
CCJ: Object-based Message Passing and
Collective Communication in Java

Arnold Nelisse, Jason Maassen, Thilo Kielmann, Henri E. Bal
Division of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

arnold@cs.vu.nl jason@cs.vu.nl kielmann@cs.vu.nl bal@cs.vu.nl

http://www.cs.vu.nl/manta

Abstract

CCJ is a communication library that adds MPI-like message passing and collective oper-
ations to Java. Rather than trying to adhere to the precise MPI syntax, CCJ aims at a clean
integration of communication into Java’s object-oriented framework. For example, CCJ uses
thread groups to support Java’s multithreading model and it allows any data structure (not just
arrays) to be communicated. CCJ is implemented entirely in Java, on top of RMI, so it can be
used with any Java virtual machine. The paper discusses three parallel Java applications that
use collective communication. It compares the performance (on top of a Myrinet cluster) of
CCJ, RMI and mpiJava versions of these applications, and also compares the code complexity
of the CCJ and RMI versions. The results show that the CCJ versions are significantly simpler
than the RMI versions and obtain a good performance. A detailed performance comparison
between CCJ and mpiJava is given using the Java Grande Forum MPJ benchmark suite.

1 Introduction

Recent improvements in compilers and communication mechanisms make Java a viable platform
for high-performance computing [8]. Java’s support for multithreading and Remote Method In-
vocation (RMI) is a suitable basis for writing parallel programs. RMI uses a familiar abstraction
(object invocation), integrated in a clean way in Java’s object-oriented programming model. For
example, almost any data structure can be passed as argument or return value in an RMI. Also,
RMI can be implemented efficiently [21, 25] and it can be extended seamlessly with support for
object replication [20].

A disadvantage of RMI, however, is that it only supports communication between two parties,
a client and a server. Experience with other parallel languages has shown that many applications
also require communication between multiple processes. The MPI message passing standard de-
fines collective communication operations for this purpose [22]. Several projects have proposed
to extend Java with MPI-like collective operations [9, 13]. For example, MPJ [9] proposes MPI
language bindings to Java, but it does not integrate MPI’s notions of processes and messages into
Java’s object-oriented framework. Unlike RMI, the MPI primitives are biased towards array-based
data structures, so collective operations that exchange other data structures are often awkward to

1

implement. Some existing Java systems already support MPI’s collective operations, but often they
invoke a C-library from Java using the Java Native Interface, which has a large runtime overhead
[13].

In this paper we present the CCJ library (Collective Communication in Java) which adds the
core of MPI’s message passing and collective communication operations to Java’s object model.
CCJ maintains thread groups the members of which can communicate by exchanging arbitrary
object data structures. For example, if one thread needs to distribute a list data structure among
other threads, it can invoke an MPI-like scatter primitive to do so. CCJ is implemented entirely in
Java, on top of RMI. It therefore does not suffer from JNI overhead and it can be used with any Java
virtual machine. We study CCJ’s performance on top of a fast RMI system (Manta [21]) that runs
over a Myrinet network. Performance measurements for CCJ’s collective operations show that its
runtime overhead is almost negligible compared to the time spent in the underlying (efficient) RMI
mechanism. We also discuss CCJ applications and their performance. CCJ’s support for arbitrary
data structures is useful for example in implementing sparse matrices. We also compare CCJ’s
performance to mpiJava in detail using the Java Grande Forum MPJ benchmark suite.

The rest of the paper is structured as follows. In Sections 2 and 3, we present CCJ’s design and
implementation, respectively. In Section 4, we discuss code complexity and performance of three
application programs using CCJ, mpiJava, and plain RMI. In Section 5, we present the result from
the Java Grande Forum benchmarks. Section 6 presents related work, Section 7 concludes.

2 Object-based message passing and collective communication

With Java’s multithreading support, individual threads can be coordinated to operate under mu-
tual exclusion. However, with collective communication, groups of threads cooperate to perform
a given operation collectively. This form of cooperation, instead of mere concurrency, is used
frequently in parallel applications and also enables efficient implementation of the collective oper-
ations.

In this section, we present and discuss the approach taken in our CCJ library to integrate mes-
sage passing and collective communication, as inspired by the MPI standard, into Java’s object-
based model. CCJ integrates MPI-like operations in a clean way in Java, but without trying to
be compatible with the precise MPI syntax. CCJ translates MPI processes into active objects
(threads) and thus preserves MPI’s implicit group synchronization properties. In previous work,
we discussed the alternative approach of using groups of passive objects [20].

2.1 Thread groups

With the MPI standard, processes perform point-to-point and collective communication within the
context of a communicator object. The communicator defines the group of participating processes
which are ordered by their rank. Each process can retrieve its rank and the size of the process
group from the communicator object. MPI communicators can not be changed at runtime, but new
communicators can be derived from existing ones.

In MPI, immutable process groups (enforced via immutable communicator objects) are vital
for defining sound semantics of collective operations. For example, a barrier operation performed

2

on an immutable group clearly defines which processes are synchronized; for a broadcast opera-
tion, the set of receivers can be clearly identified. The ranking of processes is also necessary to
define operations like scatter/gather data re-distributions, where the data sent or received by each
individual process is determined by its rank. Unlike MPI, the PVM message passing system [12]
allows mutable process groups, trading clear semantics for flexibility.

The MPI process group model, however, does not easily map onto Java’s multithreading model.
The units of execution in Java are dynamically created threads rather than heavy-weight processes.
Also, the RMI mechanism blurs the boundaries between individual Java Virtual Machines (JVMs).
Having more than one thread per JVM participating in collective communication can be useful,
for example for application structuring or for exploiting multiple CPUs of a shared-memory ma-
chine. Although the MPI standard requires implementations to be thread-safe, dynamically created
threads can not be addressed by MPI messages, excluding their proper use in collective communi-
cation.

CCJ maps MPI’s immutable process groups onto Java’s multithreading model by defining a
model of thread groups that constructs immutable groups from dynamically created threads. CCJ
uses a two-phase creation mechanism. In the first phase, a group is inactive and can be constructed
by threads willing to join. After construction is completed, the group becomes immutable (called
active) and can be used for collective communication. For convenience, inactive copies of active
groups can be created and subsequently modified. Group management in CCJ uses the following
three classes.

ColGroup Objects of this class define the thread groups to be used for collective operations. Col-
Group provides methods for retrieving the rank of a given ColMember object and the size
of the group.

ColMember Objects of this class can become members of a given group. Applications implement
subclasses of ColMember, the instances of which will be associated with their own thread
of control.

ColGroupMaster Each participating JVM has to initialize one object of this class acting as a cen-
tral group manager. The group master also encapsulates the communication establishment
like the interaction with the RMI registry.

For implementing the two-phase group creation, ColGroupMaster provides the following in-
terface. Groups are identified by String objects with symbolic identifications.

void addMember(String groupName, ColMember member)
Adds a member to a group. If the group does not yet exist, the group will be created.
Otherwise, the group must still be inactive; the getGroup operation for this group must not
have completed so far.

ColGroup getGroup(String groupName,
int numberOfMembers)
Activates a group. The operation waits until the specified number of members have been
added to the group. Finally, the activated group is returned. All members of a group have to
call this operation prior to any collective communication.

3

2.2 Message Passing

For some applications, simple message exchange between two group members can be benefi-
cial. Inspired by the MPI standard, we added the following operations for synchronous and asyn-
chronous message sending, for receiving, and for a combined send-receive. We also added a
rendezvous message exchange, which is equivalent to two nodes performing send-receive oper-
ations with each other. This rendezvous can be implemented very efficiently by a single RMI
request/reply pair of messages.

void send sync(ColGroup group, Serializable object, int destination)
Sends object to the member destination of the group. Waits until the object has been
received using the receive operation.

void send async(ColGroup group, Serializable object, int destination)
Same as send sync, but only delivers the object at the receiving member’s node, without
waiting for the receiver to call the receive operation.

