
CRAFT: A Framework for F90/HPF Compiler Optimizations�

Jan-Jan Wu

Institute of Information Science

Academia Sinica

Taipei, 11529 Taiwan

wuj@iis.sinica.edu.tw

Marina Chen

Computer Science Dept.

Boston University

111 Cummington Street

Chestnut Hill, MA

mcchen@cs.bu.edu

James Cowie

Cooperating Systems Corp.

12 Hollywood Drive

Chestnut Hill, MA

cowie@cooperate.com

Abstract

In this paper, we give an overview of the results of the CRAFT optimizing compiler project (Fortran
90/HPF subset compilers). We start by describing the theoretical framework within which we designed
program transformations for the optimization of inter- and intraprocedural data motion, as well as the
optimizations for parallel loops; we then describe the implementation of the CRAFT compilers for
Thinking Machines' CM-2 and CM-5.

We report results from experiments on the Connection Machine CM-5, the IBM SP-2, and a network
of UltraSparc workstations. The results demonstrate that these optimizations can achieve signi�cant
object code performance improvement.

1 Introduction

The advance of computer technology has made distributed-memory parallel computers a reality. In recent
years a number of parallel machines have been introduced into the market (e.g. the Connection Machines
CM-5, Intel Delta Touchstone, Paragon and the iPSC hypercubes, NCUBEs, Cray T3D and T3E, and
the IBM SP-2 systems). The largest commercially available parallel machines today can deliver peak
rates of over one hundred billion
oating point operations per second; this is projected to increase by
over an order of magnitude within the next few years. This massive computing power will make this class
of machines an attractive choice for solving large problems.

Despite these promises, however, distributed-memory parallel machines have not yet entered the
mainstream of computation. The main obstacle is the di�culty of programming them. In recent years,
much research e�ort has been devoted to providing suitable programming tools for these machines. One
focus is on the provision of appropriate high-level, data-parallel programming languages (e.g. Fortran 90
[4], CM-Fortran [24], C* [25], Crystal [19], Fortran D [29], Vienna Fortran [14], and High Performance
Fortran (HPF) [38]) to ease parallel programming.

In this paper, we study issues critical to achieving high performance for Fortran 90/HPF on distributed-
memory parallel systems. We give the theoretical framework within which we designed program trans-

�Support for this work was provided by Cooperating Systems Corporation and Syracuse University under ARPA contract
DABT63-91-C-0031, the Army High Performance Computing Research Center at University of Minnesota, and Academia
Sinica.

1

formations for optimizing HPF programs. We also describe the implementation of the CRAFT compilers
(Fortran 90/HPF subset compilers) for Thinking Machines' CM-2 and CM-5.

Compiling HPF for Distributed-Memory Parallel Machines

Two main factors in achieving high performance for HPF programs on distributed-memory parallel ma-
chines are reducing communication overhead and optimizing code performance at the processor level.
While development of optimizing compilers for super-scalar architectures is becoming commonplace in
the industry, work on optimization for data movement and node code performance is mostly done in
the context of specialized, hand-crafted code written in assembly code, if not microcode, for speci�c tar-
get machines (e.g. TMC's Convolution Compiler for stencil computation [12] and CMSSL (Connection
Machine Scienti�c Software Library) [59] routines for scienti�c computation).

Performance in HPF is measured by the time spent both moving data into the proper place and
con�guration for computation, as well as the computation process itself. For most HPC architectures,
optimizing data movement is at least as important, if not more so, than the arithmetic actually performed.
Movement of distributed data in HPF can occur in two ways: (1) passing of distributed arrays in procedure
calls. Note that the actual (the argument supplied by the caller) and the dummy (the formal parameter
speci�cation provided by the callee for a given argument) may have di�erent data distribution. (2)
assignments on distributed arrays within a procedure body. Again, the LHS (left-hand side) and the
RHS (right-hand side) of an assignment statement may have di�erent data distribution. This makes
compilation of HPF to e�cient target code without excessive data copying a complex task.

Compilation of parallel loops also imposes challenge to an optimizing Fortran 90/HPF compiler.
Although in HPF parallel loops can be explicitly given by the user, data partitioning speci�ed by user di-
rectives can expose further opportunity for increasing parallelism or reducing communication. To achieve
high performance, an optimizing compiler must catch all these opportunities and exploit optimizations
through program transformations.

Overview

In this paper, we propose a two-phase transformative framework, as shown by the sketch of a HPF
compiler in Figure 1, to tackle these two optimization problems.

First phase (called XFORM-1) is an early, abstract algebraic transformation and runtime support
technique for reducing inter-procedural data layout conversion between actual arguments and dummy
arguments, as well as intra-procedural data movement caused by array intrinsics within a procedure
body. XFORM-1 transformation is done abstractly in the logical, global space de�ned in the program.
It does not require the notion of processor IDs (denoted by P) and local memory o�sets (denoted by V).

The second phase (called XFORM-2) performs optimizing transformations for data-parallel loop nests.
The loop nests we consider in XFORM-2 transformations are called iterative spatial loop nests, which
capture a broad class of HPF parallel loops. We have collected a set of optimizations which we have found
may improve HPF code performance on distributed-memory parallel systems. The transformations in
XFORM-2 are often machine-dependent, and they are aware of the existence of processors and local
memory o�sets.

In our preliminary experiments, we constructed subset Fortran 90/HPF compilers for Thinking Ma-
chines's CM-2 and CM-5 as the testbed for our optimizations. We evaluated the e�ectiveness of these
optimizations using a set of linear algebra applications and PDE solvers. Our experimental results on

2

�
�

�
�

�
�

�
�

�
�

�
�

�

?

�-

?

??

?

P&V

No P&V

Target Code

XFORM-2

XFORM-1

HPF Source

Back End

Loop Nests

Intra-Procedure

Data Movement

Inter-Procedure

Data Movement

Intra-Procedure

Front End

Runtime
Communication

Library

Figure 1: Sketch of a HPF Compiler

the Connection Machine CM-5 are quite encouraging. The performance of some of the optimized native
codes is two orders of magnitude better than CM-Fortran compiler (a Fortran90 compiler developed for
the Connection Machines) and approaching that of the hand-written CMSSL Library routines.

We have also studied the impact of some of these optimizations on modern parallel machines, including
IBM SP-2 systems and UltraSparc workstation clusters, using manual compilation. Our experimental
results demonstrated that modern machines can also bene�t from these optimizations.

The rest of the paper is organized as follows. Section 2 presents the XFORM-1 algebraic transfor-
mation. Section 3 describes the XFORM-2 transformations for parallel loops. Section 4 reports our
implementation status of the compilers and the experimental results on the Connection Machine CM-5,
the IBM SP-2, and the UltraSparc workstation cluster. Finally, Section 5 reviews some related work and
Section 6 concludes.

2 XFORM-1 Transformation

HPF provides a rich set of procedure interface speci�cations for distributed array arguments. A dummy
argument has a data layout that is either explicitly speci�ed via user directives, or implicitly inherited
from the caller's actual argument. Similarly, an actual argument may have an explicitly prescriptive
data layout, or itself inherits a data layout from yet another calling context. Consider the possibility of
extended calling chains ('A' calls 'B' calls 'C', and so forth, each of which may add additional directives
to the data layout speci�cation and inherits the rest). This layout e�ect will be propagated to the inner
levels of procedure calls. When the calling chain is long, a systematic approach is desirable to automate
the process of optimizing data movement for passing array arguments across procedure boundaries, as

3

well as moving data elements in array assignment statements within a procedure body.

ALPHA BETA (C,D)

real A(100),B(100) real C(100),D(100)

distribute T cyclic distribute T block

align A(i) with T(i) align C(i) with T(i)

align B(i) with T(i+2) align D(i) with T(i+1)

call BETA (A,B) D = EOSHIFT(C,dim=1,shift=1)

...

Figure 2: An example for data movement optimization where both the actual and dummy arguments
have explicit data layouts

Consider the case where both the actual and dummy arguments of a single-level procedure call have
explicit data layouts (Figure 2). Array A is cyclically partitioned in procedure ALPHA, and should be
redistributed using block partition within procedure BETA. Layout conversion for array B is a complex one
due to change of both alignment (changing between o�seting two elements and o�seting one element) and
distribution (changing between cyclic partition and block partition). In the procedure body of BETA, the
assignment statement shifts array C toward the negative direction by one element and assigns the result to
array D (i.e. C(i+1) is assigned to D(i)). We call this logical data movement de�ned by the program. Due
to the e�ect of the alignment directives, actual data movement for executing the assignment statement
may be di�erent from the logical data movement as it appears. In order to satisfy the directives as given
by the user, the compiler must combine all the layout requests that are in force.

Assuming \owner computes" rule for the compilation of data movement, the compiler has two roles.
First, the compiler should minimize time spent in moving A and B to C and D's preferred layouts, and
moving them back when returning from the call. For instance, the compiler should optimize commu-
nication for BLOCK and CYCLIC data redistribution. It should also determine the order in moving
data for complex data movement. For instance, layout conversion for passing array B to procedure BETA
involves an o�seting alignment change and a conversion from CYCLIC distribution to BLOCK distri-
bution. There are two alternatives in arranging data movement: o�setting realignment under CYCLIC
distribution followed by CYCLIC-to-BLOCK redistribution, or CYCLIC-to-BLOCK redistribution fol-
lowed by o�setting realignment under BLOCK distribution. The latter is more e�cient because o�setting
realignment requires much less communication under BLOCK distribution. Secondly, the compiler should
minimize time spent in moving data array D for the execution of the assignment statement. For instance,
with compiler optimization, the logical data movement speci�ed by the EOSHIFT operation can be turned
into local memory accesses as a result of the alignment directives for arrays C and D.

A simple but naive approach is using general communication or array copying through temporary
storage whenever non-canonical data layout is in force. This approach not only causes excessive data
copying but also ignores many opportunities for fast communication.

