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Abstract
The Java platform has many characteristics that make it
very desirable for integrated continuous media process-
ing. Unfortunately, it lacks the necessary CPU resource
management facility to support quality of service guar-
antees for soft real-time multimedia tasks. In this paper,
we present our new Java Virtual Machine, Q-JVM,
which brings CPU resource management to the Java
platform. Q-JVM is based on Sun’s JVM version 1.1.5.
It implements an enhanced version of the MTR-LS
algorithm in its thread scheduler. Combined with
admission control that could be implemented in an
application-level resource manager, it is able to support
QoS parameters such as fairness, bandwidth partition-
ing and delay bound guarantees, as well as the cumula-
tive service guarantee. Our test results show that Q-
JVM is backward compatible with the standard JVM
from Sun, has low scheduling overhead, and is able to
provide QoS guarantees as specified.

1 Introduction
The many-fold increase in raw processing power of
microprocessors and network bandwidth over the last
decade has made possible a wide variety of new multi-
media applications. These applications are capable of
handling data that represent digital continuous media
(CM), such as digital audio and video, using relatively
inexpensive and commercially available computing
hardware. Furthermore, processing of digital continu-
ous media can now be integrated with conventional
applications, such as word processing, on general pur-
pose computing platforms.

Integrated continuous media processing poses
unique challenges to the underlying support environ-
ment: it imposes real-time requirements on the host
operating system and its subsystems, as continuous
media data must be presented continuously in time at a
predetermined rate in order to convey meaning. How-
ever, software that processes digital CM data is often

classified as beingsoft real-time; it only requires the
operating system to statistically guarantee quality
service (QoS) parameters such as delay and throu
put. There often are deadlines for various tasks; for
nately, missing a particular deadline is not fatal, as lo
as it is not missed by too much, and most other dea
lines are not missed.

Multimedia computing is supported to varying
degrees by a number of current generation operat
environments. Among these, the Java platform [1] h
many desirable characteristics. Java is a simple a
small language. It is object-oriented and supports ma
language features, such as interfaces and autom
memory management, that make it a robust enviro
ment for software development. It also supports mul
threaded programming at the language level with bui
in synchronization primitives, thus allowing a high
degree of interactivity with the end user. Moreove
Java has a rich collection of application programmin
interfaces which support media manipulation and co
tinuous media processing. Most importantly, Java w
designed for embedded applications, and is ideal
the multimedia devices of the near future.

Unfortunately, Java does not have the facility t
support soft real-time processing. Real-time progra
ming is a matter of managing resources, such as C
bandwidth, memory and disk access, and netwo
links. A real-time programmer must start with resourc
control, before building an application around tha
layer. However, Java does not provide any mechani
which can be used to monitor, manage, or police t
usage of system resources.

In this paper, we present our new Java virtu
machine, Q-JVM, based on Sun’s JVM version 1.1.
The objective for this platform is to support integrate
continuous media processing on mobile or embedd
devices, such as PDAs and TV set-top boxes, whe
soft real-time guarantees must be provided with limite
system resources. In this implementation, a resou

1. This author was supported in part by Natural Sciences and Engineering Research Council (NSERC) of Canada, and SONY D
uted Systems Lab at San Jose, California, U.S.A. He is currently employed at Redback Networks.

2. Departments of Computer Science and Electrical & Computer Engineering.
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management mechanism is incorporated into the thread
scheduler to provide soft real-time guarantees for the
CPU resource.

Q-JVM employs an enhanced version of the Move-
To-Rear List Scheduling algorithm. This algorithm is a
general-purpose resource management algorithm
developed at the Bell Laboratories for providing qual-
ity of service guarantees to soft real-time tasks [2]. We
adopted it for managing the CPU resource, and have
enhanced it to handle not only user threads, but also
system threads which must express their urgency using
priorities.

Our enhanced version of the MTR-LS algorithm is
implemented in the thread scheduler of the new Java
virtual machine in place of the standard static priority-
based scheduler. It enables Q-JVM to support QoS
parameters such as fairness and bandwidth partitioning
for soft real-time tasks.

Preliminary test results have shown that Q-JVM
has low scheduling overhead, and is able to provide
quality of service guarantees as specified. Moreover, it
is binary compatible with the standard version distrib-
uted by Sun.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related research in resource and Qual-
ity of Service management. Section 3 details our
implementation of a new Java virtual machine that sup-
ports resource management. Section 4 documents
results of some of our experimentation on Q-JVM.
Finally, Section 5 summarizes this paper and offers
some concluding remarks.

2 Previous Work
There has been a lot of research in CPU resource man-
agement for soft real-time applications. Some research-
ers have studied existing systems that claim to support
real-time multimedia applications, and found that static
priority-based scheduling is not sufficient for multime-
dia soft real-time applications [8]. Others like [5] have
borrowed from link scheduling, or have proposed new
algorithms [2] for managing the CPU resource. At the
same time, researchers have realized the potential of
the Java platform for embedded real-time processing,
and have proposed extensions to the base platform [9].

2.1 Static Priority Based Scheduling
The most common CPU resource management
schemes employ static priority-based scheduling. In
such a scheme, all execution entities are assigned fixed

priorities. The scheduler rations the CPU to competi
entities according to their priority.

UNIX System V Release 4 (SVR4) incorporate
such a static priority based process scheduler. By inc
porating this scheduler, SVR4 claims to provide syste
support for real-time and multimedia application
However, an extensive quantitative analysis of this pr
cess scheduler, conducted by Nieh et. al. [8], demo
strated that this process scheduler was large
ineffective. It could even produce system lockup. The
conclusion was that a static priority based real-tim
process scheduler in no way allows a user to deal w
the problem of CPU resource contention presented
multimedia applications.