Serializable receive(ColGroup group, int source)
Receives and returns an object from the group’s member source. Waits until the object is
available.

Serializable send receive(ColGroup send group, Serializable send object,
ColGroup receive group, Serializable receive object)
Simultaneously performs a send async and an unrelated receive operation.

Serializable rendezvous(ColGroup group, Serializable object, int peer)
Sends object to the group’s member peer and returns an object sent by that member.

2.3 Collective communication

As described above, CCJ’s group management alleviates the restrictions of MPI’s static, commu-
nicator based group model. For defining an object-based framework, also the collective communi-
cation operations themselves have to be adapted. MPI defines a large set of collective operations,
inspired by parallel application codes written in more traditional languages such as Fortran or C.
Basically, MPI messages consist of arrays of data items of given data types. Although important
for many scientific codes, arrays can not serve as general-purpose data structure in Java’s object
model. Instead, collective operations should deal with serializable objects in the most general case.

The implementation of the collective operations could either be part of the group or of the
members. For CCJ, we decided for the latter option as this is closer to the original MPI specifica-
tion and more intuitive with the communication context (the group) becoming a parameter of the
operation.

From MPI’s original set of collective operations, CCJ currently implements the most important
ones, leaving out those operations that are either rarely used or strongly biased by having arrays
as general parameter data structure. CCJ currently implements Barrier, Broadcast, Scatter, Gather,
Allgather, Reduce, and Allreduce. We now present the interface of these operations in detail. For

4

the reduce operations, we also present the use of function objects implementing the reduction oper-
ators themselves. For scatter and gather, we present the DividableDataObjectInterface imposing
a notion of indexing for the elements of general (non-array) objects. CCJ uses Java’s exception
handling mechanism for catching error conditions returned by the various primitives. For brevity,
however, we do not show the exceptions in the primitives discussed below. Like MPI, CCJ requires
all members of a group to call collective operations in the same order and with mutually consistent
parameter objects.

void barrier(ColGroup group)
Waits until all members of the specified group have called the method.

Object broadcast(ColGroup group, Serializable obj, int root)
One member of the group, the one whose rank equals root, provides an object obj to be
broadcast to the group. All members (except the root) return a copy of the object; to the root
member, a reference to obj is returned.

MPI defines a group of operations that perform global reductions such as summation or max-
imum on data items distributed across a communicator’s process group. MPI identifies the re-
duction operators either via predefined constants like “MPI MAX,” or by user-implemented func-
tions. However, object-oriented reduction operations have to process objects of application-specific
classes; implementations of reduction operators have to handle the correct object classes.

One implementation would be to let application classes implement a reduce method that can
be called from within the collective reduction operations. However, this approach restricts a class
to exactly one reduction operation and excludes the basic (numeric) data types from being used in
reduction operations.

As a consequence, the reduction operators have to be implemented outside the objects to be
reduced. Unfortunately, unlike in C, functions (or methods) can not be used as first-class entities
in Java. Alternatively, Java’s reflection mechanism could be used to identify methods by their
names and defining class (specified by String objects). Unfortunately, this approach is unsuitable,
because reflection is done at runtime, causing prohibitive costs for use in parallel applications.
Removing reflection from object serialization is one of the essential optimizations of our fast RMI
implementation in the Manta system [21].

CCJ thus uses a different approach for implementing reduction operators: function objects
[19]. CCJ’s function objects implement the specific ReductionObjectInterface containing a sin-
gle method Serializable reduce(Serializable o1, Serializable o2). With this approach, all ap-
plication specific classes and the standard data types can be used for data reduction. The reduction
operator itself can be flexibly chosen on a per-operation basis. Operations implementing this in-
terface are supposed to be associative and commutative. CCJ provides a set of function objects for
the most important reduction operators on numerical data. This leads to the following interface for
CCJ’s reduction operations in the ColMember class.

Serializable reduce(ColGroup group, Serializable dataObject,
ReductionObjectInterface reductionObject, int root)
Performs a reduction operation on the dataObjects provided by the members of the group.
The operation itself is determined by the reductionObject; each member has to provide a

5

reductionObject of the same class. reduce returns an object with the reduction result to the
member identified as root. All other members get a null reference.

Serializable allReduce(ColGroup group, Serializable dataObject,
ReductionObjectInterface reductionObject)
Like reduce but returns the resulting object to all members.

The final group of collective operations that have been translated from MPI to CCJ is the one
of scatter/gather data re-distributions: MPI’s scatter operation takes an array provided by a root
process and distributes (“scatters”) it across all processes in a communicator’s group. MPI’s gather
operation collects an array from items distributed across a communicator’s group and returns it to
a root process. MPI’s allgather is similar, however returning the gathered array to all participating
processes.

Although defined via arrays, these operations are important for many parallel applications. The
problem to solve for CCJ thus is to find a similar notion of indexing for general (non-array) ob-
jects. Similar problems occur for implementing so-called iterators for container objects [11]. Here,
traversing (iterating) an object’s data structure has to be independent of the object’s implementa-
tion in order to keep client classes immune to changes of the container object’s implementation.
Iterators request the individual items of a complex object sequentially, one after the other. Object
serialization, as used by Java RMI, is one example of iterating a complex object structure. Unlike
iterators, however, CCJ needs random access to the individual parts of a dividable object based on
an index mechanism.

For this purpose, objects to be used in scatter/gather operations have to implement the Divid-
ableDataObjectInterface with the following two methods:

Serializable elementAt(int index, int groupSize)
Returns the object with the given index in the range from 0 to groupSize � 1

void setElementAt(int index, int groupSize, Serializable object)
Conversely, sets the object at the given index.

Based on this interface, the class ColMember implements the following three collective oper-
ations.

Serializable scatter(ColGroup group,
DividableDataObjectInterface rootObject, int root)
The root member provides a dividable object which will be scattered among the members
of the given group. Each member returns the (sub-)object determined by the elementAt
method for its own rank. The parameter rootObject is ignored for all other members.

DividableDataObjectInterface gather(ColGroup group,
DividableDataObjectInterface rootObject,
Serializable dataObject, int root)
The root member provides a dividable object which will be gathered from the dataObjects
provided by the members of the group. The actual order of the gathering is determined by
the rootObject’s setElementAt method, according to the rank of the members. The method
returns the gathered object to the root member and a null reference to all other members.

6

DividableDataObjectInterface allGather(ColGroup group,
DividableDataObjectInterface resultObject,
Serializable dataObject)
Like gather, however the result is returned to all members and all members have to provide
a resultObject.

2.4 Example application code

We will now illustrate how CCJ can be used for application programming. As our example, we
show the code for the All-Pairs Shortest Path application (ASP), the performance of which will be
discussed in Section 4. Figure 1 shows the code of the Asp class that inherits from ColMember.
Asp thus constitutes the application-specific member class for the ASP application. Its method
do asp performs the computation itself and uses CCJ’s collective broadcast operation. Before
doing so, Asp’s run method first retrieves rank and size from the group object. Finally, do asp
calls the done method from the ColMember class in order to de-register the member object. The
necessity of the done method is an artifact of Java’s thread model in combination with RMI; with-
out any assumptions about the underlying JVMs, there is no fully transparent way of terminating
an RMI-based, distributed application run. Thus, CCJ’s members have to de-register themselves
prior to termination to allow the application to terminate gracefully.

Figure 2 shows the MainAsp class, implementing the method main. This method runs on all
JVMs participating in the parallel computation. This class establishes the communication context
before starting the computation itself. Therefore, a ColGroupMaster object is created (on all
JVMs). Then, MainAsp creates an Asp member object, adds it to a group, and finally starts the
computation. Our implementation of the ColGroupMaster also provides the number of available
nodes, which is useful for initializing the application. On other platforms, however, this informa-
tion could also be retrieved from different sources.