We propose an algebraic transformation called XFORM-1 to reduce intra- and inter-procedural data
movement in HPF programs. Figure 3 gives an overview of the optimization. The theoretical framework
within which we designed program transformations is algebraic analysis of data movement. We give
each of HPF's array operations and data distribution directives an algebraic representation. We then
formalize data distribution, intra-procedural and inter-procedural data movement using communication
expressions. We have developed a communication algebra and its associated heuristics to simplify commu-
nication expressions, and a hand-coded, optimized runtime communication library to carry out aggregate

4

communication. Fast communication is uncovered by pattern-matching with a set of communication
idioms.

�
�
�
�#

"

!

#
"

!

'

&

$

%

6
?

matching

Idiom

Engine

Algebraic

Heuristics

Expression
Communication

Expression
Communication

Call to fast

communication or
general send/recv

Figure 3: An Overview of XFORM-1 Algebraic Analysis

2.1 Algebraic Representations

The model of data mapping in HPF is that there is a two-level mapping of array elements to logical
processors. The user can align array elements to a template, which is then partitioned and distributed onto
an array of logical processors. The mapping of logical processors to physical processors is implementation
dependent and may be speci�ed by optional physical-mapping directives. We will use the term \data
layout" as a generic term for the composition of the alignment and distribution (and physical mapping,
if given explicitly).

Class Operator Domain Codomain De�nition

ALIGN1 EOSHIFT(c) D D + c (i) 7! (i+ c)

CSHIFT(c) D D (i) 7! lb(D) + (i� lb(D) + c) mod jDj

REFLECT D D (i) 7! lb(D) + ub(D)� i

STRIDE(a; c) D aD + c (i) 7! (a � i+ c)

ALIGN2 TRANS(n)(M) D M(D) (i1; : : : ; in) 7! M(i1; : : : ; in)

SKEW(n)(M) D M(D) (i1; : : : ; in) 7! M(i1; : : : ; in)

CSKEW(n)(M) D Mod(M(D); jDj) (i1; : : : ; in) 7! ((M1 � I) mod m1;

: : : ; (Mn � I) mod mn)

where mk are the sizes of Dk

ALIGN3 REPLICATE(n)(V;Dk) D1 � : : : Dk�1 D1 � : : :�Dk�1 (i1; : : : ; ik�1; ik+1; : : : ; in) 7!

�Dk+1 : : :�Dn �Dk �Dk+1 : : :�Dn (i1; : : : ; ik�1; lb(Dk) : ub(Dk); ik+1; : : : ; in)

where V (k) 6= 0

EMBED(m;n)(M;E) D E (i1; : : : ; in) 7! M(i1; : : : ; in)

DIST BLOCK(b) D P � L (i) 7! (i div b; i mod b)

CYCLIC(p) D P � L (i) 7! ((i mod p; i div p)

BCYCLIC(b; p) D P � L (i) 7! (i div b) mod p;

(i div (p � b)) � b+ i mod b)

SEQ D [0]�D (i) 7! (0; i)

Table 1: Algebraic Notations and De�nitions of Some Array Intrinsics and Layout Operators, where
lb(D) and ub(D) denote the lower and upper bound of interval domain D, aD + c denotes an interval
domain of range [a�lb(D)+c::a�ub(D)+c], M(D) constructs a multi-dimensional domain by permuting
or skewing domain D according to the integer matrix M

We identify the di�erent algebraic properties of HPF array intrinsics and data layout directives and

5

divide them into several classes, as shown in Table 1. ALIGN1 are the operators whose domain and range
are one-dimensional. For instance, both the array intrinsic EOSHIFT(A,dim,-c) and the alignment directive
ALIGN A(i) with T(i+c) o�sets array A by distance c, therefore both are denoted by EOSHIFT(c). ALIGN2
are multi-dimensional operators whose domain and range have the same dimensionality. Typical examples
are the transpose operations, either as TRANSPOSE array intrinsics or as \transpose" alignment directives.
ALIGN3 operators are for reshaping arrays, replicating arrays, or embedding lower-dimensional arrays
into higher-dimensional ones. An ALIGN3 operator has di�erent shapes for its argument and the result
array. For instance, both the array intrinsic SPREAD(A,dim=2,ncopies=n) and the alignment directive
ALIGN A(i) WITH T(i,*) (assuming the size of T at the second dimension is n) replicate n copies of

A along the second dimension, and therefore, both are denoted by REPLICATE
(2)(

�
0

1

�
,Interval(1,n)), where the

nonzero element (the second element) in the vector argument indicates that the replication takes place
at the second dimension.

The standard distribution directives in HPF are BLOCK, CYCLIC and generic BLOCK CYCLIC distribution
strategies. We collect them in the class DIST. MULTID operations capture multi-dimensional array
intrinsics and data layouts that can be formulated as \product" of one-dimensional operators. For
instance, a two-dimensional shift operation CSHIFT(CSHIFT(A,dim=1,shift=-c1),dim=2,shift=-c2) is
denoted by the product of the two ALIGN1 operators CSHIFT(c1) and CSHIFT(c2).

2.2 Communication Expressions

We formalize data layout, intra-procedural and inter-procedural data movement as communication ex-
pressions by functional compositions of the algebraic representations for the array operators and layout
operators. In order to formalize the relationship between a data element and a concrete store within a
processor, it is necessary to formalize the three stages of data mapping (alignment to template, parti-
tioning template to logical processors, and then mapping logical processors to physical processors). Let
� denote the alignment operator which aligns array D to template E, � denote the partition operator
which partitions template E into a pair of logical processors L and local index domain M , and
 denote
the operator which maps logical processor-memory pairs (L �M) to physical processor-memory pairs
(P�M). The following lists the communication expressions we have de�ned under the \owner computes"
rule.

�����9

�P
P
P
P
P
P
P
PPq
--

?
XXXXXz

��
��
�:

??
-

-

distribution

(b) intra-procedural data movement

B2

B1

g
�1

1 g
�1

1

(a) data layout

physical mapping

�

alignment

layout g

�

P �ML�ME

D

D

P1 �M1

P2 �M2

(c) layout conversion

�

g1

g2

array
layout

conversion
reference

array
�

data motion
�

g2

g1

P �M2

P �M1

D2

D1

Figure 4: Commuting Diagrams for Data Layout, Intra-Procedural Data Movement, and Inter-Procedural
Layout Conversion, where D and E are index domains, L is logical processor domain, P is physical
processor domain, and M is local index domain within a processor.

Layout. The layout of an array D can be formally de�ned as a communication expression g =
 �� ��,
as shown in the commuting diagram of Figure 4(a).

6

Intra-Procedural Data Movement. Intra-procedural data movement refers to array references within
a given procedure body. Let an array reference from array D1 (used) to array D2 (de�ned) be denoted
by � and let their layouts to the machine be g1 and g2, respectively. Then the data movement induced
by the reference � is given by the communication expression � = g2 � � � g

�1
1 as shown in Figure 4(b).

Inter-Procedural Data Movement. The second type of data movement, inter-procedural data move-
ment, also called layout conversion, refers to array copying due to change of data layout between actual
argument and dummy argument in procedure calls. Let the layout of array D in procedure B1 and
procedure B2 be g1 and g2, respectively. Then the layout conversion of D from B1 to B2 is given by the
communication expression � = g2 � g

�1
1 , as shown in Figure 4(c).

Most of the HPF alignment operators are reshape morphisms [20], which essentially are bijective
functions de�ned over index domains. For an operator f : D ! E which is injective but not bijective,
a reshape morphism f 0 : D ! image(D; f) can be derived from f where image(D; f) is the image of D
under f which is a subset of E (i.e. f 0 : D ! image(D; f) � E). Since f is bijective, let f�1 denote the
inverse of f .

Example Figure 5 shows a simple communication expression for inter-procedural data movement.
Intra-procedural data movement can be constructed similarly according to the commuting diagram in
Figure 4(b). In Figure 5, we explicitly indicate the domain D and codomain E of each operator g

(written as gD!E) because now the operators are bound to the index domain of array A. Array A is
aligned with the template T1, which is partitioned into columns of blocks (denoted by SEQD1+1!D1+1 �
BLOCK(v)D2+2!P�V1), by o�seting one element at the �rst dimension and two elements at the second di-
mension (denoted by (EOSHIFT(1)D1!D1+1 � EOSHIFT(2)D2!D2+2)). T1 is then partitioned into columns
of blocks (denoted by SEQD1+1!D1+1 � BLOCK(v)D2+2!P�V1). The dummy argument B is aligned with
template T2, which has the same distribution as T1, by a transposition followed by an o�seting align-
ment with distance 2 at the �rst dimension and with distance 1 at the second dimension (denoted by

(EOSHIFT(2)D2!D2+2 � EOSHIFT(1)D1!D1+1) � TRANS
(2)
�

0 1

1 0

�
D1�D2!D2�D1

). The communication ex-

pression � for changing from A's layout to B's is constructed by composing B's layout �2 and the inverse
of A's layout �1 (refer to Figure 4(c)). � represents the amount of communication in straightforward
implementation where the communication is carried out by executing the operators in the expression one
by one from right to left. For example, the expression � in Figure 5 is the composition of �ve operators
(i.e. of length �ve). Straightforward implementation will require two global address calculations and
three data movements. In order to reduce communication, we need to reduce the number of operators in
�.

2.3 Communication Algebra

A generic method for simplifying a communication expression is using functional transformation [66, 11],
where the operators are unfolded and reduced one by one following the reduction rules in �-calculus. Since
we only deal with the set of standard HPF data distribution directives(in stead of general functions) in
the context of optimizing data movement, we look for a simpler and more e�cient solution. We have
designed a communication algebra to serve this purpose.

By the de�nition of communication expression, the amount of communication is represented by the
number of operators in a communication expression; i.e., a communication expression is simpli�ed if its
operator count is decreased. Our goal is to minimize operator count by reducing away the operators

7

-

?