Similarly, hard real-time scheduling algorithms
such as Earliest Deadline First and the Rate Monoto
Algorithm, are not suitable for integrated continuou
media processing [8]. This class of algorithms eith
fails to achieve the desired efficiency for integrate
computing environment, or requires prior analysis
computational requirements of the particular applic
tion mix. The latter is difficult, if not impossible, for
dynamic systems.

2.2 Resource Management Based on Fair
Queuing
A large body of work exists on fair queuing. The Star
time Fair Queuing (SFQ) algorithm [5][6] is a notabl
example.

SFQ improves upon early fair queuing algorithm
like Weighted Fair Queuing [3] and Self Clocked Fa
Queuing [4] by removing their requirement for prio
knowledge of the computational needs of competin
tasks; it is also much more efficient than algorithm
like Fair Queuing based on Start time [6]. Moreover,
handles fluctuation in available bandwidth due to sp
radic interrupt processing better than other fair queui
algorithms [5].

SFQ was first developed for network packet sche
uling in [6], and was successfully adopted for CP
scheduling later in [5]. Unfortunately, its delay boun
increases linearly with the number of threads in th
system [10], thus making it undesirable for comple
and dynamic systems.

2.3 The MTR-LS Algorithm
The Move-To-Rear List Scheduling algorithm (MTR
LS) is a new resource scheduling algorithm develop
at the Bell Laboratories. It is aimed to provide predic
2
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able service in a general purpose system with multiple
resources including CPU, disk, and a network [2].
Besides the usual quality of service parameters such as
fairness, bandwidth partitioning and delay bound, it
also supports a new criterion calledcumulative service
guarantee: MTR-LS guarantees that the real service
obtained by a process, given its specified service rate,
on a shared server does not fall behind the ideal service
it would have accumulated on a dedicated server at the
same service rate by more than a constant amount.

Scheduling using MTR-LS is based onservice
fractions. A service fraction is a fraction assigned to a
scheduling entity that represents the service rate of a
virtual server in terms of the real server. A system con-
stant, named thevirtual time quantum T, is used to
specify the total target time of servicing each and every
active scheduling entity in the system exactly once.

Each scheduling entity is also assigned a time
stamp and a quantumleft when it requests service. The
quantum size is calculated as the product of its service
fraction andT. All active scheduling entities are kept in
the service list L, and are sorted by their time stamps.
Entities with earlier time stamps appear closer to the
front of the list. The MTR-LS algorithm always sched-
ules the first runnable entity on the service list.

A scheduled entity is preempted when its quantum
is consumed, or when some other entity whose position
on the service list is ahead of it becomes runnable.
After the preemption, the time it has been serviced on
the server is subtracted from its quantumleft to yield an
updated value ofleft. If the result is zero, then it is
assigned a new time stamp and its quantum is re-initial-
ized. Its position on the service list is adjusted accord-
ing to its new time stamp; i.e., it is moved to the rear of
the list.

The MTR-LS algorithm provides bandwidth parti-
tioning and fairness guarantees for all competing enti-
ties with respect to their service fraction allocations.
With admission control, it is also able to provide delay
bounds and cumulative service guarantees [2]. More-
over, it is very efficient: even with a straightforward
implementation, the computational complexity of the
algorithm isO(ln(n)) wheren is the number of entries
in the service list [2]. These properties persuaded us to
build on the MTR-LS algorithm to provide quality of
service guarantees for Java threads.

2.4 Real-time Extensions to Java
Other researchers have also realized the potential of the

Java platform, and considered extensions to this en
ronment for real-time computing [9]. The extensio
proposed by Nilsen uses a number of techniques su
as analysis of worst-case execution time, measurem
of representative function invocations, rate monoton
analysis, static cyclic scheduling, and real-time ga
bage collection with possible hardware assistance [
The proposed scheme is designed to satisfy hard re
time constraints, and is fairly sophisticated. Unfortu
nately, it is not compatible with the standard Java pla
form available from Sun.

To serve multimedia applications, however, it i
sufficient for a system to provide only statistical gua
antees. Soft real-time scheduling algorithms such
the MTR-LS algorithm are thus better suited to th
class of integrated computing system. We recogn
that automatic garbage collection is a major stumblin
block for providing real-time service in Java, as it i
difficult to regulate its resource consumption. Neve
theless, we prefer to reduce this to a resource mana
ment problem, and leave the construction of a bet
garbage collector to other specialists.

3 A New Java Virtual Machine
Our enhanced version of the Java virtual machine
based on version 1.1.5 of Sun’s reference implemen
tion. Although the source code obtained from Sun su
ports both Windows and Solaris, we chose to base o
virtual machine on Solaris. As our implementatio
makes few assumptions about the support provided
the underlying operating system, it is relatively easy
port to other platforms.

Java threads may be mapped to native operat
system scheduling entities using One-to-One, Many-
One or Many-to-Many models[7]. With a 1-to-1 map
ping, each Java thread is supported by its own sched
ing entity known to the operating system. Scheduling
handled by the OS; all threads have equal access to
kernel at the same time. Thus, this model is able
exploit any hardware parallelism that may be availab

With them-to-1 model, all Java threads are mappe
onto a single scheduling entity supported by the O
and scheduling of Java threads is handled by a us
level threads library. Only one scheduling entity
known to the operating system, and only one thread c
access the kernel at any given time. This model do
not exploit hardware parallelism; however, it has th
advantage that the OS kernel is not required to supp
multithreading. Moreover, it is also very efficient, as a
3
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scheduling decisions and context switches can be han-
dled in user space, without kernel intervention. This is
a considerable advantage in uni-processor environ-
ments, where the additional heavy context switches to
and from the kernel does not yield any benefit in terms
of increased parallelism. It is thus ideal for mobile and
embedded devices that do not have multiple proces-
sors, and where CPU bandwidth is at a premium.