For comparison, Figure 3 shows some of the code of the mpiJava version of ASP. We will use
this mpiJava program in Section 4 for a performance comparison with CCJ. A clear difference
between the mpiJava and CCJ versions is that the initialization code of CCJ is more complicated.
The reason is that mpiJava offers a simple model with one group member per processor, using the
MPI.COMM WORLD communicator. CCJ on the other hand is more flexible and allows multiple
active objects per machine to join a group, which requires more initialization code. Also, the
syntax of mpiJava is more MPI-like than that of CCJ, which tries to stay closer to the Java syntax.

3 The CCJ library

The CCJ library has been implemented as a Java package, containing the necessary classes, inter-
faces, and exceptions. CCJ is implemented on top of RMI in order to run with any given JVM. We
use RMI to build a basic message passing layer between the members of a given group. On top
of this messaging layer, the collective operations are implemented using algorithms like the ones
described in [15, 18]. This section describes both the messaging layer and the collective algorithms
of CCJ.

CCJ has been implemented using the Manta high performance Java system [21]. Our ex-

7

class Asp extends ColMember {
ColGroup group;
int n, rank, nodes;
int[][] tab; // the distance table.
Asp (int n) throws Exception {

super();
this.n = n;

}
void setGroup(ColGroup group) {

this.group = group;
}
void do_asp() throws Exception {

int k;
for (k = 0; k < n; k++) {

// send the row to all members:
tab[k] = (int[])

broadcast(group, tab[k], owner(k));
// do ASP computation...

}
}
public void run() {

try {
rank = group.getRank(this);
nodes = group.size();
// Initialize local data
do_asp();
done();

} catch (Exception e) {
// handle exception... Quit.

}
}
}

Figure 1: Java class Asp

perimentation platform, called the Distributed ASCI Supercomputer (DAS), consists of 200 MHz
Pentium Pro nodes each with 128 MB memory, running Linux 2.2.16. The nodes are connected via
Myrinet [5]. Manta’s runtime system has access to the network in user space via the Panda com-
munication substrate [3] which uses the LFC [4] Myrinet control program. The system is more
fully described in http://www.cs.vu.nl/das/ . All performance numbers reported in this work have
been achieved on the DAS platform.

For comparison, we also provide completion times using the RMI implementation from Sun’s
JDK 1.1.4. We have ported this to Manta by replacing all JNI calls with direct C function calls. By

8

class MainAsp {
int N;
void start(String args[]) {

ColGroup group = null;
int numberOfCpus;
Asp myMember;
try {

ColGroupMaster
groupMaster = new ColGroupMaster(args);

numberOfCpus = groupMaster.getNumberOfCpus();
// get number of rows N from command line
myMember = new Asp(N);
groupMaster.addMember("myGroup", myMember);
group = groupMaster.getGroup("myGroup",

numberOfCpus);
myMember.setGroup(group);
(new Thread(myMember)).start();

} catch (Exception e) {
// Handle exception... Quit.

}
}
public static void main (String args[]) {

new MainAsp().start(args);
}
}

Figure 2: Java class MainAsp

compiling Sun RMI using the Manta compiler, all performance differences can be attributed to the
RMI implementation and protocol, as both the sequential execution and the network (Myrinet) are
identical. We did not investigate the performance impact of having multiple group members per
node because this is only sensible on shared-memory nodes (SMP) which are not available to us.

3.1 Message passing subsystem

CCJ implements algorithms for collective communication based on individual messages between
group members. The messages have to be simulated using the RMI mechanism. The basic dif-
ference between a message and an RMI is that the message is asynchronous (the sender does not
wait for the receiver) while RMIs are synchronous (the client has to wait for the result from the
server before it can proceed). Sending messages asynchronously is crucial for collective commu-
nication performance because each operation requires multiple messages to be sent or received by
a single group member. CCJ simulates asynchronous messages using multithreading: send opera-

9

class Asp {
int n, rank, nodes;
int[][] tab;
Asp (int n) throws Exception {

this.n = n;
}
void do_asp() throws Exception {

int k;
for (k = 0; k < n; k++) {

// send the row to all other members
if (tab[k] == null) tab[k] = new int[n];
MPI.COMM_WORLD.Bcast(tab[k], 0, n,

MPI.INT, owner(k));
// do ASP computation...

}
}
public void run() {

rank = MPI.COMM_WORLD.Rank();
nodes = MPI.COMM_WORLD.Size();
// initialize local data
do_asp();

}
public static void main(String args[]) {

int N;
try {

// get number of rows from command line
MPI.Init(args);
MPI.Finalize();
System.exit(0);

} catch (MPIException e) {
// Handle exception... Quit.

}
}
}

Figure 3: mpiJava code for ASP

tions are performed by separate sending threads. To reduce thread creation overhead, each member
maintains a thread pool of available sending threads.

Unfortunately, multiple sending threads are run subject to the scheduling policy of the given
JVM. Thus, messages may be received in a different order than they were sent. To cope with
unordered message receipt, each member object also implements a list of incoming messages, for
faster lookup implemented as a hash table. For uniquely identifying messages, CCJ not only uses
the group and a message tag (like MPI does), but also a message counter per group per collective

10

operation.

Table 1: Timing of CCJ’s ping-pong messages
time (�s)

Manta RMI Sun RMI
ints CCJ RMI CCJ

1 84 59 660
2 87 66 660
4 88 68 660
8 88 69 695

16 90 70 700
32 93 72 705
64 101 78 715

128 115 91 750
256 147 121 750
512 177 142 875

1024 259 206 975
2048 456 334 1250
4096 763 590 1655
8192 1400 1289 2725

16384 2662 2378 5010

We evaluated the performance of CCJ’s messaging layer by a simple ping-pong test, summa-
rized in Table 1. For CCJ, we measured the completion time of a member performing a send
operation, directly followed by a receive operation. On a second machine, another member per-
formed the corresponding receive and send operations. The table reports half of this round trip
time as the time needed to deliver a message. To compare, we also let the same two machines
perform a RMI ping-pong test.

We performed the ping-pong tests for sending arrays of integers of various sizes. Table 1
shows that with short messages (1 integer), CCJ’s message startup cost (using Manta RMI) causes
an overhead of 42 %. This is mainly caused by thread switching. With longer messages (16K
integers, 64K bytes) the overhead is only about 12 % (again for Manta RMI) because in this case
object serialization has a larger impact on the completion time. In Section 4 we compare CCJ-
based applications with pure RMI versions of the same codes, showing that CCJ results in at least
competitive application speed with less programming complexity.

Table 1 also shows the respective ping-pong times for CCJ using Sun RMI. These times are
an order of magnitude higher and are clearly dominated by the Sun RMI software overhead. In
the following discussion of CCJ’s collective operations, we also show completion times using Sun
RMI which are much higher, as can be expected from the ping-pong measurements. For brevity,
we do not discuss them individually.

11

3.2 Collective communication operations

We will now present the implementations of CCJ’s collective communication operations. CCJ
implements well known algorithms like the ones used in MPI-based implementations [15, 18].
The performance numbers given have been obtained using one member object per node, forcing
all communication to use RMI.

3.2.1 Barrier

In CCJ’s barrier, the M participating members are arranged in a hypercube structure, performing
remote method invocations in logM phases. The RMIs have a single object as parameter. If
the number of members is not a power of 2, then the remaining members will be appended to
the next smaller hypercube, causing one more RMI step. Table 2 shows the completion time of
CCJ’s barrier, which scales well with the number of member nodes. The barrier implementation is
dominated by the cost of the underlying RMI mechanism.