� -

align A(i,j) with T1(i+1,j+2) 7
6
5
4

3
2
1
0

P2P1

T2

dummy
actual

T1

P1 P2

0 1 2 3
4 5 6 7

I

J

ALPHA

distribute T1(*,block) distribute T2(*,block)

align B(i,j) with T2(j+2,i+1)

layout
conversion

call BETA(A)

data layout of A in BETAdata layout of A in ALPHA

BETA(B)
real A(2,4)

template T1(3,6)

real B(2,4)

template T2(6,3)

index domains:

D1 = Interval(1; 2); D2 = Interval(1; 4)

actual's layout:

g1 = (SEQD1+1![0]�(D1+1) � BLOCK(v)D2+2!P�V1)

� (EOSHIFT(1)D1!D1+1 � EOSHIFT(2)D2!D2+2)

dummy's layout:

g2 = (SEQD2+2![0]�(D2+2) � BLOCK(v)D1+1!P�V2)

� (EOSHIFT(2)D2!D2+2 � EOSHIFT(1)D1!D1+1) � TRANS(2)
�

0 1

1 0

�
D1�D2!D2�D1

Communication expression for changing from actual's layout to dummy's:

� = g2 � g
�1
1

= (SEQD2+2![0]�(D2+2) � BLOCK(v)D1+1!P�V2)

� (EOSHIFT(2)D2!D2+2 � EOSHIFT(1)D1!D1+1) � TRANS(2)
�

0 1

1 0

�
D1�D2!D2�D1

� (EOSHIFT(1)�1
D1!D1+1 � EOSHIFT(2)�1

D2!D2+2)

� (SEQ�1
D1+1![0]�(D1+1)

� BLOCK(v)�1
D2+2!P�V1

)

Figure 5: Communication Expressions for Inter-Procedural Layout Conversion. Array A de�ned in proce-
dure ALPHA is passed as the actual argument to procedure BETA, which has a di�erent layout speci�cation
for array A.

8

whose data movements can either be cancelled out with each other or merged into other operators. For
example, as we will show in Figure 7, the amount of communication in expression � of Figure 5 can
be reduced to a single array transpose operator by reducing away the two multi-dimensional EOSHIFT
operators on the left and the right of the TRANS operator. Since there are many array operators and
layout operators in the context of Fortran90/HPF, a systematic simpli�cation approach is desirable. We
have designed a communication algebra for this purpose.

The communication algebra consists of a set of sub-algebras and bridging sub-algebras. Based on our
classi�cation of array operators and layout operators, we design sub-algebras for each class to manipulate
the interaction of operators within that class, as well as bridging sub-algebras to manipulate the inter-
action of operators from di�erent classes. Each sub-algebra contains three kinds of rules: (1) the inverse
rules that compute the inverse of an operator, (2) the reduction rules that reduce two adjacent operators
to one or zero new operator, and (3) the exchange rules that make two operators adjacent to each other
by exchanging with other operators in between, so that they may be reduced later by the reduction rules.

Figure 6 lists the algebraic rules in the sub-algebra for ALIGN1 operators. Full description of the
communication algebra is presented in [65].

Rule 1 Inverse of ALIGN1 Operators

(1) EOSHIFT(c)�1
D!D+c = EOSHIFT(�c)D+c!D

(2) CSHIFT(c)�1
D!D = CSHIFT(�c)D!D

(3) REFLECT
�1
D!D = REFLECTD!D

(4) STRIDE(a; c)�1
D!a�D+c = STRIDE(1

a
;�b c

a
c)a�D+c!D

Rule 2 Reduction of Adjacent ALIGN1 Operators

(1) EOSHIFT(c1)D+c2!D+c2+c1 � EOSHIFT(c2)D!D+c2 = EOSHIFT(c1 + c2)D!D+c2+c1

(2) CSHIFT(c1)D!D � CSHIFT(c2)D!D = CSHIFT(c1 + c2)D!D

(3) REFLECTD!D � REFLECTD!D = idD

(4) STRIDE(a1; c1)a2�D+c2!a1�a2�D+a1�c2+c1 � STRIDE(a2; c2)D!a2�D+c2

= STRIDE(a1 � a2; a1 � c2 + c1)D!a1�a2�D+a1�c2+c1

(5) STRIDE(a; b)D+c!a�D+a�c+b � EOSHIFT(c)D!D+c

= STRIDE(a; a � c+ b)D!a�D+a�c+b

(6) EOSHIFT(c)a�D+b!a�D+b+c � STRIDE(a; b)D!a�D+b

= STRIDE(a; b+ c)D!a�D+b+c

Rule 3 Exchange of ALIGN1 Operators

(1) CSHIFT(c2)D+c1!D+c1 � EOSHIFT(c1)D!D+c1

= EOSHIFT(c1)D!D+c1 � CSHIFT(c2)D!D

(2) CSHIFT(c)D!D � REFLECTD!D = REFLECTD!D � CSHIFT(c)D!D

(3) EOSHIFT(c)D!D+c � REFLECTD!D = REFLECTD+c!D+c � EOSHIFT(c)D!D+c

(4) STRIDE(a; c)D!a�D+c � REFLECTD!D

= REFLECTa�D+c!a�D+c � STRIDE(a; c)D!a�D+c

(5) STRIDE(a; c2)D!a�D+c2 � CSHIFT(c1)D!D

= CSHIFT(c1)a�D+c2!a�D+c2 � STRIDE(a; c2)D!a�D+c2

Figure 6: Algebraic Rules for ALIGN1

9

Examples

CSHIFT(2)D+1!D+1 � EOSHIFT(1)D!D+1 � CSHIFT(2)�1
D!D

= CSHIFT(2)D+1!D+1 � EOSHIFT(1)D!D+1 � CSHIFT(�2)D!D By Rule 1(2)

= CSHIFT(2)D+1!D+1 � EOSHIFT(1)D!D+1 � CSHIFT(�2)D!D

= EOSHIFT(1)D!D+1 � CSHIFT(2)D!D � CSHIFT(�2)D!D By Rule 3(1)

= EOSHIFT(1)D!D+1 By Rule 2(2)

The compiler simpli�es a communication expression by applying a sequence of the algebraic rules.
The number of operators in a communication expression (and therefore the complexity of the algebraic
simpli�cation) depends on the number of levels in nested procedure calls, whose values may range from
small constants to larger numbers depending on the application programs. For e�ciency of the compiler,
it is desirable to minimize the execution time of the simpli�cation procedure. We use a simple heuristic
to solve this problem.

Our current heuristic employs a greedy algorithm which reduces immediately reducible operators as
early as possible because that always reduces operator count. The algorithm also avoids in�nite looping
by adjusting the starting pointer after application of each exchange rule. Note that MULTID operators
are denoted by the product of one-dimensional operators (e.g. product of ALIGN1, DIST, etc.). The
simpli�cation of the composition of MULTID operators proceeds by simplifying each product terms
independently. Details of the simpli�cation algorithm is presented in [65].

2.4 Communication Idiom Matching

A simpli�ed communication expression contains the actual data movement that needs be performed. A
naive approach is use general communication for all cases. This approach ignores any opportunity for fast
communication. A better approach is to uncover frequently occurring data movement and use specialized,
fast communication whenever possible. For instance, the simpli�ed communication expression � shown
previously is a transposition of a two-dimensional matrix which is partitioned one-dimensionally, resulting
in so-called all-to-all personalized communication [37], in which every processor exchanges distinct data
with every other processor. Due to the uniform communication patterns, communication overhead may
be reduced by carefully scheduling messages to avoid contention in the network.

Since the advent of massively parallel machines, many researchers (e.g. [30]) have developed spe-
cialized communication routines to facilitate direct programming of distributed-memory machines. In
building compilers, we might take advantage of these hand-crafted, highly optimized routines which be-
come part of the runtime system for the language. In the Crystal compiler developed at Yale University
[44, 45, 46], this approach is used to generate intra-procedural communication. We extend that work
further to include those communication routines for converting data layouts between subprograms.

We have collected a set of frequently occurring communication patterns, and extracted the contents
of their communication expressions into communication idioms. They include most of the array intrinsics
and frequently occurring layout conversions such as conversion between BLOCK and CYCLIC partitioning
and conversion between column partition (*,BLOCK) and row partition (BLOCK,*). These idioms
may or may not have specialized, fast communication, perhaps microcoded or otherwise hand-optimized,
depending on the target machine. A list of communication idioms is shown in Table 2. The optimization
procedure simply goes through this list of idioms and pattern matches with the communication expression.

10

Idioms Data Movement

1 �

�1
2 change physical mapping

�d(
i1 � �i1 � �
�1
i2 �
�1

i2) change partition

1 � �1 � EOSHIFT(c) � �
�1
2 �
�1

2 end-of-shift

1 � �1 � CSHIFT(c) � �
�1
2 �
�1

2 cyclic shift

1 � �1 � REFLECT � �
�1
2 �
�1

2 reversal permutation

�d(
i1 � �i1 � EOSHIFT(ci) � �
�1
i2 �
�1

i2) multi-dimensional end-of-shift

�d(
i1 � �i1 � CSHIFT(ci) � �
�1
i2 �
�1

i2) multi-dimensional cyclic shift

�d(
i1 � �i1 � REFLECT � �
�1
i2 �
�1

i2) multi-dimensional re
ection

�d(
i1 � �i1) � TRANS
(d)(Md) � �d(��1

i2 �
�1
i2) matrix transpose

�d(
i1 � �i1) � SKEW(d)(Md) � �d(��1
i2 �
�1

i2) skewing

�d(
i1 � �i1) � CSKEW(d)(Md) � �d(��1
i2 �
�1

i2) cyclic skewing

�d(
i � �i) � REPLICATE(d)(V d; D) � �m(��1
j

�
�1
j

) replication

1 � �1� RESHAPE(d;1)(D;Md; interval(1; n); I) � �d(��1
i2 �
�1

i2) axis combining

�d(
i1 � �i1) � RESHAPE(1;d)(interval(1; n); I;D;Md) � ��1
2 �
�1

2 axis spliting

Table 2: Communication Idioms, where � denotes alignment operators or array references, � denotes
distribution operators,
 denotes physical mapping operators, and�d(ai�bi) denotes (a1�b1)�: : :�(ad�bd).