Them-to-n mapping model is the most elaborate. It
uses a user-level threads library in conjunction with a
OS kernel that supports multi-threading: Java threads
are mapped onto a pool of scheduling entities known to
the kernel. The threads library manages the pool of
scheduling resources and the mapping between Java
threads and kernel threads, while the kernel schedules
only the entities known to it.

On Solaris, one has the option of using either the
Many-to-Many model with the Solaris native thread
library, or the Many-to-One model with the Green
Thread library. As it is not common to have true hard-
ware parallelism on embedded personal devices which
we target, and to ensure easy portability and scheduling
behaviour consistency, we decided to base our changes
on Green Thread using them-to-1 model.

Our approach was to build the resource manage-
ment facility into the lowest level of the Java virtual
machine, in this case, the Green Thread library, so that
resource consumption by all threads, including the
threads spawned by the JVM and its native libraries,
can be managed effectively.

3.1 Green Thread
Green Thread is a traditional priority-based threads
package. It relies on three system threads for its opera-
tion; and it uses a stateless scheduler function which
runs on the preempted thread’s stack. It is also tightly
integrated with the Java virtual machine.

Scheduling in Green Thread is based on priority.
Priorities are represented by integer values, where
larger integers represent higher priority. Although the
basic architecture does not limit the range of priorities,
user threads use only ten values: integers from 10 to 1.
Java threads use only these priority values as well

There are three system threads in Green Thread
that use priorities outside of the range for user threads.
These three threads are theClockHandlerthread, the
TimeSlicer thread, and theIdler thread (Figure 1).

The ClockHandlerthread is responsible for main-
taining alarms for all other threads. It lies dormant

most of the time and wakes up only when an alar
expires or when one is registered or removed. When
wakes up, it notifies all threads whose alarms ha
expired. It then scans all the currently active alarms
calculate the next time out period. After registering a
alarm with the operating system to deliver a signal to
after the time out period, it suspends itself again. Ru
ning at priority 12, theClockHandler thread is the
highest priority thread in the system.

TheTimeSlicerthread runs at priority 11. Like the
ClockHandlerthread, it lies dormant most of the time
When it wakes up, it registers an alarm that expires
the end of the next preemption interval, and then go
into sleep again. Since it has a higher priority than a
other threads in the system, except theClockHandler
thread, it will be scheduled as soon as it is runnab
i.e., when its alarm expires. By waking up and goin
into sleep again, it preempts the current user thre
and allows the scheduler to schedule a new thre
according to its scheduling policy.

The use of this time slicing mechanism is option
in Sun’s implementation of Green Thread for the Ja
virtual machine. By default, this thread is not loade
In this case, threads may be blocked only when th
perform some system operations such as performing
O or attempting to enter a monitor. An operator ca
enable time slicing and set the quantum size via co
mand line switches to the JVM.

Running at priority 0, theIdler thread is the lowest
priority thread in the system. Hence, it is schedule
only when there are no other runnable threads. Whe
ever it is scheduled, theIdler thread will reclaim mem-
ory occupied by the stacks of terminated threads, a
then yield the CPU to the operating system.

In addition to the three system threads, Gre
Thread also maintains two other user threads in its s
tem space: theGC thread, and theFinalizer thread. The
GC thread runs the garbage collection routines in t
JVM, while the Finalizer thread runs thefinal-

Figure 1: Priorities of Green Threads

ClockHandler

TimeSlicer Idler

Higher Lower

101112 1 0...Priorities
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VMSuspendedUser Threads
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ize() routines of discarded Java objects. Both of
these two threads run at the lowest priority of user
threads, priority 1. However, when theGC thread runs,
it runs to completion and thus is non-preemptable. Fur-
thermore, when a low memory situation is detected, the
Java virtual machine may suspend all user threads and
run the garbage collection routines on its own behalf.

Green Thread manages threads using priority
queues that are implemented as linked lists. All runna-
ble threads are kept in therunnable queue. Java moni-
tors also use queues to manage threads. Every monitor
has await queuefor threads that are waiting to enter it,
and acondition variable wait queuefor threads that are
waiting for some conditions to become true. Threads in
these queues are sorted in the order of their priorities.
In addition, there is anactive queuethat links together
all threads that have been created but not yet termi-
nated. This queue is not sorted in any particular order.

Green Thread’s scheduler is a function that runs on
the stack of the last scheduled thread. It is invoked by
the context switching code every time the current
thread yields or is blocked or preempted. Green
Thread’s scheduling policy is implemented in the
queues. Higher priority threads are inserted into the
front of the queues before all lower priority threads;
equal priority threads are inserted in the order of their
arrival. When invoked, the scheduler function always
schedules the first thread it finds on the runnable queue.
As the Idler thread never blocks, the scheduler is
always able to find at least one thread to schedule.

Each Green thread also has a block of private infor-
mation that helps to facilitate its management. This
includes its priority, its state, the lists of monitors it has
entered or is waiting on, and information about its
stack memory and machine context.