Table 2: Completion time of CCJ’s barrier
time (�s)

members Manta RMI Sun RMI
1 <1 <1
2 78 580
4 166 1170
8 273 1840

16 380 2800
32 478 5510
64 605 11700

3.2.2 Broadcast

CCJ’s broadcast arranges the group members in a binomial tree. This leads to a logarithmic number
of communication steps. Table 3 shows the completion times of CCJ’s broadcast with a single
integer and with an array of 16K integers. Again, the completion time scales well with the number
of member objects. A comparison with Table 1 shows that the completion times are dominated by
the underlying RMI mechanism, as with the barrier operation.

3.2.3 Reduce/Allreduce

CCJ’s reduce operation arranges the M participating members in a binomial tree, resulting in
logM communication steps. In each step, a member receives the data from one of its peers and
reduces it with its own data. In the next step, the then combined data is forwarded further up the
tree.

12

Table 3: Completion time of CCJ’s broadcast
time (�s)

Manta RMI Sun RMI
members 1 int 16K int 1 int 16K int

1 <1 1 < 1 1
2 86 2306 760 4490
4 156 4562 1440 8960
8 222 6897 2160 13840

16 292 9534 3020 18940
32 374 11838 5950 26400
64 440 14232 13700 41700

Table 4 shows the completion time for four different test cases. Reductions are performed with
single integers, and with arrays of 16K integers, both with two different reduce operations. One
operation, labelled NOP, simply returns a reference to one of the two data items. With this non-
operation, the reduction takes almost as long as the broadcast of the same size, caused by both using
binomial communication trees. The second operation, labelled MAX, computes the maximum of
the data items. Comparing the completion times for NOP and MAX shows the contribution of the
reduction operator itself, especially with long messages.

Table 4: Completion time of CCJ’s reduce
time (�s)

Manta RMI Sun RMI
MAX NOP NOP

members 1 int 16K int 1 int 16K int 1 int 16K int
1 1 1 1 1 1 1
2 90 3069 88 2230 740 4460
4 158 6232 152 4539 1450 9160
8 223 9711 225 6851 2200 14460

16 294 13520 290 9359 3190 20080
32 368 17229 356 12004 5570 27420
64 453 21206 437 14657 11010 46020

CCJ’s Allreduce is implemented in two steps, with one of the members acting as a root. In the
first step, a Reduce operation is performed towards the root member. The second step broadcasts
the result to all members. The completion times can thus be derived from adding the respective
times for Reduce and Broadcast.

3.2.4 Scatter

MPI-based implementations of Scatter typically let the root member send the respective messages
directly to the other members of the group. This approach works well if messages can be sent

13

in a truly asynchronous manner. However, as CCJ has to perform a thread switch per message
sent, the related overhead becomes prohibitive, especially with large member groups. CCJ thus
follows a different approach that limits the number of messages sent by the root member. This is
achieved by using a binomial tree as communication graph. In the first message, the root member
sends the data for the upper half of the group members to the first member in this half. Both
members then recursively follow this approach in the remaining subgroups, letting further members
forward messages. This approach sends more data than strictly necessary, but this overhead is
almost completely hidden because the additional sending occurs in parallel by the different group
members.

Table 5: Completion time of CCJ’s scatter
time (�s)

Manta RMI Sun RMI
1 int � mbr. 16K int � mbr. 16K int � mbr.

mbr. scatter scatter broadcast scatter
1 3 1251 <1 1290
2 188 4381 4480 6740
4 375 12790 16510 17330
8 595 26380 48920 39510

16 935 55196 126490 84350
32 1450 112311 315840 178630
64 2523 225137 798150 426010

Table 5 shows the completion time for the scatter operation. Note that, unlike with broadcast,
the amount of data sent increases with the number of members in the thread group. For example,
with 64 members and 16K integers, the size of the scattered rootObject is 4MB. But still, the
completion time scales well with the number of group members. To compare CCJ’s scatter with
an upper bound, the table also shows the completion time for broadcasting the same (increasing)
amount of data to the same number of members. The scatter operation clearly stays far below the
time for broadcasting, except for the trivial case of a single member where broadcast simply has to
return a reference to the given object.

3.2.5 Gather/Allgather

CCJ implements the gather operation as the inverse of scatter, using a binomial tree structure.
With gather, the messages are combined by intermediate member nodes and sent further up the
tree. Table 6 shows that the completion times are comparable to the ones of the scatter operation.
However, times vary because the sending of the individual members towards the root member
happens in a less synchronized fashion, allowing for more overlap. In almost all cases, gather
performs slightly faster than scatter. CCJ’s allgather operation is implemented by a gather towards
one of the members, followed by a broadcast. Like with allreduce, the completion times can be
derived from adding the respective timings.

14

Table 6: Completion time of CCJ’s gather
time (�s)

Manta RMI Sun RMI
mbr. 1 int � mbr. 16K int � mbr. 16K int � mbr.

1 < 1 433 410
2 113 4239 5930
4 209 11646 16450
8 345 25514 37400

16 568 52902 79590
32 985 106965 166370
64 1663 248827 412630

3.3 Using non-array data structures

With Broadcast and Reduce, non-array data structures are transparently handled by Java’s object
serialization. However, for Scatter and Gather operations, CCJ’s DividableDataObjectInterface
has to be implemented by the respective object classes. To evaluate this interface, we have imple-
mented and benchmarked two different matrix data structures, DenseMatrix and SparseMatrix.

3.3.1 DenseMatrix

The DenseMatrix data structure consists of an object which contains an ordinary 2-dimensional
array of doubles (see Figure 4). Since real multi-dimensional arrays are not supported in Java, the
data is actually stored in an array of arrays.

DenseMatrix double [][] rows

Figure 4: DenseMatrix

To allow the use of the Scatter and Gather operations of CCJ, the DenseMatrix object imple-
ments the DividableDataObjectInterface. It therefore has to implement two methods, elementAt
(not shown), which is used in the scatter operation, and setElementAt, which is used in the Gather
operation. (See Figure 5.)

When the members need to combine their local DenseMatrix objects into a single DenseMa-
trix , each of them calls the gather method, passing their local objects as a parameter. The root
node of the gather also passes an extra DenseMatrix object as a parameter, which will contain the
result of the gather operation. The setElementAt method will repeatedly be called on this result
object, each time with one of the local objects as a parameter. The data inside the local object will
then be copied into the correct position in the result object.

15

public void setElementAt(int index,
int groupSize,
Serializable object) {

DenseMatrix src = (DenseMatrix) object;

for (int i = 0 ; i < src.size() ; i++) {
row[src.offset+i] = src.row[i];

}
}

Figure 5: setElementAt method of DenseMatrix

3.3.2 SparseMatrix

A sparse matrix is a matrix containing mostly zeros, which, to save memory, should not be stored.
We have implemented a SparseMatrix object, which is shown in Figure 6. The SparseMatrix
object contains an array of Row objects, which are used to store the matrix rows in a compressed
form. Every Row object contains two arrays, a data array, and an index array. The data array
stores all the non-zero values of the row. The index array is used to store the original position of
each of these data values, (e.g. the position it would have in the row of a non-sparse matrix).

SparseMatrix

Row

double [] data

int [] index

Row [] rows

Figure 6: SparseMatrix

The SparseMatrix object requires more memory per data item than the DenseMatrix. How-
ever, if the amount of non-zero data inside the SparseMatrix is small enough, the memory saved by
not storing zeros is greater than the extra cost of the more complex data structure. In this particular
case (with doubles as data), the SparseMatrix is more efficient if more than approximately 19 % of
the data consists of zero values.

The SparseMatrix also implements the DividableDataObjectInterface to allow the use of
the scatter and gather operations of CCJ. Figure 7 shows the elementAt method.