Example Figure 7 shows the transformation result for the inter-procedural layout conversion given in
Figure 5. By exchanging the TRANS operator with the two-dimensional EOSHIFT operators (using one of
the exchange rules), the two EOSHIFT operators become adjacent and can be cancelled out with each other
(using one of the reduction rules). The simpli�ed communication expression matches with the idiom for
matrix transpose where the matrix is partitioned one-dimensionally. In the transformed program, calls to
a communication routine matrix-transpose-1d-partition are inserted to move array A to the proper
layout before calling BETA and restore array A's layout after returning from BETA.

2.5 Summary

Two major optimization primitives in XFORM-1 are algebraic simpli�cation of communication expres-
sions and idiom matching for fast communication. Most of the communication idioms we have collected
are not architecture-speci�c. They may or may not have specialized, fast communication, depending
on the target machine. Specialized implementation of communication routines may not have signi�cant
impact on more regular communication architectures. As a result, idiom matching may not be crucial
to achieving high performance on this kind of machines. On the other hand, algebraic simpli�cation is a
high-level, abstract transformation technique that carries out data movement reduction within the purely
logical, global space de�ned in the program. Any redundant layout conversions between procedure calls
and any unnecessary local copying through canonical temporary storage will be reduced away abstractly
by algebraic simpli�cation. Consequently, even on a very balanced, regular communication architecture,
communication overhead can still be reduced by high-level pattern matching and algebraically simplifying
them.

11

procedure ALPHA in Figure 5

source program transformed program

real A(2,4) real A'(2:3,3:6),TEMP(3:6,2:3)

template T1(3,6)

align A(i,j) with T1(i+1,j+2)

call matrix-transpose-1d-partition(TEMP,A')

call BETA(A) call BETA(TEMP)

call matrix-transpose-1d-partition(A',TEMP)

Simpli�cation procedure

� = (SEQD2+2![0]�(D2+2) � BLOCK(v)D1+1!P�V1)

� (EOSHIFT(2)D2!D2+2 � EOSHIFT(1)D1!D1+1)

� TRANS(2)
�

0 1

1 0

�
D1�D2!D2�D1

� (EOSHIFT(�1)D1+1!D1
� EOSHIFT(�2)D2+2!D2

)

� ((SEQ�1
D1+1![0]�(D1+1)

� BLOCK(v)�1
D2+2!P�V2

)

By Rule: exchange of MULTID and ALIGN2

= (SEQD2+2![0]�(D2+2) � BLOCK(v)D1+1!P�V1)

� TRANS(2)
�

0 1

1 0

�
D1+1�D2+2!D2+2�D1+1

� (EOSHIFT(1)D1!D1+1 � EOSHIFT(2)D2!D2+2)

� (EOSHIFT(�1)D1+1!D1
� EOSHIFT(�2)D2+2!D2

)

� ((SEQ�1
D1+1![0]�(D1+1)

� BLOCK(v)�1
D2+2!P�V2

)

By Rule: product composition exchange

= (SEQD2+2![0]�(D2+2) � BLOCK(v)D1+1!P�V1)

� TRANS(2)
�

0 1

1 0

�
D1+1�D2+2!D2+2�D1+1

� ((EOSHIFT(1)D1!D1+1 �1 EOSHIFT(�1)D1+1!D1
)

� (EOSHIFT(2)D2!D2+2 �1 EOSHIFT(�2)D2+2!D2
))

� ((SEQ�1
D1+1![0]�(D1+1)

� BLOCK(v)�1
D2+2!P�V2

)

By Rule 2: reduction of ALIGN1 operators

= (SEQD2+2![0]�(D2+2) � BLOCK(v)D1+1!P�V1)

� TRANS(2)
�

0 1

1 0

�
D1+1�D2+2!D2+2�D1+1

� ((SEQ�1
D1+1![0]�(D1+1)

� BLOCK(v)�1
D2+2!P�V2

)

Match Idiom: matrix transposition

Figure 7: Algebraic Simpli�cation for Inter-Procedural Layout Conversion

12

3 XFORM-2 Transformations

In previous section, we have presented the XFORM-1 module for optimizing data motion. Note that
XFORM-1 transformations are done without explicitly mentioning the local processor IDs or any details
of the local processor memory | that is because manipulations of alignments, array operations, and their
communication expressions can be carried out within the purely logical space de�ned in the program.
Also, changing from one distribution to another is a task that's handed over to the runtime system,
working at the logical descriptor level only.

The purpose of XFORM-2 optimizations is to further exploit machine-dependent parallelism that
otherwise would be di�cult to express using HPF's data-parallel language constructs. Since these opti-
mizations are often machine-dependent, it is necessary to partition the global space into local subspaces
within processors, making processor IDs and local memory o�sets visible to the compiler. We call this
the \P&V" style of transformation (\P" for loops over processors, and \V" for loops over local mem-
ory, perhaps with vector elements, within processors), after the introduced loops and loop variables for
processors and local memory o�sets.

The loop nests we consider in XFORM-2 transformations are called iterative spatial loop nests, which
capture a broad class of HPF parallel loops. We have collected a set of optimizations which we have found
may improve HPF code performance on distributed-memory parallel systems: (1) processor-memory
skewing, which increases processor parallelism via skewing processor loops with local memory loops, (2)
block-cyclic permutation, which reduces communication via automatically changing data layout for a class
of reference patterns that frequently occur in divide-and-conquer algorithms, (3) interleaved reduction,
that increases processor parallelism and reduces communication for a class of reductions that are carried
over loops in which loop-carried dependence may exist, and (4) the familiar increasing granularity that
increases amount of computation between synchronization via combination of strip-mining local memory
loops and interchanging parallel processor loops outward.

In short, XFORM-2 optimizations can help to increase processor parallelism and reduce communi-
cation and synchronization in data-parallel loop nests. In this section, we will discuss the motivation
for each of these optimizations, the conditions under which they can be applied, and the e�ect of each
optimization.

3.1 Iterative Spatial Loops

The class of loop nests that may pro�t from XFORM-2 optimizations are called iterative spatial loop
nests, which was �rst de�ned in [22].

In many HPF parallel loop nests, there exists a one-to-one mapping from the iteration space of the
loop nest to each of the index domain of the arrays updated in the loop body. We call such loop nest
spatial loop nest, because parallelism can be achieved by distributing the data and the loop iterations to
multiple processors. A spatial loop that has loop-carried data dependence is called a dependent spatial
loop, which implies that the computations have to be sequentialized due to data dependence. A spatial
loop that does not have loop-carried dependence is a parallel spatial loop (or simply parallel loop), whose
iterations can all be computed in parallel.

For instance, the I loop and the J loop in Program 1 are spatial loops because there is a one-to-
one mapping from the iteration space of the two loops to the index domain of array a. Loop-carried
dependence exists in the I loop, which makes the I loop a dependent spatial loop. The J loop carries no
dependence, and therefore is a parallel spatial loop.

13

Prog 1

real a(100,100)

DO T = 1,10

DO I = 2,100

FORALL J = 1:100

a(I,J) = a(I,J)+a(I-1,J)

END DO

END DO

Loop Nest I (Iterative Spatial Loop Nest)

� � �iterative loops � ��

DO T (K1 = a1; b1; c1)

: : :

DO T (Kl = al; bl; cl)

� � �dependent spatial loops � ��

DO S (I1 = x1; y1; z1)

: : :

DO S (Im = xm; ym; zm)

� � �parallel loops � ��

DOALL S (Im+1 = xm+1; ym+1; zm+1) f

: : :

DOALL S (Im+n = xm+n; ym+n; zm+n) f

A(I1; :::; Im+n) = � [B(I1 + c1; :::; Im+n + cm+n)]

Furthermore, in many scienti�c applications, the same loops may execute several times iteratively.
This can be best expressed by enclosing the parallel loop by an outermost sequential loop. The sequential
loop updates some array elements more than once and therefore is called an iterative loop, which implies
that the iteration space of the loop is mapped to time steps, in stead of the index domain of the arrays.
For instance, the T loop updates array a more than once, and thus is an iterative loop.

To facilitate XFORM-2 transformations, we denote a dependent spatial loop by DO S, a parallel spatial
loop by DOALL S, and an iterative loop by DO T.

Iterative Spatial Loop Nest. An iterative spatial loop nest consists of, from outermost level inward,
zero or more levels of iterative loops (or temporal loop) followed by zero or more levels of dependent spatial
loops, and then followed by one or more levels of parallel spatial loops, or simply parallel loops, as shown
in Loop Nest I (which consists of l iterative loops, m dependent spatial loops and n parallel loops,
where l � 0;m � 0, and n � 1).

In Loop Nest I, ai; bi; ci and xj ; yj; zj are the usual loop lower bound, upper bound and stride. The
notation � [b] denotes an expression containing b. The o�sets cj in an array index expression must be an
expression whose value stays invariant through the entire spatial loop nest. For simplicity, we assume that
array indices at the left-hand-side are loop variables. There may be multiple instances of array references
in an assignment statement and multiple assignment statements in the loop body, and the right-hand-side
array may be either a di�erent array or the same as the left-hand-side. Therefore, iterative spatial loop
nests capture a broad class of HPF parallel loops, including forall loops and independent loops.