3.2 Extensions to Green Thread
Our purpose is to support soft real-time scheduling of
Green threads (and in turn, Java threads) through the
addition of a resource management algorithm to the
Green Thread library. In our final implementation,
Green Thread’s original system threads and the moni-
tor infrastructure were largely unchanged. However,
the thread private data structure, the queues and the
scheduler function were extended to accommodate the
new scheduling policy. The preemption and context
switching mechanisms were also modified to track
CPU resource consumption by individual threads.

The first change is to extend the thread data struc-

ture to include fields for a time stamp, a service fra
tion specification, and the time left in a thread’s curre
quantum, i.e., theleft value. The service fraction is
specified by the user, and may be changed at any tim
It is used to calculate a thread’s quantum, in conjun
tion with the virtual time quantum. The time stamp i
used to determine the position of a thread in the serv
list L: threads having earlier time stamps appear
nearer the head ofL than threads with later ones. Whe
a thread finishes a quantum, it is assigned a new (la
time stamp and thus moved to the rear of the list.

However, we implemented the time stamp not as
reading of the clock, but as a 64 bit long integer, whe
larger integer values represent earlier time. The earli
time stamp is the largest 64 bit positive integer valu
When a thread is assigned a new time stamp, it is giv
a 64 bit integer that is smaller than all assigned tim
stamp values in the system.

This decision stems from the realization that the
is a parallel between time stamps and priorities: threa
with earlier time stamps are closer to the front of th
service list than threads with later time stamps; th
need to be serviced before other threads. In effe
these threads have a higher effective priority than oth
threads. In the original Green Thread library, larg
integer values represent higher priority. Using a mon
tonically decreasing integer in place of a real tim
stamp permits one to re-use most of the Green Thre
library, which assume a priority-based threads mod
with minimum modification.

The key to implementing the MTR-LS algorithm is
the service listL. It is supposed to be an ordered list o
all active threads in the system, sorted by their tim
stamps. However, the order of threads is significa
only when they are scheduled. Therefore, our impl
mentation only keeps therunnable queuesorted; the
active queue is left unsorted.

The new runnable queue is a priority queue wi
the time stamp as priority. The original runnable que
in Green Thread is implemented as a linked list. Such
data structure is quite inefficient for priority queue
We developed a new priority queue based on the he
data structure. The time complexity of this queue is
the order ofO(ln(n)). This new queue abstract data typ
(ADT) enabled us to realize the full potential of th
MTR-LS scheduling algorithm in terms of efficiency
Other parts of the Green Thread library, such as t
monitor code which uses priority queues to mana
threads, are also modified accordingly to take adva
tage of this ADT.
5
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A pair of in-line functions is added to Green
Thread’s context switching code to monitor resource
consumption by individual threads. The first in-line
function is inserted just before the place where control
is transferred to a newly scheduled thread. This func-
tion saves the system hardware clock reading in a vari-
able private to the scheduler. The second in-line
function is inserted immediately following the place
where context is switched away from a thread. It takes
another reading of the system clock, and subtracts from
it the last reading of clock taken when the current
thread was scheduled. The difference is the time that
the last scheduled thread has run on the CPU. This dif-
ference is then subtracted from theleft value of the last
scheduled thread.

The context switching code is executed whenever
control of the CPU changes hands. Thus, this pair of in-
line functions is able to track CPU usage of all threads
managed by the Green Thread library. However, the
context switching code itself does consume CPU
resource that is not fully accounted for. Fortunately,
these routines are simple and short; and their invoca-
tions are statistically predictable. Hence, their resource
consumption is expected to be a constant but negligible
amount. The small discrepancy can be dealt with by
reserving a small portion of the CPU that is not allo-
cated to any threads.

The basic scheduler function from the original
Green Thread library is also modified to implement the
MTR-LS algorithm. It still runs on the stack of the last
scheduled thread; it is still invoked by the context
switching code every time the current thread yields or
is blocked or preempted; however, it now assumes
extra duties.

When invoked, the scheduler fetches the thread
with the earliest time stamp from the runnable queue
and checks itsleft value. If this value is less than or
equal to zero, it moves this thread to the rear of the list
by assigning it a new time stamp and reinserting it into
the runnable queue. Theleft of this thread is re-initiated
to be , where is the service fraction of
this thread,T is the virtual time quantum, andleft is this
thread’s lastleft value. The scheduler function repeats
this operation until it finds a thread with a positiveleft
value. It then invokes the context switching code to
record the start time of this quantum and transfer the
control of CPU to the scheduled thread.

Finally, time slicing is enabled by default in the
new JVM; however, the mechanism is modified to

accommodate the new scheduling algorithm. T
TimeSlicerthread is now loaded automatically durin
system initialization and enters suspension imme
ately. When the scheduler runs, it sets an alarm
TimeSlicerthat expires after time units, where is
the smaller of a preemption interval and theleft value
of the thread being scheduled. When this alarm expir
TimeSlicerbecomes runnable. It will preempt the cur
rent thread, and cause a rescheduling. If the curr
thread is blocked for other reasons before this tim
expires, the scheduler will cancel the alarm and se
new one when the next thread is scheduled.

3.3 Extension to the MTR-LS Algorithm
The MTR-LS algorithm is used in our new Java virtua
machine to schedule not only user threads but also
system threads that must express their urgency us
priorities. For example, the thread scheduler must re
ognize that theClockHandlerthread must be scheduled
as soon as it is runnable and theidler thread should
only be scheduled when there are no other runna
threads.

Unfortunately, the MTR-LS algorithm is based o
service fractions and CPU resource consumption.
does not have an inherent notion of urgency as may
expressed with priorities.