To distribute a SparseMatrix over the members, the scatter operation of CCJ can be used. The
CCJ library will then repeatedly invoke elementAt on the SparseMatrix object, each time passing
it a member number as an index. The elementAt method calculates the sub matrix to send to this
member, and creates a new SparseMatrix object containing this sub matrix. This new object can
then be sent to the destination member.

16

public Object elementAt(int index,
int groupSize) {

/* calculate the i-th part of the matrix */
int size = n / groupSize;
int leftover = n % groupSize;
int offset = index * size;

if (index >= (groupSize - leftover)) {
size += 1;
offset += index - (groupSize - leftover);

}
/* return a new sub-matrix */
return new SparseMatrix(this, offset, size);

}

Figure 7: elementAt method of class SparseMatrix

3.3.3 Performance

As a benchmark, we have measured the time required by the Scatter operation to distribute a
DenseMatrix and a SparseMatrix across a number of members. Each matrix object contains
512x512 doubles. We have used two different SparseMatrix objects, one containing 95 % zeros,
and one containing 50 % zeros.

0

20

40

60

80

100

0 10 20 30 40 50 60

tim
e

in
 m

ill
is

ec
on

ds

cpus

Scatter benchmark

DenseMatrix
SparseMatrix 50%
SparseMatrix 95%

Figure 8: Matrix scatter benchmark

As Figure 8 shows, the time required to scatter the objects grows rapidly with the number
of members (CPUs). The DenseMatrix, which contains the most data, takes 35 milliseconds to
scatter the object to two members. When we scatter to 64 members, the time required grows to
71 milliseconds. As expected, the SparseMatrix containing 95 % zeros requires significantly less

17

time, 8 milliseconds when scattering to two members, 19 milliseconds when scattering to 64. If
we decrease the number of zeros in the SparseMatrix to 50 %, it still requires less time per scatter
than the DenseMatrix, varying from 29 to 64 milliseconds.

4 Application programs

In this section we discuss the implementation and performance of three applications of CCJ, run-
ning both over Manta RMI and Sun RMI. We also compare the code complexity and performance
of these programs with RMI versions of the same applications, measured using Manta RMI. Fur-
thermore, we compare runtimes to mpiJava versions of our applications. For this purpose, we
ported the mpiJava library [2] to Manta. Originally, mpiJava calls a C-based MPI library (in our
case MPICH) via the Java native interface (JNI). We compiled mpiJava with the Manta compiler
after replacing all JNI calls to direct C function calls, the latter to eliminate the high JNI overhead
[13]. Unfortunately, mpiJava is not thread safe; so we had to disable Manta’s garbage collector
to avoid application crashes. Taking these two changes (direct C calls and no garbage collection)
into account, the given results are biased in favour of mpiJava. We report speedups relative to the
respectively fastest of the four versions on one CPU.

4.1 All-pairs Shortest Paths Problem

The All-pairs Shortest Paths (ASP) program finds the shortest path between any pair of nodes in
a graph, using a parallel version of Floyd’s algorithm. The program uses a distance matrix that is
divided row-wise among the available processors. At the beginning of iteration k, all processors
need the value of the kth row of the matrix. The processor containing this row must make it
available to the other processors by broadcasting it.

In the RMI version, we simulate this broadcast of a row by using a binary tree. When a new row
is generated, it is forwarded to two other machines which store the row locally and each forward
it to two other machines. As soon as a row is forwarded, the machine is able to receive a new
row, thus allowing the sending of multiple rows to be pipelined. The forwarding continues until
all machines have received a copy of the row. In the CCJ and mpiJava versions, the row can be
broadcast by using collective operations, as shown in Figures 1 and 3.

Figure 9 shows the speedups for a 2000x2000 distance matrix. The speedup values are com-
puted relative to the CCJ/Manta RMI version on one node, which runs for 1074 seconds. The
fastest parallel version is mpiJava with a speedup of 60.4 on 64 nodes, followed by the RMI ver-
sion (59.6), CCJ/Manta RMI (57.3), and finally CCJ/Sun RMI (30.1).

We have also calculated the code size of the CCJ and RMI versions of ASP, by stripping the
source of comments and whitespace, and then counting the number of bytes required for the entire
program. The RMI version of ASP is 32 % bigger than the CCJ version. This difference in size is
caused by the implementation of the broadcast. In the RMI version, this has to be written by the
application programmer and contributes 48 % of the code. The communication related code in the
CCJ version is used to partition the data among the processors, and takes about 17 % of the code.
The broadcast itself is already implemented in the library.

18

0

10

20

30

40

50

60

0 10 20 30 40 50 60

sp
ee

du
p

cpus

ccj (Manta RMI)
ccj (Sun RMI)

mpiJava
RMI (Manta)

Figure 9: Speedup for the ASP application

4.2 QR Factorization

QR is a parallel implementation of QR factorization. In each iteration, one column, the House-
holder vector H , is broadcast to all processors, which update their columns using H . The current
upper row and H are then deleted from the data set so that the size of H decreases by 1 in each
iteration. The vector with maximum norm becomes the Householder vector for the next iteration.
To determine which processor contains this vector, an allreduce collective operation (using an ob-
ject as parameter) is used. In the RMI version, both the broadcast and allreduce operations are
implemented using a binary tree algorithm.

Figure 10 shows the results for a 2000x2000 matrix. All speedup values are computed relative
to the CCJ version on one node, which runs for 1991 seconds. As Figure 10 shows, the CCJ/Manta
RMI version of QR has a better speedup than the RMI version, 41.4 against 31.6. This difference is
caused by the efficient implementation of the allreduce operation in the CCJ library. The mpiJava
and CCJ/Sun RMI versions have significantly lower speedups, 15.7 and 13.8 on 64 cpus. This is
caused by serialization overhead of the object parameter used in the allreduce operation. Both the
CCJ/Manta RMI and the RMI version use the efficient serialization offered by Manta, while the
mpiJava and CCJ/Sun RMI version can only use the (much slower) standard serialization.

The code size of the RMI version is 44 % larger than the CCJ version. Furthermore, 41 % of the
code of the RMI version is communication related. The CCJ version has only 10 % communication
related code. Only an implementation of the ReductionObjectInterface is required. The actual
implementations of the allreduce and the broadcast are hidden in the CCJ library. In the RMI
version, however, this has to be implemented by the application programmer.

4.3 Linear Equation Solver

Linear equation solver (LEQ) is an iterative solver for linear systems of the form Ax = b. Each
iteration refines a candidate solution vector xi into a better solution xi+1. This is repeated until the
difference between xi+1 and xi becomes smaller than a specified bound.

The program is parallelized by partitioning a dense matrix containing the equation coefficients
over the processors. In each iteration, each processor produces a part of the vector xi+1, but needs

19

0

10

20

30

40

50

60

0 10 20 30 40 50 60

sp
ee

du
p

cpus

QR

ccj (Manta RMI)
ccj (Sun RMI)

mpiJava
RMI (Manta)

Figure 10: Speedup for the QR application

all of vector xi as its input. Therefore, all processors exchange their partial solution vectors at the
end of each iteration using an allgather collective operation. Besides exchanging their vectors, the
processors must also decide if another iteration is necessary. To do this, each processor calculates
the difference between their fragment of xi+1 and xi. An allreduce collective operation is used to
process these differences and decide if the program should terminate.

Figure 11 shows the results for a 1000x1000 matrix. All speedup values are computed relative
the CCJ/Manta RMI version on one node, which runs for 1708 seconds.

In the RMI version, the vector fragments and values to be reduced are put in a single object,
which is broadcast using a binary tree. Each processor can then locally assemble the vector and
reduce the values. Unlike the previous programs, in which one processor was broadcasting, in LEQ
all processors are required to broadcast data. This requires a large number of RMIs to complete
the communication, causing more overhead than in the previous programs. For example, on 64
processors, 4032 RMIs are needed per iteration, while ASP only needs 63 RMIs per iteration. Due
to this overhead the speedup of the RMI version is only 13.9 on 64 processors.