14

Loop Nest P (Partitioned Iterative Spatial Loop Nest)

� � �outermost temporal loops � ��

DO T (K1 = a1; b1; c1)

: : :

DO T (Kl = al; bl; cl)

� � �partitioned dependent spatial loops � ��

DO P (I1 = 0; P1 � 1)

DO V (J1 = 0; V1 � 1)

: : :

DO P (Im = 0; Pm � 1)

DO V (Jm = 0; Vm � 1)

� � �partitioned parallel spatial loops � ��

DOALL P (Im+1 = 0; Pm+1 � 1)

DOALL V (Jm+1 = 0; Vm+1 � 1)

: : :

DOALL P (Im+n = 0; Pm+n � 1)

DOALL V (Jm+n = 0; Vm+n � 1)

A(I1; J1; : : : ; Im+n; Jm+n) = � [B(Î1; Ĵ1; : : : ; Îm+n; Ĵm+n)]

Partitioned Loop Nest. XFORM-2 optimizations are aware of the notion of processors and local
memory loops, therefore, it is necessary to partition the iterative spatial loops. Once data are partitioned,
spatial loop nests also need to be partitioned. A spatial loop is partitioned by splitting the loop into a
processor loop (a P loop) and a local memory loop (a V loop). The index in a processor loop gives the
ID of the processor which computes the associated local memory loop. Considering blocked partitioning,
a dependent spatial loop (DO S loop) is split into a DO P loop and a DO V loop, meaning that there are
dependences between processors, while a parallel loop (DOALL S loop) is split into a DOALL P loop and a
DOALL V loop, meaning that all processors can be active concurrently. Loop Nest P shows a general
partitioned loop nest.

Perfect Parallel Loops. A parallel loop that satis�es the following conditions is a perfect parallel loop:
(1) all array subscripts in the loop body along its dimension are identity functions of its loop variable,
and (2) the bounds of the loop does not depend on the loop variables of the loops between itself and
the outer dependent loop. The parallel processor loop DOALL P and the local memory loop DOALL V tiled
from a perfect parallel loop are called perfect processor loop and perfect memory loop respectively.

Next, we present the set of XFORM-2 optimizations: processor-memory skewing, block-cyclic permu-
tation, interleaved reduction, and increasing granularity.

3.2 Processor-Memory Skewing

Consider an input loop nest with a dependent spatial loop DO S to be partitioned into non-degenerate
processor loop DO P. Such case may arise from a loop nest that inherits the data layout of a previous
loop nest where the same array sections were updated in parallel in the previous loop nest and must be
now updated sequentially. Consider Program 2 in Figure 8. Data dependence exists in the outer loop
DO S. Since the array is partitioned into two-dimensional blocks as speci�ed by the DISTRIBUTE directive,
the two spatial loops will also be partitioned. The outer loop is partitioned into a pair of DO P and DO V

15

loops, and the inner loop into a pair of DOALL P and DOALL V loops. The inner loop iterations can be
computed in parallel. However, without optimization, execution of outer loop between the processors in
the DO P loop has to be serialized. For this example, our goal is to increase processor parallelism for the
execution of the outer loop.

Processor-memory skewing is a technique that may reclaim such wasted processor resources due to
inheritance of data layout without paying the cost of data layout conversion. This optimization is an
application of loop skewing technique [63] in the context of partitioned iterative spatial loop nests.
Processor-memory skewing skews a sequential processor loop DO P with respect to a local-memory loop
(DOALL V or DO V), resulting in a DO V loop denoting the stages of pipelining and a DOALL P loop denoting
the active processors at each pipeline stage, as shown in Figure 8(a).

Let P be the range of the sequential processor loop DO P and V be the range of the local memory
loop. Processor-memory skewing increases processor parallelism by a factor of V �P

P+V�1 . When V � P ,
processor parallelism is increased by P .

In the following, we present Procedure processor-memory-skew which skews a sequential pro-
cessor loop DO P and a local memory loop. We assume one level of DO P loop.

Procedure processor-memory-skew

Input: a partitioned loop nest which contains one DO P loop.

Output: a new partitioned loop nest if pattern-matching is successful, or else the same input loop nest.

1. Search in the loop nest enclosed by the DO P loop for a perfect memory loop DOALL V. If no such loop
exists, then search for a sequential memory loop DO V that satis�es the following conditions: (1)
no DO P loop is tiled from the same DO S loop as the DO V, that is, the whole DO S loop is assigned
to a single processor, and (2) the DO V loop can be legally moved next to the DO P loop by loop
interchanging (data dependence analysis [5, 8] can be used to decide the legality). If no such loop
exists either, then exit.

2. Move the DOALL V/DO V loop outward to be adjacent to the DO P loop by loop interchanging.

3. Perform loop skewing followed by a loop interchanging between the DO P loop and the DOALL V/DO V

loop, resulting in a DO V loop outside a DOALL P loop.

Example In Program 2, loop-carried data dependence exists in the outer loop, which imposes se-
quential ordering for the outer loop iterations, as shown by the iterative spatial loop nest (Loop Nest 1).
The 2D-BLOCK partitioning results in a partitioned loop nest as shown in Loop Nest 2. Loop inter-
changing the DOALL V(J2) with the DO V(I2) and the DOALL P(J1) results in Loop Nest 3 where the DO P

and DOALL V loops become adjacent. Finally, Loop Nest 4 shows the loop structure after processor-
memory skewing on the DO P and DOALL V loops followed by a loop interchange. As shown in Figure 8(a),
after processor-memory skewing, in each new DO V(J 02) loop iteration, multiple processors can start com-
putation in parallel. The pipelined computation among processors in Loop Nest 4 is illustrated in
Figure 8(b).

Adjusting Granularity of Pipelining. The granularity of pipeline parallelism is determined by the
amount of computation enclosed by the new DOALL P loop resulting from processor-memory skewing.

16

Prog 2

REAL a(m,n),b(m,n)

!HPF$ DISTRIBUTE (BLOCK,BLOCK) :: a, b

DO i=2, m

FORALL j=1,n

a(i,j) = ... a(i-1,j) ...

END FORALL

END DO

Loop Nest 1 iterative spatial loops

DO S (I = 2;m) f

DOALL S (J = 1; n) f

a(I; J) = :::a(I � 1; J):::

Loop Nest 2 partitioned loops

DO P (I1 = 0; p1 � 1) f

DO V (I2 = 0; v1 � 1) f

DOALL P (J1 = 0; p2 � 1) f

DOALL V (J2 = 0; v2 � 1) f

â(I1; I2; J1; J2) =

:::â(I1 + (I2 � 1) DIV v1;

(I2 � 1) MOD v1; J1; J2):::

Loop Nest 3 interchange DOALL V outward

DO P (I1 = 0; p1 � 1) f

DOALL V (J2 = 0; v2 � 1) f

DO V (I2 = 0; v1 � 1) f

DOALL P (J1 = 0; p2 � 1) f

â(I1; I2; J1; J2) =

:::â(I1 + (I2 � 1) DIV v1; (I2 � 1) MOD v1; J1; J2):::

Loop Nest 4 skew and interchange DO P and

DOALL V

DO V (J 02 = 0; p1 + v2 � 2) f

DOALL P (I 01 = max(0; J 02 � v2); min(J
0

2; p1 � 1)) f

DO V (I2 = 0; v1 � 1) f

DOALL P (J1 = 0; p2 � 1) f

â(I 01; I2; J1; J
0

2 � I 01) =

:::â(I 01 + (I2 � 1) DIV v1; (I2 � 1) MOD v1; J1; J
0

2 � I 01):::

6

-���
���
���

���
���

������
���
������

���
���

6 6 6
6 6 6

6 6 6

6
6

6
6

-

I 01

(pipeline stages)DO V
J 02

after skewing

DOALL P

(active
processors)

DOALL V

DO P

I1

J2

before skewing

P3

P2

P1

P0

initial

Pipeline Stages

(b) Pipelined computation among processors.

0 1 2 3

Processors

(a) skew DO P and DOALL V loops

Figure 8: Pipelining via Processor-Memory Skewing

17

This granularity also determines the amount of communication overhead. That is, increase in pipeline
parallelism also cause increase in communication overhead. Based on the observation that the unit
communication vs. computation ratios on many modern machines are around two orders of magnitude,
to balance parallelism with communication overhead, the CRAFT compiler uses a simple heuristic that
works well for many parallel machines. It �rst increases pipeline parallelism by interchanging the perfect
processor loops and perfect memory loops outside the DO P loop to make pipelining as �ne-grain as possible.
It then increase pipeline granularity by strip-mining the local memory loop that will be skewed with the
DO P loop.

3.3 Increasing Granularity

The granularity of a loop nest is determined by the amount of computation enclosed by the innermost
DOALL P; that is, the amount of computation that can be performed without synchronization among
processors. The purpose of this transformation is to increase amount of computation between synchro-
nization.

This optimization adopts two existing techniques, loop interchange and strip-mining [63], each with
proper re�nement for partitioned iterative spatial loops. Loop interchange helps increase granularity by
moving parallel processor loops (DOALL P as outward as possible, while strip-mining increases amout of
computation by grouping local-memory loop iterations into smaller number of chunks.

Increasing granularity by loop interchanging does not cause overhead; it can be performed as long as it
does not change the semantics of the original loop nest, while strip-mining is usually used in combination
with other optimizations (e.g. coarse-grain pipelining via strip-mining and processor-memory skewing).
Procedure increasing-granularity increases granularity of loop nest by loop interchange.

Procedure increasing-granularity

Input: a partitioned loop nest.

Output: a new partitioned loop nest with DOALL P loops moved outward maximally.

1. Search for parallel loops (DOALL P, DOALL V); move all DOALL P loops outside the DOALL V loops by
loop interchange.

2. Move each perfect processor loop (i.e. DOALL P loop tiled from a perfect parallel loop) outside all
DO V, DO P, DOALL L and DOALL V loops.

Example Procedure increase-granularity interchanges outward the perfect processor loop (the
inner DOALL P loop) in Loop Nest 4, resulting in Loop Nest 5. Granularity is increased by a factor
of p2.