Our solution is to extend the MTR-LS algorithm to
handle the system threads as a special case. We t
advantage of our earlier realization that MTR-L
schedules threads according to their positions on
service listL, and that the time stamps which determin
the positions of threads onL can serve as effective pri-
orities.

Under the MTR-LS algorithm, a thread will not be
scheduled if there are other threads ahead of it on
service list. Hence, if high priority system threads a
placed at the beginning of the list, i.e., ahead of all us
threads, then as soon as they become runnable they
be scheduled. Similarly, if the low priority system
threads are placed at the rear of the list, i.e., after
user threads, then they will not be scheduled until the
are no other threads that are runnable.

A map of positions of the system threads and us
threads on the service listL is shown in Figure 2. The
ClockHandler thread and theTimeSlicer thread are
assigned the two earliest (largest) time stamps. T
puts them at the beginning of the service list. At th
same time, theidler thread is assigned an artificially
late (small) time stamp which puts it near the end of th

α T left+⋅ α

∆t ∆t
6
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service list1.
Moreover, all system threads are tagged so that

when context is switched away from them, theirleft
values are not updated. As a result, they will never be
moved to the rear of the list. In other words, their posi-
tions onL are stationary.

This approach takes full advantage of the natural
ordering of threads on the service list and the parallel
between time stamps and priorities. It provides a sim-
ple and straightforward solution for the problem of
using the MTR-LS algorithm in a root scheduler which
must allow system threads to express their urgency.

We observe that the system threads do consume
CPU resource, but their resource consumption can be
bounded. Both high priority system threads are spo-
radic; their invocations are statistically predictable.
Moreover, as they perform very simple and dedicated
functions, their resource consumption is expected to be
small and remain statistically constant. To account for
this amount, the allocated CPU bandwidth counter can
be set to a very small number, e.g. 1%, when the thread
library initializes, before any other threads are created.

The resource consumption by the other system
thread,Idler, is negligible. This thread is only sched-
uled when there are no other runnable threads, i.e.
when there is no resource contention. It is preempted as
soon as another thread requests access to the CPU.

The GC thread, on the other hand, does consume
considerable amount of CPU resource. However, as our
expertise is not in real-time garbage collection algo-
rithms, we must assume the availability of a garbage
collector that is able to work currently with other
threads in the system. In particular, it must not require
all other threads in the system be suspended before it
can proceed; and it must not require all other threads in

the system to remain suspended until it completes
work. With such a garbage collector, we then cou
assign a CPU fraction (e.g. 5%) to theGC thread, and
manage its resource consumption just like any ordina
thread.

Finally we note that the rest of the Java VM thread
such asFinalizer are treated as user threads as we
They are subjected to the same resource consump
accounting as any regular user threads. They
assigned small service fractions (e.g. 1%) that may
changed by a user-level resource manager to suit ap
cation requirements.

3.4 Resource Consumption Accounting
An interesting problem arises when our new JVM
executed on top of a multi-programming environme
such as Solaris. The operating system may preempt
Java VM runtime environment and give the CPU t
another program. This could cause resource accoun
to be disrupted.

For example, assume at timet a threadT is sched-
uled, and at time the JVM is preempted by th
operating system. Green Thread’s context switchi
mechanism is not invoked as this preemption is tran
parent to the user program. At time , th
JVM regains control of the CPU andT continues its
execution. At time , threadT is pre-
empted by Green Thread. The resource account
mechanism would record thatT has executed for

time units. However, because of th
preemption by the operating system,T has only had

time units of CPU time. The other part,
was taken away by the operating system to execute s
tem functions and other user programs.

Our experiments on Solaris have shown that t
effect of such operating system preemption is signi
cant even when the system is sparsely loaded with o
the standard mix of daemons.

The solution to this problem is found partially out
side the scope of our modification to the Java VM
Most modern operating systems like Solaris and Wi
dows NT have a so called “real-time” scheduling faci
ity. It is designed for programs that require maximum
control over their own scheduling. Using such a fac
ity, a user program may be arranged to have a high
priority than any other tasks in the system including th
operating system kernel; it will preempt even syste
activities such as paging when it becomes runnab

1. The last few positions onL are reserved for implementing a
JVM system function which suspends all user threads
before the garbage collector is invoked. The original imple-
mentation sets the priorities of all user threads to -1. Our
implementation moves the user threads to a position onL
that is behind theidler thread.

Figure 2: Positions of the System Threads and User Threads on
the Service ListL.

ClockHandler

TimeSlicer

User Threads

Idler

Reserved SpaceL

Front Rear

... ... ...

t ∆t1+

t ∆t1 ∆t2+ +

t ∆t1 ∆t2 ∆t3+ + +

∆t1 ∆t2 ∆t3+ +

∆t1 ∆t3+ ∆t2
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This is a dangerous facility to use, as not leaving
enough CPU time for system tasks will result in their
starvation and produce system deadlocks.

Our solution is to take advantage of this facility but
at the same time create a new VM thread, named the
OS thread, that does nothing but yield the CPU to the
operating system. This thread is just another user
thread, and is allocated a service fraction. The runtime
environment is thus able to regulate its CPU resource
consumption, and in turn, control the CPU bandwidth
consumed by the operating system and other concur-
rent user programs. The service fraction allotment for
theOS threadcan be set via a command line switch to
the Java virtual machine. It is adjustable according to
system load using a resource management API.

3.5 High Level API
The enhanced capabilities of the new Java virtual
machine are made available to the application layer via
a high level application programming interface. This
API is encapsulated into two Java classes: the
QThread class and theQThreadGroup class. These
two classes supersede thejava.lang.Thread
class and thejava.lang.ThreadGroup class,
respectively.