In the CCJ versions of LEQ, both the allgather and allreduce collective operations can be called
directly from the library. Using the efficient allgather and allreduce implementations of CCJ, only
252 RMIs are required on 64 nodes. For CCJ/Manta RMI, the result is a better speedup than the
RMI version: 16.3 on 64 nodes. However, for CCJ/Sun RMI, hardly any speedup is achieved (2.3
on 64 nodes). The mpiJava version is the fastest one with a speedup of 32.4 on 64 nodes, due to
a better (ring) algorithm for allgather inside MPICH. However, CCJ can be improved by adopting
this algorithm.

The RMI version of LEQ is 72 % larger than the CCJ version. As with QR, this is is caused by
the communication related code, which makes up 67 % of the RMI version, but only 29 % of the
CCJ version. The CCJ version only requires an implementation of the interfaces ReductionOb-
jectInterface and DividableDataObjectInterface. The implementation of allreduce and allgather
are hidden in the CCJ library.

20

0

10

20

30

40

50

60

0 10 20 30 40 50 60

sp
ee

du
p

cpus

LEQ

ccj (Manta RMI)
ccj (Sun RMI)

mpiJava
RMI (Manta)

Figure 11: Speedup for the LEQ application

5 The Java Grande Forum Benchmarks

In the previous section, we evaluated the performance of CCJ with three applications. We empha-
sized the impact of the underlying RMI mechanism, by comparing Sun RMI with Manta RMI. We
also compared to application versions using mpiJava or plain RMI for communication between
processes. In this section, we give a more detailed assessment of CCJ’s performance based on the
MPJ benchmark suite from the Java Grande Forum [26]. We compare CCJ using the fast Manta
RMI with the mpiJava version described in the previous section. From the MPJ benchmark suite,
we generated two versions. The first one adapts the MPJ syntax to mpiJava’s syntax. The second
one uses CCJ’s syntax. Before benchmarking, we also had to fix problems in the source codes of
the SOR kernel, and of the applications MolDyn, MonteCarlo, and RayTracer.

The Java Grande MPJ benchmark suite consists of three sections. Section 1 is benchmarking
low level operations, like message pingpong and collective communication operations like barrier
and broadcast. Section 2 consists of five application kernels carrying out specific operations fre-
quently used in Grande applications. Section 3, finally, consists of three larger codes, representing
complete Grande applications. In the following, we present results for all benchmarks from the
MPJ suite, except for the Alltoall communication benchmark from Section 1 because CCJ does
not implement an Alltoall operation.

5.1 Low Level Operations

The Java Grande low level benchmarks produce a great variety of result data. For brevity, we
restrict our discussion on the completion times of the investigated operations. They are shown
in Figures 12 and 13. The original benchmarks send arrays of integer values of varying sizes.
This is the most simple case for communication benchmarks. As the focus of CCJ is on objects,
we wrote a second set of low level benchmarks with a more complex object structure. We chose
to benchmark the sending of two-dimensional arrays (matrices), which in Java are objects with
vector sub-objects. Benchmarking with two-dimensional arrays is attractive because they trigger
the mechanisms for transmitting complex objects (instead of simple arrays). They can also be

21

easily sized to have the same number of integer elements as the linear arrays used in the original
Java Grande suite.

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120

m
ic

ro
se

co
nd

s

datasize N

PingPong

ccj, int[N*N]
ccj, int[N][N]

mpiJava, int[N*N]
mpiJava, int[N][N]

0

200

400

600

800

1000

0 10 20 30 40 50 60

m
ic

ro
se

co
nd

s

cpus

Barrier

ccj
mpiJava

Figure 12: Completion times of low-level operations from the Java Grande Forum benchmarks

Figure 12 (left) shows the completion times of sending (PingPong) messages of varying size
between two nodes. For sending one-dimensional arrays, mpiJava is faster than CCJ, because in
this case no object serialization is necessary for mpiJava. Instead, the data can be copied directly
from the array to the network and, at the receiver side, in the reverse order from the network into
the array. CCJ, however, always uses object serialization because it is implemented on top of RMI.
This implies that the receiver has to create a new array into which the data can be received. This
additional (copying) overhead is the reason why mpiJava is faster than CCJ when sending simple
arrays.

However, when sending two-dimensional matrices, mpiJava suddenly becomes significantly
slower than CCJ. This is because, in this case, mpiJava first has to serialize the matrix into a byte
stream to be sent to the receiver. The receiver, first has to create a new byte array for receiving and
to deserialize the objects of the matrix in turn. For CCJ, hardly anything changes with matrices;
just the number of transmitted objects slightly increases.

On the right side, Figure 12 shows the completion times of the Barrier operation with a varying
number of CPUs. Although both implementations use the same basic algorithm, MPICH’s Barrier
(used by mpiJava) is more efficient than CCJ’s message passing on top of RMI.

Figure 13 shows the completion times of the low level benchmakrs for the operations Bcast,
Scatter, Gather, and Reduce. On the left side, times are shown for short messages (1 integer). On
the right side, times are shown for long messages (16K integers). The results basically confirm he
findings from the pingpong and barrier tests. The Bcast of simple arrays is faster with mpiJava
than with CCJ. For example, a broadcast of a short (1 integer) array to 64 CPUs takes 63�s
with mpiJava, and 572�s with CCJ. However, sending complex (matrix) objects is much more
inefficient with the mpiJava implementation. Broadcasting a matrix of size 128� 128 to 64 CPUs
only takes 16,456�s with CCJ, but 531,000�s with mpiJava.

With the Scatter benchmark, mpiJava has an even higher advantage over CCJ, when scatter-
ing linear arrays. This is because the underlying MPI implementation (MPICH) can send parts of
arrays, without further copying. With RMI, however, only complete objects can be transferred, so

22

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 60

m
ic

ro
se

co
nd

s

cpus

Bcast

ccj, int[1]
ccj, int[1][1]

mpiJava, int[1]
mpiJava, int[1][1]

0

20000

40000

60000

80000

100000

0 10 20 30 40 50 60

m
ic

ro
se

co
nd

s

cpus

Bcast

ccj, int[16384]
ccj, int[128][128]

mpiJava, int[16384]
mpiJava, int[128][128]

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 60

m
ic

ro
se

co
nd

s

cpus

Scatter

ccj, int[1]
ccj, int[cpus][1]
mpiJava, int[1]

mpiJava, int[cpus][1]

0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60
m

ic
ro

se
co

nd
s

cpus

Scatter

ccj, int[16384]
ccj, int[cpus][16384]
mpiJava, int[16384]

mpiJava, int[cpus][16384]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60

m
ic

ro
se

co
nd

s

cpus

Gather

ccj, int[1]
ccj, int[cpus][1]
mpiJava, int[1]

mpiJava, int[cpus][1]

0

50000

100000

150000

200000

250000

0 10 20 30 40 50 60

m
ic

ro
se

co
nd

s

cpus

Gather

ccj, int[16384]
ccj, int[cpus][16384]
mpiJava, int[16384]

mpiJava, int[cpus][16384]

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

m
ic

ro
se

co
nd

s

cpus

Reduce

ccj, int[1]
ccj, int[1][1]

mpiJava, int[1]
mpiJava, int[1][1]

0

100000

200000

300000

400000

500000

0 10 20 30 40 50 60

m
ic

ro
se

co
nd

s

cpus

Reduce

ccj, int[16384]
ccj, int[128][128]

mpiJava, int[16384]
mpiJava, int[128][128]

Figure 13: Completion times of low-level operations from the Java Grande Forum benchmarks

23

CCJ first has to create new objects for each receiver, which can then be transferred. But when scat-
tering matrices, CCJ can directly serialize the row objects, without further copying, so it becomes
faster than mpiJava with matrix objects.