Loop Nest 5

DOALL P (J1 = 0; p2 � 1) f

DO V (J 02 = 0; p1 + v2 � 2) f

DOALL P (I 01 = max(0; J 02 � v2); min(J
0
2; p1 � 1)) f

DO V (I2 = 0; v1 � 1) f

â(I 01; I2; J1; J
0
2 � I 01) =

:::â(I 01 + (I2 � 1) DIV v1; (I2 � 1) MOD v1; J1; J
0
2 � I 01):::

18

3.4 Block-Cyclic Permutation

In this subsection, we describe an optimization technique for input programs with communication o�set
being two to the power of an iterative loop index, e.g. f(K) = 2K , a non-constant-o�set shift operation.
This type of communication pattern appears frequently in divide-and-conquer algorithms in which a large
problem is recursively divided into smaller problems until the problem size is small enough so that the
problem can be directly solved; the solutions to the small problems are then recursively combined to
form the solution to the large problem. The communication usually occurs between elements of distances
recursively doubled (or halved).

We use the Fast Fourier Transform (FFT) as an example to illustrate the optimization. Loop Nest 7

shows the butter
y stages in FFT, and Figure 9 illustrates the data reference patterns for 8-input FFT.

Assuming both the number of data elements N and the number of processors P are power of two, if
data elements are partitioned using BLOCK distribution, then in the �rst logP stages, each data element
will need a remote data element for its computation, while in the �nal logN � logP stages all data
references results in local memory accesses, as shown in Figure 9(b). Alternatively, data elements may
be partitioned using CYCLIC distribution, resulting in inter-processor communication in the �rst logP
stages and local memory accesses in the rest of the stages, as shown in Figure 9(c).

Since the initial computation of BLOCK data distribution and the �nal computation of the CYCLIC

data distribution do not require communication, a natural choice is a hybrid layout: BLOCK distribution
for the �rst logP stages and CYCLIC distribution for the �nal logN � logP stages. This hybrid layout
strategy has been used in several hand-coded FFT routines [26, 59]. The block-cyclic-permutation
optimization automates this process.

The hybrid layout leads to two data layout conversions that involve all-to-all communication: a
BLOCK-to-CYCLIC conversion right after the logP th stage and its inverse (CYCLIC-to-BLOCK conversion)
right after the last stage to restore the initial BLOCK distribution, as shown in Figure 9(d).

In the following, we present Procedure block-cyclic-permute, which splits the range of a DO T(K)
loop that contains 2K communication o�sets at the dimension of the inner DOALL V loops, and inserts
block-cyclic conversion routine calls between splitted loop nests. For simplicity, we assume the 2K com-
munication o�set only occur at one dimension of the inner DOALL V loops, and all arrays in the loop nest
have the same data distribution. We also assume the number of processors p is power of two and the
number of data elements N is much larger than p (fortunately this is true in most application programs).
Procedure block-cyclic-permute assumes initial BLOCK distribution for data arrays. The procedure
for initial CYCLIC distribution is analogous.

Procedure block-cyclic-permute

Input: a partitioned loop nest

Output: a sequence of partitioned loop nests if pattern-matching is successful, or else the same input
loop nest.

1. Check the loop body for the existence of array reference o�sets that are two to the power of the DO T

loop variable K. If no such reference pattern exist, exit. If there exist another reference pattern
whose subscript expression at the same dimension as the 2K-o�set pattern is not the loop variable,
exit.

2. Split the range of the DO T loop using the pivot index logp, where p is the number of processors
along the dimension where the 2K communication o�sets occur (i.e., if K is in increasing order,

19

(c) with hybrid data distribution

layout conversion

(c) with CYCLIC distribution
(b) with BLOCK distribution

stages

data
elements

(a) data references in 8-input FFT

assigned to processor 1 assigned to processor 0

Loop Nest 6 iterative spatial loops

DO T (K = 0; logN � 1) f

DOALL S (I = 0; N � 1) f

:::

IF (is upper(I))

x(I) = w � x(I) + x(I + 2K)

ELSE

x(I) = �w � x(I) + x(I � 2K)

Loop Nest 7 partitioned loops

DO T (K = 0; logN � 1) f

DOALL P (I1 = 0; p� 1) f

DOALL V (I2 = 0; v � 1) f

IF (is upper(I1; I2))

x(I1; I2) = w � x(I1; I2)+

x(I1 + (I2 + 2K) DIV v; (I2 + 2K) MOD v)

ELSE

x(I1; I2) = �w � x(I1; I2)+

x(I1 + (I2 � 2K) DIV v; (I2 � 2K) MOD v)

Loop Nest 8 post-transformed loop nests
!! phase 1: block distribution

DO T (K = 0; logp� 1) f

DOALL P (I1 = 0; p� 1) f

DOALL V (I2 = 0; v � 1) f

IF (is upper(I1; I2))

x(I1; I2) = w � x(I1; I2)+

x(I1 + (I2 + 2K) DIV v; (I2 + 2K) MOD v)

ELSE

x(I1; I2) = �w � x(I1; I2)+

x(I1 + (I2 � 2K) DIV v; (I2 � 2K) MOD v)

block to cyclic conversion(x)

!!phase2 : cyclic distribution

DO T (K = logp; logN � 1) f

DOALL V (I2 = 0; v � 1) f

DOALL P (I1 = 0; p� 1) f

IF (is upper(I1; I2))

x(I1; I2) = w � x(I1; I2)+

x(I1; I2 + (I1 + 2K) DIV p)

ELSE

x(I1; I2) = �w � x(I1; I2)+

x(I1; I2 + (I1 � 2K) DIV p)

cyclic to block conversion(x)

Figure 9: Block-Cyclic Permutation for FFT. By automatic change between Block and Cyclic distribution,
data movement within iterations are eliminated, in the expense of layout conversions between the splitted
loop nests.

20

then split the loop into two, one with range l � K < logp and the other with range logp � K < u,
where l and u are the lower and upper bounds of the DO T loop, respectively), and replicate the
loop body.

3. Let A be the set of arrays in the loop body that are referenced with 2k o�sets. For each array in A
and each array in the loop body that is referenced by any array in A, insert one BLOCK to CYCLIC

conversion routine call between the two loop nests and its inverse conversion (CYCLIC to BLOCK)
after the second loop nest.

4. Change the layout for the second new loop nest to CYCLIC distribution and simplify array subscript
expressions.

Example Applying block-cyclic permutation optimization on Loop Nest 7 results in Loop Nest 8.
Data references in the second loop nest of Loop Nest 8 all become local memory accesses, in the expense
of layout conversions outside the two loop nests.

3.5 Interleaved Reduction

Many reductions (for instance, computing the SUM of n values) are commonly considered to have both
internal associativity and commutativity. We can relax the ordering constraints of these reductions,
increasing their available parallelism. For example, to compute SUM of n values using p processors, we
can divide the n values into p chunks, assign a chunk to each processor, and every processor computes
locally the sum of the values assigned to it, independent of other processors, and then at the end sum up
their partial results using a global reduction operation.

Parallelization of reductions require language constructs or compiler techniques that can help break
data dependences in reductions. One obvious compilation approach is pattern recognition. Either the
source language includes explicit reduction operators (e.g. the SUM operator in High Performance Fortran),
or certain speci�c loops are recognized as equivalent to known reductions (e.g. the loop for SUM reduction
as described above). Once such patterns are recognized, hand optimized code for the reductions are
emitted in the code generation phase.

Previous work on pattern recognition for reductions had been reported in the Parafrase system [43], the
Eave [10] system, and the Fortran D system [60]. Redon and Feautrier proposed an algebraic speci�cation
method for recurrences detection [52]. Pinter and Pinter proposed a matching method based on Program
Dependence Graphs [49]. Fisher and Ghuloum reported a method for extracting recurrences from loop
structures that contain conditional statements [27, 31].

All these existing work only parallelize reduction loops that contain no stores that can overlap any
loads within the loop (i.e. loops that only contain dependences caused by the reduction statement). For
instance, the SUM loop given above can be parallelized straightforwardly by existing techniques. We call
this class of reductions basic reductions. Not all reductions are basic, however. Consider the loop nest
in Program ??, which solves a triangular linear system. A reduction B(J)=B(J)-L(J,I)*x(I) is carried
over the outer loop indexed by I. Two kinds of data dependences exist in the outer loop: a loop-carried
dependence caused by the reduction statement, and a loop-carried dependence caused by computing the
value of x(I), whose value depends on the value of array B computed in previous iterations. Existing
techniques fail to parallelize this reduction due to the second kind of dependence.

Interleaved Reduction is a general technique for parallelizing reductions. The basic idea is to ex-
ploit partial parallelism embodied in reduction loops through combination of data dependence analysis

21

and region analysis. Data dependence analysis identi�es the condition that can trigger this optimiz-
ing transformation. Region analysis extracts partial parallelism by separating reduction iterations into
a sequential region and an order-insensitive region. Parallelism is achieved by interleaving reduction
iterations in the order-insensitive region onto multiple processors.

Detailed description of Interleaved Reduction can be found in [64]. The compiler transformation is
brie
y described as follows. The compiler detects reduction patterns using data dependence analysis. If
the reduction is a basic reduction, it is parallelized straightforwardly. For non-basic reductions, the com-
piler performs region analysis to separate the iteration domain into three subdomains: the sequential
region, parallel-update region and global-reduction region. Then the compiler splits the loop into three
loops corresponding to the three regions, and updates the loop bodies accordingly, and �nally it inserts
a global reduction operation at the end of the loop corresponding to the global-reduction region.

3.6 Meta-Transformation

The interaction of these optimization primitives poses a challenge to the compiler in �nding an appro-
priate ordering in applying these optimization primitives. For instance, processor-memory skewing may
obscure loop structure and therefore may hinder other optimizations that are sensitive to special reference
patterns, such as block-cyclic permutation and interleaved reduction. Finding an optimal solution is a
NP-complete problem. We have started to study this problem.

Current strategy used in the CRAFT compiler is somewhat ad hoc. Based on the impact on loop nests
of each optimization primitive, we have found the following linear ordering of these primitives to be suf-
�cient for catching most chances of optimizations. Procedure block-cyclic-permute and Procedure
interleaved-reduction work on exclusive patterns along one dimension. However, mixed patterns may
exist in di�erent dimensions, e.g. a reduction at the �rst dimension and a butter
y computation at the
second dimension. We apply Procedure block-cyclic-permute �rst since Procedure interleaved-

reduction increase more number of loop nests. Next, we check whether a loop nest contains sequential
processor loop DO P. If it does, Procedure processor-memory-skew is applied if it improves program
performance. Finally, Procedure increase-granularity will be applied to each transformed loop nest
to increase granularity.