TheQThread class provides resource and, in turn,
quality of service management to Java threads. It sup-
ports all normal threads operations such as thread cre-
ation, termination and communication. At the same
time, it supports specification of resource requirements
in terms of service fraction reservations.

Security for thread control can be implemented
using the standard Java convention: an optional “Secu-
rity Manager” may be installed to regulate access to
particular threads. The default Security Manager
allows access within the same thread group.

The QThreadGroup class provides support for
CPU bandwidth partitioning for groups of threads. It is
structured as a subclass of the standard Java thread
group class java.lang.ThreadGroup . It aug-
ments the original thread group class with resource
management capabilities.

TheQThreadGroup class inherits all methods of
its superclass. It is able to support most management
functions found on the original Java platform. How-
ever, priority manipulation methods of the standard
Java ThreadGroup class are overwritten. In their
place, QThreadGroup provides methods for CPU
bandwidth partitioning.

The QThreadGroup class implements a simple
admission control policy: the aggregate bandwid
allotment of all child threads of aQThreadGroup
must not exceed the allotment to theQThreadGroup
itself. However, as we do not wish to impose an
resource management policies on user applications,
use of this facility is optional. In other words, a
QThread is not forced to be a member of any
QThreadGroup . It would be, of course, a member o
some instances ofjava.lang.ThreadGroup .

Furthermore, both thejava.lang.Thread
class and thejava.lang.ThreadGroup class are
re-implemented to provide compatibility for existing
Java programs. TheThread class is implemented as a
subclass ofQThread . The thread control methods are
mapped directly. However, the thread creation and p
ority manipulation methods are mapped to the thre
creation and service fraction manipulation methods
the QThread class with a simple formula to conver
priorities to services fractions. TheThreadGroup
class remains unchanged for the most parts. Only
priority manipulation methods are modified to retur
some suitable defaults.

4 Experimental Results
To verify the viability of Q-JVM, we developed a tes
suite to measure its performance. Tests were desig
to instrument the effect of using Solaris’ “real-time
scheduling facility and the scheduling overhead of th
new JVM. We showed that the new platform is able
provide predictable resource allocation and resour
partitioning. A similar test suite was executed on an u
modified Java VM with Green Thread; the results we
compared to those gathered on the enhanced platfo
A number of standard test suites are also execu
without modifications on the enhanced Java VM to ve
ify its compatibility with the standard JVM available
from Sun.

4.1 Test Setup
Performance evaluation was done on a Sun SPAR
server 20 with a 60MHz Ultra-SPARC CPU and 6
MB of main memory running Solaris 2.4. All experi-
ments were conducted in multi-user mode with th
standard complement of daemons likelpd, sendmail,
NFS, and a very lightly loadedHTTPserver. Moreover,
all experiments were conducted when there was
interactive user activities.

Most of our experiments were carried out using th
8
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RaceTesttest suite. This test suite is a multithreaded
Java program that simulates a CPU intensive applica-
tion. It is modeled after the well knownDhrystone
benchmark. When the application starts, it spawns a
number of threads, calledrunners, each of which exe-
cutes an arithmetic calculation repeatedly in a loop.
The number of loops completed in a given time by one
or morerunners is used as the performance metric.

Two versions of the test suite were constructed.
The first one runs on the enhanced JVM and allows an
operator to specify the number ofrunnersto start and
the service fraction for eachrunner. The other version
runs on the standard JVM. Instead of service fractions,
it allows an operator to specify priorities for therun-
ners. Otherwise, the two versions are identical. A stan-
dard Java virtual machine was built from un-modified
JVM source from Sun to run the standard version of
RaceTest. It was configured to use Green Thread as
well.

Besides the basic test application, a shell script
namedGenLoadwas developed to generate a greedy
system load for simulation of CPU resource contention
in a general purpose computing environment. This
script usestar andgzip to archive a large directory tree
repeatedly. When executed alone, it results in a steady
system load average around 1 on our SPARC server
test hardware. This script is executed when we need to
simulate a busy system for the experiments.

4.2 The Baseline Performance
Before testing our enhanced JVM, we first ran the test
suite on the standard platform to establish baseline per-
formance. In order to create an environment that is
closest to the new platform, the standard Java virtual
machine was started with time slicing enabled and a
quantum size of 20 milliseconds. The performance
numbers are listed in Table 1.

The RaceTestapplication was run with one, four,
and tenrunner threads. Allrunnerswere started at pri-
ority 5. The first row in Table 1 reports the aggregate
average throughput of allrunners in loops completed
per second. This figure is arrived at as follows. One
thousand throughput samples are taken for eachrunner.
If there is only one thread, the average is reported.
When there are more than onerunner, the sum of their
averages is reported.

The second row in Table 1 measures how much
variance there is in the throughput data. When there is
only one thread, the standard deviation of the through-

put samples is calculated; it is reported as a percent
of the average throughput. When there are more th
one runner, the average of the standard deviation fig
ures from allrunnersis reported. This figure gives an
indication of how much jitter a thread experience
Small values represent less jitter and better quality
service.

Two figures are reported in each cell in Table
The first number, tagged by (L.L.), is the result of run
ning the test suite on alightly loadedsystem with only
the standard complement of daemon processes bu
interactive user activity. The other number, tagged
(H.L.), is the result of running the test suite on
heavily loadedsystem. The extra system load is gene
ated byGenLoad.

