive mode in the right-hand graph
of Fig. 9 causes a further performance decrease. The reason is
that part of the shared data are allocated from the thread construc-
tor. These data are written by their owner thread, but read by all
other threads. Without computation migration, the home node for
all these data is processor 0, which is swamped with state control
traffic, as depicted in Fig. 4.

5.3 Discussion and future work
From the performance data presented above, a clear conclusion

can be drawn. Turning on computation migration presents a major
boost in performance (except for SOR, which gives good speedup
in all versions). Enabling all lazy flushing optimizations, but dis-
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Figure 7: Speedup for SOR. See the ASP speedup graph for explanations.
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Figure 8: Speedup for TSP. See the ASP speedup graph for explanations.
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abling computation migration, does not yield even reasonable per-
formance for ASP and Water. This is mainly due to the fact that
these applications allocate data from the thread constructor, which
is a natural thing to do for a Java program. Disabling of further
compiler optimizations would make the resulting performance much
less good, since sequential performance is impaired.

However, for all applications except SOR, the runtime optimiza-
tions on top of the compiler optimizations yield discernible im-
provements. The smallest improvement seems to be gained from
exclusive state. On the eye, this state seems a sophisticated opti-
mization that covers many important cases. However, its benefits
are already reaped by thread constructor migration and home-only
state: nearly always, thread constructor migration causes a region
that is candidate for exclusive state to lie at its home node.

A fact that cannot be read directly from the graphs is that the total
time spent in twinning, patching and diffing of objects is negligible
in the optimized application runs. Data that is written is usually
only written by a single owner, and thread constructor migration
ensures that the owner is the home node. The exception is TSP,
but there the partial paths that are actually modified by the worker
threads are handed out in exclusive mode, which obviates the need
for flushing and hence twin creation, diffing and patching.

One area for future work is dynamic migration of an object’s
home node. All control messages would be handled by the new
home node, and twinning is unnecessary at the new home node.
Possibly, this would make exclusive lazy flushing and thread con-
structor migration redundant. The protocol required for home node
migration seems less complicated than the exclusive state protocol.
Currently, the application programmer must be quite concerned on
which machine data is allocated, since having it at the wrong home
node brings large performance penalties. This is a valid concern
not only for DSM machines, since large shared memory machines
also have a home node concept. However, home node migration
would probably make allocation considerations superfluous.

6. RELATED WORK
Most DSM systems are either page-based [17, 20, 19] or object-

based [4, 5, 16] while discarding transparency. Jackal manages
pages to implement a shared address space in which regions are
stored. This allows shared data to be named by virtual addresses to
avoid software address translation. For cache coherence, however,
Jackal uses small, software-managed regions rather than pages and
therefore largely avoids the false-sharing problems of page-based
DSM systems. Like page-based DSMs supporting release consis-
tency, we use twinning and diffing, albeit not over pages but over
objects.

Treadmarks and CVM are both page-based systems that use some
form of lazy release consistency (LRC). LRC, like our lazy flushing
optimization, postpones writting updates to their home nodes. LRC
waits until an acquire is made. Then the new accessor synchronizes
with the previous releaser of the lock associated with the data. This
allows many state changes to be piggybacked upon synchonization
messages. Jackal asynchronously updates region states to support
lazy flushing.

CRL [16] is an object based DSM that requires the program-
mer to annotate his (C) source code with start-read/write and end-
read/write calls around accesses to shared regions, so the region
to be accessed is locally available. Unlike Jackal, that implements
the Java memory model, CRL implements a single writer proto-
col with sequential consistency. Regions are locally cached until
another machine requires the same object, performing some lazy
flushing at each end-read/write.

MCRL [13] is an object-based system derived from CRL that

implements computation migration. Write operations are shipped
to the region’s creating machine, read operations are performed
locally. Unlike Jackal, however, it does so unconditionally using
some heuristics.

Hyperion [22] rewrites Java byte code to C and instruments the
code with access checks. Hyperion caches all shared Java objects,
including arrays, in their entirety and is therefore sensitive to false
sharing. It does not employ any form of lazy flushing.

Fine-grained DSM systems largely avoid false sharing by us-
ing a small unit of cache coherence and software access checks.
Shasta [26] uses a binary rewriter to add access checks to an exist-
ing executable. All implement some form of lazy flushing to record
when a processor is exclusively using a region.

JavaParty [23] simulates a Java DSM by adding a “remote” key-
word to the language. Objects tagged with this keyword are po-
tentially remotely allocated and all accesses to those objects are
shipped to the processor where the object resides. Jackal does not
require such keywords and allows both object caching and remote
object accesses though our function splicing optimization.

cJVM [3] tries to create a distributed implementation of a tradi-
tional JVM. Using their approach, the byte codes of an application
is replicated while the application data is accessed using function
shipping. To increase performance, data can be cached locally.
Jackal always caches, and only does an RPC when it is deemed
necessary.

7. CONCLUSION
We have described optimizations for the Jackal RTS. Jackal is a

DSM system for Java that consists of an optimizing compiler and a
runtime system; we refer to [25] for a more detailed description of
the system, including compiler optimizations.

We found that the RTS optimizations described in this paper are
necessary to gain good performance, but only in conjunction with
compiler optimizations. If only one of the compiler optimizations
(computation migration) is switched off, performance becomes bad
for three of the four applications.

When both compiler and runtime optimizations are enabled, our
four Java applications attain reasonable to good performance com-
pared to well-tuned and equivalent RMI applications. This is the
more significant since small data sets were used, to better bring out
performance differences.

Lazy flushing (read-only, single-accessor) also increases speedup
because it essentially increases locality. For the applications tested,
lazy flushing significantly improves performance and never reduces
it because of the extra control messages sent.

To allow such compiler optimizations, Jackal’s coherence proto-
col is based on self-invalidation. Cached regions cannot be inval-
idated by asynchronous events (e.g., incoming messages), but are
invalidated explicitly at synchronization points. Jackal also does
address space management (mapping and unmap ping of pages) in
software, so large data structures can be used. provided the pro-
grams obey Java’s memory model.

To assess Jackal’s parallel performance, we compared Jackal
with a highly optimized RMI implementation. The hand-optimized
RMI programs outperform Jackal, but in most cases, Jackal attains
acceptable speedup, either because the compiler discovers that it
can prefetch entire arrays or because objects and threads are auto-
matically co-allocated.

Summarizing, we believe that Jackal’s compiler-supported ap-
proach is promising. In the near future, we will add more compiler
and runtime optimizations to further reduce the access check and
communication overhead. Also, we will work on improving the
spatial locality of the mark-and-sweep garbage collectors, to avoid



fragmentation of the global address space. Finally, we intend to
improve the heuristics for our adaptive lazy flushing algorithm.
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