4 Preliminary Experience

In this section, we report the implementation status of this work and some experimental results from a
set of benchmark codes demonstrating the e�ectiveness of algebraic simpli�cation, communication idiom
matching for layout conversion, and some XFORM-2 optimizations (processor-memory skewing, block-
cyclic permutation, and interleaved reduction).

4.1 The CRAFT Compiler

The two-phase transformative framework is implemented in the context of the CRAFT compilers, as
shown in Figure 10. The CRAFT compiler methodology uses a single semantic representation (SemRep)
as an intermediate notation between the front end and code generation. SemRep is described by a
Standard ML signature. CRAFT compiler front ends produce SemRep, their transformative phases
(e.g. XFORM-1 and XFORM-2 transformations) apply black-box pattern-matching transformations over

22

SemRep, and the back end generates native object code for parallel target machines by partitioning and
lowering the transformed SemRep code.

A CRAFT SIMD compiler for CM-5 has been implemented [21]. The front-end and the intermediate
modules have been adopted for the CRAFT MIMD compiler. A back-end for CM-5 MIMD mode is under
implementation from the SIMD basis.

With manual assistance, the CRAFT MIMD compiler generated message-passing vector codes by
translating the �nal form of the post-transformation program (partitioned SemRep program) to a \nodal"
CM-Fortran program (a SPMD programming model supported by CM-Fortran [24]) and inserting com-
munication routine calls as appropriate. The communication routines were implemented using CMMD
3.0 primitives. For scalar code generation, the CRAFT compiler generated message-passing C codes with
manual assistance.

routines

inter-procedure

intra-procedure
XFORM-1

XFORM-1

interleaved reduction

block-cyclic permutation

XFORM-2 transformations

processor-memory skewing

increasing granularity

boundary separation

implementationimplementation

CM-5 Intel iPSC,
Delta

code generator

communication
for intra-procedural

idiom matching

actual data motion

gen communication
elemental,

reduce FORALL to

propagation
constant

Lexer/Paser

AST

Source

static semantics
analysis

physical layout &

SemRep

reduction
algebraic

logical data motion
layout directives &

composition of

inter-proc flow analysis

idiom matching for

layout conversion

temp intro for
inter-procedural reduction

algebraic

node code optimizations

Inter-procedural layout conversion

Intra-procedural data motion &

expose loop structure

sequential code +

calls to runtime library

runtime library

linker

N-cube

on CM-5 on iPSC

HPF/FORTRAN-90 Compiler

inter-proc comm.

Figure 10: Organization of the CRAFT Compiler

Many of the communication idioms have been implemented as runtime communication routines for

23

the CM-5 using CMMD 3.0 communication primitives, including many of the array intrinsics (e.g. shift,
transpose, spread, broadcast, reduction) and a set of data layout conversion routines (e.g. column-to-row,
row-to-column, block-to-cyclic, and cyclic-to-block conversions).

4.2 Experimental Results

We evaluated the e�ectiveness of these optimizations using a set of linear algebra applications (including
dense linear solvers using LU decomposition, tridiagonal systems solvers using Gaussian Elimination,
Parallel Cyclic Reduction, etc.), PDE solvers using ADI method, and the familiar FFT.

We report our experimental results on the Connection Machines CM-5 located at AHPCRC of Min-
nesota University. The CM-5 has totally 896 processing nodes (PN), con�gured as various-sized partitions.
Each processing node is a SPARC with four optional vector units that totally can deliver peak rate of
128M
ops [23].

To study the impact of the optimizations on modern machines, we have also hand-compiled some of
the benchmark programs for the IBM SP-2 and a UltraSparc workstation cluster. We hand-generated
message-passing C codes from the post-transformed SemRep intermediate representation. Experiments
were conducted on a 8-node IBM SP-2 and a 4-node UltraSparc cluster located in Academia Sinica.

Each optimization is evaluated by comparing the execution time of the code compiled with the opti-
mization against that of the code without the optimization. The execution time for perfect parallelism,
which measures per-processor computation time only, is provided as a basis for comparison.

4.3 XFORM-1 Optimization

Two examples are used to evaluate the e�ectiveness of XFORM-1 optimization: a PDE solver using
Alternating Direction Implicit method (ADI), and the familiar Fast Fourier Transform (using hybrid
data layout and layout conversion). Both results show that optimized layout conversion by XFORM-1
transformation can reduce communication time signi�cantly.

ADI. When ADI is applied on a 2D mesh, the solution is obtained iteratively by repeatedly sweeping
along the x and y directions alternatively. A natural data distribution strategy for ADI is partitioning the
arrays into columns of blocks in x-sweep, re-aligning the arrays by transposing them before performing
y-sweep and transposing them back after �nishing y-sweep. Without XFORM-1 optimization, CRAFT
compiler generates general communication for the two array re-alignments. With XFORM-1 optimiza-
tion, CRAFT compiler performs algebraic simpli�cation, recognizes TRANSPOSE over one-dimensionally
partitioned array as a communication idiom, and replaces the two re-alignment directives with calls to
specialized fast communication routine associated with the idiom.

FFT. An ideal data layout for FFT is a hybrid (BLOCK,CYCLIC) distribution, as described in Sec-
tion 3.4. In this benchmark, the FFT loop were split into two, with BLOCK distribution for the �rst
and CYCLIC distribution for the second, given by DISTRIBUTE/REDISTRIBUTE directives. With-
out XFORM-1 optimization, CRAFT compiler generates general communication for data redistribution.
With XFORM-1 optimization, calls to optimized BLOCK TO CYCLIC and CYCLIC TO BLOCK com-
munication routines were generated for data redistribution.

Figure 11 shows performance of the two benchmarks on 64 processors. Sequential time on single
processor is provided as a basis for evaluation. Computation time is almost identical for both optimized

24

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

problem size (n by n)

ADI on 64-node CM-5

unoptimized
optimized

perfect parallel

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500 3000 3500 4000 4500
e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

problem size

FFT on 64-node CM-5

unoptimized
optimized

perfect parallel

Figure 11: Execution time in seconds on 64 processors (ADI: 10 iterations, double precision
oating
points, 1d FFT: double precision complex, with block-cyclic hybrid data layout

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450 500 550

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

number of processors

Scaled Speedup for ADI on Different Numbers of Processors

unoptimized
optimized

perfect parallel

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 50 100 150 200 250 300 350 400 450 500 550

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

number of processors

Scaled Speedup for FFT on Different Numbers of Processors

unoptimized
optimized

perfect parallel

Figure 12: Execution time in seconds on di�erent number of processors with �xed per-processor problem
size (ADI: double precision, 128� 128 per processor problem size, 1d FFT: double precision complex, 8k
per processor problem size)

25

and unoptimized versions. With XFORM-1 optimization, the CRAFT compiler improves communication
time of ADI by a factor of 1.6 to 2.5 and the total execution time of ADI by a factor of 1.4 to 2.1. Speedup
factors increase with problem sizes. Possible reason is that on CM-5 a long message is sent in patches;
larger problem size produces longer messages, and therefore heavier tra�c in the network, and, as a
result, higher speedup due to XFORM-1 communication optimization. With optimized block-cyclic and
cyclic-block layout conversions, the CRAFT compiler reduces communication time of FFT by a factor of
1.4 to 3.5 and the total execution time of FFT by a factor of 1.3 to 1.9. Consistent with the results of
ADI, speedup factors in FFT also increase with problem sizes.

We also study the scaled speedups by �xing per-processor problem size and changing number of pro-
cessors. As shown in Figure 12, when per-processor size is �xed, speedup factors for ADI increase with
number of processors (by a factor of 2.15 on 32 processors to a factor of 2.86 on 512 processors), because
number of messages increases linearly with machine size; without XFORM-1 optimization, message con-
tention becomes a more serious problem on larger machines. For larger machine sizes, speedup factors
for FFT also increase with machine sizes.

4.4 XFORM-2 Optimizations

Processor-Memory Skewing

We use two examples to evaluate the e�ectiveness of processor-memory skewing(pipelining): a tridiagonal
solver using Gaussian Elimination (MGE), and successive over relaxation (SOR). Both results show that
processor-memory skewing improves code performance for large problem sizes.

We compare the pipelined version against the non-pipelined version. We also compare their perfor-
mance with the CM-Fortran compiler (CM-Fortran compiler does not perform pipeline optimization) and
the hand-coded CMSSL tridiagonal solver routine using pipelined Gaussian Elimination as the factoring
strategy. The sequential execution time on single processor is provided as a basis for comparison. Since
in SOR data dependence exists in both dimensions, no good vector codes are generated. We use scalar
codes in our comparison.

0

2

4

6

8

10

12

14

16

18

0 500 1000 1500 2000 2500 3000 3500 4000 4500

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

problem size (n by n)

MGE on 32-node CM-5

CM-Fortran
CRAFT unoptimized

CRAFT optimized
CMSSL

perfect parallel

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

problem size (n by n)

SOR on 32-node CM-5

CM-Fortran
CRAFT unoptimized

CRAFT optimized
perfect parallel

Figure 13: Execution time in seconds on 32-processor CM-5. MGE: double precision, 2D partition with
processors con�gured as 4 � 8 array and data dependence exists at the �rst dimension, SOR: double
precision, 1D partition

Figure 13 shows the execution time of the two benchmarks on 32-processor CM-5. Pipelining improves
performance of MGE by a factor of 1.2 to 3.1 (CRAFT non-pipeline/CRAFT pipeline). With �xed
number of processors, the speedup factors increase with problem sizes, but is bound by the number of

26

processors at the �rst dimension (4, in this example). This is consistent with the estimated speedup
factor for processor-memory skewing (V �P

V+P�1), where P is number of processors and V the size of local
array. The results of SOR are quite consistent with those of the MGE. Speedup factors also increase
with problem sizes. The performance of CRAFT optimized MGE is approaching that of the CMSSL
hand-coded routine. CM-Fortran compiler does not perform optimization similar to processor-memory
skewing. Its virtual processor (VP) compilation model causes excessive communication and data copy in
its compiled code.