From the data given in Table 1, we observe the fo
lowing. When the system is lightly loaded, the aggr
gate average throughput decreases with the increas
the number ofrunners. This may be attributed to the
scheduling overhead of the JVM. However, und
heavy load, when there is competition for the CP
resource from other activities in the system, the agg
gate average throughput increases with the number
runners. This phenomenon is attributed to the fact th
the JVM is competing more aggressively with othe
applications when it has more threads activity.

Finally we note that the jitter increased signifi
cantly, from 2.52% to 10.53% in the case where the
is only onerunner, when another application started t
compete for CPU with the JVM. This is expected, a
the time slicing mechanism is affected by the mult
programming operating system. The lower figur
2.52%, may be viewed as thenoise level, as there is no
resource contention in this scenario. It is also appar
from data in Table 1 that the jitter increases with th
number of threads.

1 Runner 4 Runners 10Runners

Aggregate Aver-
age Throughput
(loops per sec-

ond)

602,797
(L.L.)

268,221
(H.L.)

602,084
(L.L.)

303,672
(H.L.)

601,040
(L.L.)

333,136
(H.L.)

Average Standard
Deviation

(% of throughput)

2.52%
(L.L.)

10.53%
(H.L.)

22.05%
(L.L.)

27.70%
(H.L.)

26.04%
(L.L.)

33.97%
(H.L.)

Table 1: The Baseline Performance
9
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4.3 Effect of the RT Scheduling Class
We have discussed in Section 3.4 that a multi-program-
ming operating system may steal CPU cycles from our
resource manager. To remedy this problem, we sug-
gested that thereal-time scheduling facility available
on Solaris should be utilized. This facility permits Q-
JVM to run without interruption until it is ready to
release the CPU. This will result in more accurate
resource accounting and better quality of service. We
designed a series of tests using theRaceTestsuite to
experimentally validate this claim.

First, we ran the test suite on a lightly loaded sys-
tem in thetime sharing(TS) class. Then, we loaded the
test application into thereal-time(RT) class with a ser-
vice fraction of 15% allocated to theOS thread. Next,
we started theGenLoadscript and ran the test suite
again in theTSclass. Finally, with theGenLoadscript
still running, we loaded theRaceTestapplication into
theRTscheduling class with 15% of the CPU assigned
to the OS thread. In all cases, only onerunner was
started inRaceTest, with a service fraction assignment
equal to 80% of total CPU bandwidth.

The results are given in Table 2. We can observe
that the enhanced JVM running in the RT scheduling
class on a busy system achieves approximately 85% of
throughput compared to when it is running in the TS
class on a lightly loaded system. Moreover, it provides
better quality of service (less jitter) when running in the
RT class, even under heavy load.

4.4 Scheduling Overhead
A major concern in using a complex resource manage-
ment scheme, such as the one built into our enhanced
Java virtual machine, is that the scheduling overhead

may be high. To evaluate this overhead, we compar
the aggregate average throughput achieved by theRace
Testapplication on the enhanced platform to the sta
dard JVM. The results are presented in Table 3 on t
next page.

In order to ensure that the collected data a
directly comparable, both the enhanced platform a
the standard JVM are started under thetime-sharing
scheduling class. All tests are done on a lightly load
system with no interactive user activity.

From Table 3, we can observe that the throughp
differences among all figures are very small: th
throughput of the application running on Q-JVM i
only 0.19% to 0.36% lower than the same applicatio
running on the standard JVM. As the application
CPU intensive, and does not involve any I/O or kern
service call, this result indicates that the addition
scheduling overhead of Q-JVM is very small compare
to the standard Java virtual machine.

We can further observe the following: 1) The
scheduling overhead increases with the number
active threads, although the increase is not significa
2) The scheduling overhead is smaller when the to
allocated service fraction is closer to 100%; howeve
there is a point of diminishing return where this savin
in overhead is eventually overpowered by the increa
in overhead caused by having more threads to sch
ule.

4.5 Predictable Resource Allocation
We have argued that one major benefit of Q-JVM w
be predictable resource allocation. In particular, it w
give equal access to the CPU to threads with equal s

Table 2: Effect of the RT Scheduling Class

Average
 Throughput

(loops per sec-
ond)

Standard
Deviation

(% of throughput)

Lightly Loaded
System, TS class

601,582 2.76%

Busy System
TS Class

315,971 16.44%

Lightly Loaded
System, RT class

521,247 1.84%

Busy System,
RT class

507,638 2.65%

Table 3: Effect of Scheduling Overhead on Thread Throughpu
All reported figures areAggregate Average Throughput(in
loops per second). On the standard JVM, all threads (run-
ners)are started with priority 5. On the Q-JVM, all threads
are assigned 1.5% of total CPU bandwidth in configuration
1. In configuration 2, all threads are assigned equal service
fractions totaling 80%. For example, when there are 10
threads, each is assigned a service fraction of 8%.

1 Runner 4 Runners 10Runners

Standard JVM 602,797 602,084 601,040

Q-JVM
Configuration1

601,399 599,860 599,714

Q-JVM
Configuration2

601,582 600,939 599,882
10
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vice fraction assignments. This is not possible on the
standard platform: there is no provision to specify CPU
resource allocation. One may assign equal priorities to
competing threads and hope that they gain equal
access. We predicted that one will still see a degree of
unfairness in such an arrangement.

To validate this claim, we compared average
throughput of 10runner threads on both Q-JVM and
the standard JVM. Eachrunner is allocated 9% of the
CPU on Q-JVM. They are also assigned equal priori-
ties (5) when running on the standard JVM. The stan-
dard JVM is started with time slicing enabled, with a
quantum size of 20 milliseconds. In order to get com-
parable results, all tests are conducted in thetime shar-
ing class of Solaris.