With the Gather benchmark, the issue with partial objects is the same as with Scatter. However,
all the copying overhead is concentrated at the receiver side. With short messages, CCJ performs
equally with arrays and with matrices. mpiJava, however, is much faster for gathering a short array,
but it is also much slower with a small matrix. With large messages, CCJ is slightly faster than
mpiJava for both array and matrix because of the smaller copying overhead at the receiver side.

For the Reduce benchmark, we use element-wise summation both for array and matrix. The
completion times are similar than with other low-level benchmarks. With arrays, mpiJava is faster
than CCJ, but is much slower with matrices. With mpiJava, reducing a small matrix from 64 CPUs
takes 8,680�s while reducing a small array only takes 142�s.

5.2 Kernels

Figure 14 shows the speedups achieved with both kernels and applications from the Java Grande
MPJ benchmarks (Sections 2 and 3). We report speedups relative to the respectively fastest version
on a single CPU. The kernels come in three problem sizes each, ranging from A (small), over B
(medium), to C (large).

The Series kernel computes Fourier coefficients of a function in a given interval. It constitutes
an embarrassingly parallel application, because the CPUs only compute at the end of the run. Here,
arrays of double values are sent from all nodes to CPU 0 using individual messages. As expected,
both mpiJava and CCJ achieve almost linear speedups with all problem sizes.

The LUFact kernel performs a parallel LU factorization, followed by a sequential triangular
solve. The CPUs communicate by broadcasting arrays of doubles and integers. As can be expected
from the low-level benchmarks, mpiJava is somewhat faster than CCJ in this case.

The SOR kernel performs 100 iterations of successive over-relaxation. At the beginning, ma-
trix blocks are distributed to all CPUs. For each iteration, the neighbors exchange arrays of double
values. Because of the transmission of matrix blocks, CCJ achieves higher speedups than mpiJava.

The Crypt kernel performs IDEA (International Data Encryption Algorithm) encryption and
decryption on a byte array. The array is created on CPU 0 and then sent to the other CPUs by
individual messages. At the end of the application, the computed results are then sent back to CPU
0 by individual messages. It is unclear why this kernel does not use the Scatter and Gather oper-
ations instead. Because only simple arrays are transferred, the mpiJava versions are moderately
faster than the CCJ versions. With the largest problem size C, the CCJ version shows a degraded
speedup which is due to memory problems, caused by necessary, additional array copying.

The SparseMatmult kernel performs multiplication of a sparse matrix stored in compressed-
row format, using one array of double values and two integer arrays. First, CPU 0 creates the data
and distributes the sparse matrix across the CPUs, using individual messages. The results of the
individual computations are combined by an Allgather operation. Unfortunately, this kernel does
not achieve any speedups, neither with mpiJava, nor with CCJ.

24

0

10

20

30

40

50

60

0 10 20 30 40 50 60

sp
ee

du
p

cpus

Series

ccj, size A
ccj, size B
ccj, size C

mpiJava, size A
mpiJava, size B
mpiJava, size C

0

10

20

30

40

50

60

0 10 20 30 40 50 60

sp
ee

du
p

cpus

LUFact

ccj, size A
ccj, size B
ccj, size C

mpiJava, size A
mpiJava, size B
mpiJava, size C

0

10

20

30

40

50

60

0 10 20 30 40 50 60

sp
ee

du
p

cpus

SOR

ccj, size A
ccj, size B
ccj, size C

mpiJava, size A
mpiJava, size B
mpiJava, size C

0

10

20

30

40

50

60

0 10 20 30 40 50 60
sp

ee
du

p
cpus

Crypt

ccj, size A
ccj, size B
ccj, size C

mpiJava, size A
mpiJava, size B
mpiJava, size C

0

10

20

30

40

50

60

0 10 20 30 40 50 60

sp
ee

du
p

cpus

SparseMatmult

ccj, size A
ccj, size B
ccj, size C

mpiJava, size A
mpiJava, size B
mpiJava, size C

0

10

20

30

40

50

60

0 10 20 30 40 50 60

sp
ee

du
p

cpus

MolDyn

ccj, size A
ccj, size B

mpiJava, size A
mpiJava, size B

0

10

20

30

40

50

60

0 10 20 30 40 50 60

sp
ee

du
p

cpus

MonteCarlo

ccj, size A
mpiJava, size A

0

10

20

30

40

50

60

0 10 20 30 40 50 60

sp
ee

du
p

cpus

Ray Tracer

ccj, size A
ccj, size B

mpiJava, size A
mpiJava, size B

Figure 14: Speedups of kernels and applications from the Java Grande Forum benchmarks

25

5.3 Large Applications

Figure 14 also shows the speedups achieved with the applications from the Java Grande MPJ
benchmarks (Section 3). We report speedups relative to the respectively fastest version on a single
CPU. The applications come in two problem sizes each. A denotes small, and B denotes large.

The MolDyn application is an N-body code modeling particles interacting under a Lennart-
Jones potential in a cubic spatial volume with periodic boundary conditions. For each iteration, 6
Allreduce (summation) operations are used to update the particles (3 times with double arrays, 2
times with a double value, and once with an integer value). With MolDyn, CCJ clearly outperforms
mpiJava. The advantage could be even bigger if the individual Allreduce operations would be
combined to a single operation on a complex object, which is possible with CCJ but not with
mpiJava.

The MonteCarlo application is a financial simulation for pricing products derived from the
price of an underlying asset. At the beginning of the computation, all nodes read in a file and
simulate parts of the problem. The result on each node is an array of java.util.Vector objects.
These arrays of complex objects are sent to CPU 0 by individual messages. With problem size A,
CCJ achieves better speedups than mpiJava. We could not run problem size B because it exceeds
the memory size of our compute nodes.

The Ray Tracer application renders a scene of 64 spheres. Each CPU renders part of the scene
which is simultaneously generated on all nodes. The CPUs send the rendered pixels to CPU 0 by
individual messages. The speedups achieved by mpiJava and by CCJ are almost identical.

6 Related work

The driving force in high-performance Java is the Java Grande Forum (www.javagrande.org).
There are also many other research projects for parallel programming in Java [1, 6, 7, 14, 16, 25].
Most of these systems, however, do not support collective communication. Taco [24] is a C++
template library that implements collective operations, however without exploiting MPI’s concept
of collective invocation by the participating processes. JavaNOW [27] implements some of MPI’s
collective operations on top of a Linda-like entity space; however, performance is not an issue.

In our previous work on parallel Java, we implemented several applications based on RMI and
RepMI (replicated method invocation) [20, 21, 28]. There, we identified several MPI-like collec-
tive operations as being important for parallel Java applications. We found that collective opera-
tions both simplify code and contribute to application speed, if implemented well. CCJ implements
efficient collective operations with an interface that fits into Java’s object-oriented framework.

An alternative for parallel programming in Java is to use MPI instead of RMI. MPJ [9] proposes
MPI language bindings to Java. These bindings merge several earlier proposals [2, 10, 17, 23]. This
approach has the advantage that many programmers are familiar with MPI and that MPI supports
a richer set of communication styles than RMI, in particular collective communication. However,
the current MPJ specification is intended as “. . . initial MPI-centric API” and as “. . . a first phase in
a broader program to define a more Java-centric high performance message-passing environment.”
[9] CCJ is intended as one step in this direction.

26

7 Conclusions

We have discussed the design and implementation of CCJ, a library that integrates MPI-like mes-
sage passing and collective operations in a clean way into Java. CCJ allows Java applications to
use collective communication, much like RMI provides two-party client/server communication. In
particular, any data structure (not just arrays) can be communicated. Several problems had to be
addressed in the design of CCJ. One issue is how to map MPI’s communicator-based process group
model onto Java’s multithreading model. We solve this with a new model that allows two-phase
construction of immutable thread-groups at runtime. Another issue is how to express user-defined
reduction operators, given the lack of first-class functions in Java. We use function objects as a
general solution to this problem.

CCJ is implemented entirely in Java, using RMI for interprocess communication. The library
thus can run on top of any Java Virtual Machine. For our performance measurements, we use an
implementation of CCJ on top of the Manta system, which provides efficient RMI. We have imple-
mented three parallel applications with CCJ and we have compared their performance to mpiJava
and hand-optimized RMI versions. For all three applications, CCJ performs faster or equally fast
as RMI. Compared to mpiJava, CCJ performs equally fast with ASP and significantly faster with
QR. For LEQ, the performance is worse than mpiJava, which is caused by a less-efficient allgather
implementation. We have also compared the code complexity of the CCJ and RMI versions of the
applications. The results show that the RMI versions are significantly more complex, because they
have to set up spanning trees in the application code to do collective communication efficiently. We
have shown that CCJ is an easy-to-use library for adding MPI-like collective operations to Java.
Given an efficient RMI implementation, CCJ results in application runtimes that are competitive
to other implementations.

We finally compared CCJ’s performance to mpiJava in detail, using the Java Grande Forum
MPJ Benchmark suite. We found that CCJ’s simulation of individual messages with RMI and
threads is moderately slower than sending individual messages directly. Also, when sending arrays
of primitive data types, using an underlying MPI library (in our case MPICH) has less communica-
tion overhead than RMI with its object serialization. However, when transferring complex objects,
CCJ causes less overhead, leading to better speedups for those kernels and applications from the
Java Grande Forum benchmark that actually use objects instead of plain arrays. To conclude, CCJ
is a viable alternative to existing message passing platforms for Java, because it combines compet-
itive performance with a clean integration of message passing and collective communication into
Java’s object-based model.

8 Acknowledgements

This work is supported in part by a USF grant from the Vrije Universiteit. The DAS system is an initiative of
the Advanced School for Computing and Imaging (ASCI). We thank Rob van Nieuwpoort, Ronald Veldema,
Rutger Hofman, and Ceriel Jacobs for their contributions to this research. We thank Kees Verstoep and John
Romein for keeping the DAS in good shape.

27

References

[1] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman. SuperWeb: Research Issues
in Java-Based Global Computing. Concurrency: Practice and Experience, 9(6):535–553,
June 1997.

[2] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and X. Li. A Java interface to MPI. In Proc. First
UK Workshop on Java for High Performance Network Computing, Sept. 1998.

[3] H. E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen, T. Rühl, and F. Kaashoek.
Performance Evaluation of the Orca Shared Object System. ACM Transactions on Computer
Systems, 16(1):1–40, Feb. 1998.

[4] R. Bhoedjang, T. Rühl, and H. Bal. User-Level Network Interface Protocols. IEEE Computer,
31(11):53–60, 1998.

[5] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and W. Su. Myrinet:
A Gigabit-per-second Local Area Network. IEEE Micro, 15(1):29–36, Feb. 1995.

[6] F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, E. Akman, and D. Gannon. Java RMI
Performance and Object Model Interoperability: Experiments with Java/HPC++ Distributed
Components. In ACM 1998 Workshop on Java for High-Performance Network Computing,
Santa Barbara, CA, Feb. 1998.

[7] S. Brydon, P. Kmiec, M. Neary, S. Rollins, and P. Cappello. Javelin++: Scalability Issues in
Global Computing. In ACM 1999 Java Grande Conference, pages 171–180, San Francisco,
CA, June 1999.

[8] M. Burke, J.-D. Choi, S. Fink, D. Grove, M.Hind, V. Sarkar, M. Serrano, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño Dynamic Optimizing Compiler for Java. In ACM
1999 Java Grande Conference, pages 129–141, San Francisco, CA, June 1999.

[9] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox. MPJ: MPI-like Message Passing
for Java. Concurrency: Practice and Experience, 12(11):1019–1038, 2000.

[10] G. Crawford, Y. Dandass, and A. Skjellum. The jmpi commercial message passing environ-
ment and specification. http://www.mpi-softtech.com/publications/JMPI 121797.html,
Dec. 1997.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable
Object–Oriented Software. Addison Wesley, 1994.

[12] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine – A Users Guide and Tutorial for Network Parallel Computing. MIT Press,
1994.

[13] V. Getov. MPI and Java-MPI: Contrasts and Comparisons of Low-Level Communication
Performance. In Supercomputing’99, Portland, OR, November 1999.

28

[14] V. Getov, S. Flynn-Hummel, and S. Mintchev. High-performance Parallel Programming in
Java: Exploiting Native Libraries. In ACM 1998 workshop on Java for High-performance
network computing, Feb. 1998.

[15] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-performance, Portable Implementation
of the MPI Message Passing Interface Standard. Parallel Computing, 22(6):789–828, 1996.

[16] T. Haupt, E. Akarsu, G. Fox, A. Kalinichenko, K.-S. Kim, P. Sheethalnath, and C.-H. Youn.
The Gateway System: Uniform Web Based Access to Remote Resources. In ACM 1999 Java
Grande Conference, pages 1–7, San Francisco, CA, June 1999.

[17] G. Judd, M. Clement, and Q. Snell. DOGMA: Distributed Object Group Metacomputing
Architecture. Concurrency: Practice and Experience, 10:977–983, 1998.

[18] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang. MAGPIE: MPI’s
Collective Communication Operations for Clustered Wide Area Systems. In Seventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’99),
pages 131–140, Atlanta, GA, May 1999.

[19] T. Kühne. The function object pattern. C++ Report, 9(9):32–42, Oct. 1997.

[20] J. Maassen, T. Kielmann, and H. E. Bal. Efficient Replicated Method Invocation in Java. In
ACM 2000 Java Grande Conference, pages 88–96, San Francisco, CA, June 2000.

[21] J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal, and A. Plaat. An Efficient Imple-
mentation of Java’s Remote Method Invocation. In Seventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’99), pages 173–182, Atlanta, GA,
May 1999.

[22] Message Passing Interface Forum. MPI: A Message Passing Interface Standard. International
Journal of Supercomputing Applications, 8(3/4), 1994.

[23] S. Mintchev and V. Getov. Towards portable message passing in Java: Binding MPI. In
Recent Advances in PVM and MPI, number 1332 in Lecture Notes in Computer Science,
pages 135–142. Springer, 1997.

[24] J. Nolte, M. Sato, and Y. Ishikawa. Template Based Structured Collections. In Proc. In-
ternational Parallel and Distributed Processing Symposium (IPDPS 2000), pages 483–491,
Cancun, Mexico, 2000.

[25] M. Philippsen, B. Haumacher, and C. Nester. More efficient serialization and RMI for Java.
Concurrency: Practice and Experience, 12(7):495–518, 2000.

[26] The Java Grande Forum. The Java Grande Forum Benchmark Suite.
http://www.epcc.ed.ac.uk/javagrande/.

[27] G. K. Thiruvathukal, P. M. Dickens, and S. Bhatti. Java on networks of workstations (Ja-
vaNOW): a parallel computing framework inspired by Linda and the Message Passing Inter-
face (MPI). Concunrrency: Practice and Experience, 12:1093–1116, 2000.

29

[28] R. van Nieuwpoort, J. Maassen, H. E. Bal, T. Kielmann, and R. Veldema. Wide-Area Paral-
lel Programming using the Remote Method Invocation Model. Concurrency: Practice and
Experience, 12(8):643–666, 2000.

30