The results are presented in Figure 3. It is evident
that the throughput which therunners are able to
achieve is more uniform on the enhanced JVM than on
the standard one. Upon close examination, we find that
the differences of throughput amongrunners on the
new JVM are all within 0.1% of the average. However,
the differences on the standard platform are around 1%
of the average. This is equal to one decimal order of
magnitude improvement in predictability and fairness.

4.6 Resource Partitioning
Another major benefit of the new JVM is its support for
resource partitioning. We again set up theRaceTest
suite to verify that one is able to assign portions of
CPU bandwidth to specific threads, and have the under-

lying virtual machine enforce the allocation.

The experiment is conducted on Q-JVM running i
the time sharingclass of Solaris. Tworunners are
started on each run; their service fraction assignme
are varied each time. The experiments successfu
demonstrated that the throughput achieved by ea
runner satisfies its service fraction allotment as w
argue below. Data from one of the test runs is presen
in Table 4.

In this case, the tworunnersare assigned service
fractions of 70% and 20% of total CPU bandwidth
respectively. If we take the throughput of the standa
JVM running a singlerunner on a lightly-loaded sys-
tem, as reported in row 2, column 2 of Table 1, to be
close approximation to the full capacity of the system
then the tworunners in this test case have achieve
73% and 26% of the maximum throughput, respe
tively. This is evidence that bothrunnersreceived more
than sufficient bandwidth to satisfy their respective re
ervations.

4.7 Compatibility

In addition to the quantitative tests described in the pr
vious subsections, we also ran a number of stand
Java applications without modification on the new vi
tual machine.

First, we ran theCaffeineMarksuite on the new
VM. CaffeineMarkis a popular benchmark suite for the
Java platform. It analyses Java system performance
areas like integer and floating point calculations, loop
logic operations, string manipulation, method invoc
tions, graphics operations, and common GUI oper
tions. It gives an indication of the overall performanc
of a Java platform. Being able to run it successful
also indicates, to a degree, the compatibility of the ne
platform with respect to the standard one. Our new Ja
VM is able to complete this benchmark suite withou
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Figure 3: Fairness comparison between the standard JVMwith
time slicing and the enhanced JVM

Table 4: Resource Partitioning

Service Fraction
Assignment

Average Throughput
(loops / second)

Runner 1 70% 442,728

Runner 2 20% 158,069
11
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any incident. The results are given in Table 5.

We then successfully tested theHotJavabrowser
on Q-JVM. HotJava is a full featured web browser
developed by Sun. It is a complex application and is
100% pure Java. Being able to run it without incident is
a strong indication that Q-JVM is binary compatible
with the standard JVM. We testedHotJava version
1.1.4 extensively with no ill effect.

Finally, we tested Q-JVM using the Java Media
Framework (JMF) version 1.0 from Sun. This test was
not exhaustive; it was targeted at verifying compatibil-
ity with the standard platform. We were able to run all
the sample applications shipped with the JMF package.
Furthermore, we were able to use the included media
player applet to playback pre-recorded movie and
sound tracks in various formats with satisfactory per-
formance.

5 Summary
In this paper, we have presented our work on support-
ing soft real-time tasks on the Java platform. We devel-
oped a new Java virtual machine that is able to support
resource allocation and consumption regulation for the
CPU resource. This in turn provides quality of service
(QoS) guarantees for Java threads.

We extended a service fraction-based resource
management algorithm, the Move-to-Rear List-Sched-
uling algorithm developed at Bell Laboratories, to han-
dle system threads that must express their urgency,
which is normally expressed using priorities. We then
incorporated this algorithm into a new Java virtual
machine based on the source code of JVM version
1.1.5 licensed from Sun.

The result of our work is a new Java platform that
is able to support soft real-time tasks. It provides mech-
anisms for resource allocation and management, as
well as guarantees for a number of Quality of Service
parameters like fairness and bandwidth partitioning.

Preliminary test results show that our scheme for
resource accounting and management is viable and the
new Java VM is indeed able to provide these QoS guar-
antees as specified. Moreover, its scheduling overhead
is very small comparing to that of the standard version.

Yet, our JVM is compatible with the standard JVM dis
tributed by Sun. It is able to support many existing Ja
applications, including theCaffeineMark suite, the
HotJavabrowser, and the Java Media Framework, su
cessfully without any modifications.

5.1 Future Work
There are still much work to be done to transform th
Java platform completely into a quality of service or
ented platform suitable for continuous media proces
ing.

The most immediate work involves examining th
class libraries that come with the JVM package, su
as the Abstract Windowing Toolkit API, and Swing to
take advantage of the CPU resource management ca
bilities of the new JVM. Extension APIs such as th
Java Media Framework must be examined as well,
order for them to take full advantage of the new pla
form.

We must also examine the management of oth
resources in the system such as disks and netw
links. A platform will not be able to fully support real-
time applications and provide guaranteed QoS witho
managing these resources in addition to managing
CPU resource. While our particular approach of impl
menting the MTR-LS within JVM may not extend to
these resources, the MTR-LS algorithm itself wa
intended as a general purpose resource managem
algorithm. It would be an interesting subject of futur
research to develop a JVM that provides a comple
resource management solution.

Another direction to take would be application an
middleware development. Using Q-JVM, it is possib
to develop a multimedia middleware based on the Ja
Media Framework with resource management capab
ties. In addition to the media manipulation feature
supported by the JMF, it could feature a general pu
pose and extensible resource manager and secu
manager. However, the suitable management polic
for such managers will be the subject of futur
research.
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