Figure 14 compares the execution time of the hand-compiled MGE programs on the IBM SP-2 and
the UltraSparc workstation cluster. Both results show that processor-memory skewing is pro�table.

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

problem size (n by n)

MGE on 8-node SP-2

unoptimized
optimized

perfect parallel

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

problem size (n by n)

MGE on network of 4 UltraSparc workstations

unoptimized
optimized

perfect parallel

Figure 14: Execution time in seconds for MGE on IBM SP-2 and UltraSparc cluster

Block-Cyclic Permutation

Two divide-and-conquer codes are used to evaluate the e�ectiveness of block-cyclic permutation: FFT on
one-dimensional array (bit reversal excluded) and Parallel Cyclic Reduction (PCR) along single dimension
of two-dimensional arrays.

Without this XFORM-2 optimization, the code is compiled using block distribution. Therefore,
communications are required for the butter
y iterations in FFT and the reduction iterations in PCR.
With XFORM-2 block-cyclic-permutation transformation, communications within iterations are turned
into local memory accesses, in the expense of extra data layout conversion between loop nests.

Figure 15 shows the execution time of the two benchmarks on 64-processor CM-5. With block-cyclic
permutation, the CRAFT compiler improves code performance by a factor of 3.64 to 5.95 for FFT. When
problem size increases, number of butter
y stages and per-processor problem size also increase, which
results in longer communication time for the butter
y stages in the unoptimized version. In the optimized
version, communication within butter
y stages are all turned into local memory accesses, in the expense
of two data layout conversions. Communication time for the two layout conversions also increases with
problem size. However, its impact is less signi�cant than that of the butter
y communications. Conse-
quently, total improvement in communication by this XFORM-2 transformation increases with problem
sizes. For PCR, this optimization decreases program performance for smaller problem sizes. Possibly
due to the fact that more data arrays are involved in layout conversion, which incurs large overhead
that dominates program execution time. However, when problem size increases, this optimization also
improves program performance by a factor of 1.35 to 1.45.

We also compare the CRAFT hand-compiled codes with the corresponding hand-coded CMSSL rou-

27

tines (FFT detailed and CMSSL banded solver using parallel cyclic reduction as solution strategy). Both
the CMSSL FFT routine and the CMSSL banded solver outperforms the CRAFT compiler. This implies
that additional compiler optimization techniques are needed for this class of programs.

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500 3000 3500 4000 4500

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

problem size (x 1000)

FFT on 64-node CM-5

unoptimized
optimized

CMSSL
perfect parallel

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500 3000 3500 4000 4500

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

problem size (n by n)

PCR on 64-node CM-5

unoptimized
optimized

CMSSL
perfect parallel

Figure 15: Execution time in seconds on 64-processor CM-5. FFT: double precision complex, with layout
conversion. PCR: double precision
oating-points, with layout conversion

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

number of processors

Scaled Speedup for FFT on Different Numbers of Processors

unoptimized
optimized

CMSSL

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

number of processors

Scaled Speedup for PCR on Different Numbers of Processors

unoptimized
optimized

CMSSL

Figure 16: Execution time in seconds on di�erent numbers of processors on CM-5, with �xed per-processor
problem size. FFT: double precision complex, 8k per-processor, PCR: double precision
oating-points,
64k per-processor

The scaled speedups for block-cyclic permutation are shown in Figure 16. The speedup factors
(Unoptimized/Optimized) for FFT increase with number of processors, possibly because the number of
butter
y stages also increase with number of processors, which results in more CSHIFT communication
within stages. On the contrary, speedup factors for PCR degrade when number of processors increases.
This negative e�ect becomes more signi�cant for larger machine sizes, due to increased layout conversion
overhead.

Figure 17 compares the execution time of the hand-compiled FFT programs on the IBM SP-2 and
the UltraSparc workstation cluster. Both results show that block cyclic permutation is pro�table.

Interleaved Reduction

We use a LU solver to evaluate the e�ectiveness of interleaved reduction. We compare the performance of
the triangular solvers with and without interleaved reduction. We also compare the LU solver using this
optimization with CM-Fortran compiler's output code and the hand-coded CMSSL LU solver routine.

28

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000 4500

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

problem size (x 1000)

FFT on 8-node SP-2

unoptimized
optimized

perfect parallel

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

problem size (x 1000)

FFT on network of 4 UltraSparc workstations

unoptimized
optimized

perfect parallel

Figure 17: Execution time in seconds for FFT on IBM SP-2 and UltraSparc cluster, with layout conversion

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000 4500

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

problem size (n by n)

PTR on 32-node CM-5

unoptimized
optimized

perfect parallel

Figure 18: Execution time in seconds for a parallel triangular solver on 32 processors

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

number of processors

Scaled Speedup for PTR on Different Numbers of Processors

unoptimized
optimized

Figure 19: Execution time in seconds for a parallel triangular solver on di�erent number of processors,
with �xed per-processor problem size (512k)

29

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

problem size (n by n)

LU solver on 32-node CM-5

CM-Fortran
CRAFT
CMSSL

Figure 20: Execution time in seconds for LU solver on 32 processors

Figure 18 and Figure 19 show the e�ectiveness and scaled speedup of interleaved reduction optimiza-
tion. When machine size is �xed (Figure 18), execution time of the unoptimized version (cyclic only,
without interleaved reduction) varies approximately quadratically with problem size n (this is generally
true for larger problem size; for smaller problem size, the execution time does not varies quadratically
because the message start-up overhead varies linearly with problem size). With �xed machine size, execu-
tion time of the CRAFT optimized version (with interleaved reduction) varies linearly with problem size
n until n reaches the threshold value (too large to show experimentally) and after that value the execution
time varies quadratically with problem size. Therefore, the speedup of the CRAFT optimized version
against the CRAFT unoptimized version increases as the problem size increases. When per-processor
problem size is �xed, the speedup factor decreases as number of processors increases. This is because the
extra overhead in global reduction operation increases with the number of processors.

Figure 20 shows the performance comparison against CM-Fortran compiler, which does not perform
optimization similar to interleaved reduction, and the CMSSL routine, which hard-wire some similar
optimization. The CRAFT optimized version runs faster than the CM-Fortran version by two orders of
magnitude, and is slower than the CMSSL version within a factor of 2.

4.5 Summary

The results from the two benchmark codes ADI and FFT show that XFORM-1 optimization (algebraic
simpli�cation plus idiommatching) can reduce communication time signi�cantly and should be performed.
Research has shown that implementing �ne-tuned communication routines is crucial to achieving high
performance on many distributed-memory parallel machines [9, 50, 51, 55]. We believe that these
machines will also pro�t from XFORM-1 optimization (perhaps with di�erent implementation of the
communication idioms).

The results from MGE and SOR demonstrate that processor-memory skewing (with appropriate
pipeline granularity) improves code performance independent of problem size and machine size. The
results from FFT and PCR show that the tradeo�s of block-cyclic permutation greatly depends on the
number of arrays involved in block-cyclic conversion and the number of shift operations in the loop body.
In general, the fewer the arrays in layout conversion and the more the shift operations in the loop body,
the higher is the e�ectiveness of this optimization. The results of the lower triangular solver and the LU
solver demonstrate that interleaved reduction, although very speci�c, can improve program performance
dramatically, especially for large problem sizes. However, this optimization may not scale up perfectly as
number of processors increase, due to increased global reduction overhead on larger machine. In short,

30

XFORM-2 transformations are more machine dependent. Whether they should be performed depends
on the loop structure, problem size, machine size and other machine parameters.

5 Related Work

A number of prototype compilers for Fortran90/HPF have been developed in the past few years. A
summary of HPF compilers can be found in [1]. We brie
y review some of the optimization techniques
used in these compilers. The Fortran D compiler [36, 60] performs various optimizations (message
vectorization, message pipelining) to reduce communication overhead. It also attempts to increase pro-
cessor parallelism via pipelining and parallelizing reductions. XFORM-1 and XFORM-2 di�er from the
Fortran D system in two major aspects. First, the Fortran D compiler only handles a small subset of
HPF's data layouts: canonical alignment and one-dimensional data partitioning, while the CRAFT com-
piler's XFORM-1 transformations are applicable to more general cases. Secondly, the CRAFT compiler's
XFORM-2 interleaved reduction optimization is applicable to more general reduction loop nests. The For-
tran 90D compiler optimizes data movement for subscripted array references in parallel loops using linear
index-function transformation and pattern matching for collective communication [11]. By formulating
data movement using linear transformations, optimization for non-linear alignments, such as CSHIFT and
replication, and data redistribution are not possible. Roth [53] designed a set of optimizations for array
data movement associated with HPF shift operations. These optimizations do not take the e�ect of
user-provided alignment directives into consideration as we do.

Vienna Fortran and Vienna Fortran-90, based upon the parallelizing system SUPERB, extends Fortran
and Fortran-90 by providing alignment and distribution speci�cations. The Vienna Fortran compiler [13,
67] focus on supporting arbitrary rectilinear block distributions and irregular data distribution through
indirect arrays. The SHPF compilation system [48] supports full set of HPF data distribution directives.
Similar optimizations are performed to eliminate redundant data movement and data copy. No loop-level
optimizations such as XFORM-2 transformations are supported though.

On the part of industry, the CM Fortran compiler uses simple but naive copy-in, copy-out strategy for
inter-procedural data movement, and copying via canonical temporary for intra-procedural data move-
ment. The CM Fortran compiler does not perform XFORM-2 type of optimizations. Instead, similar
optimizations are hard-wired in the hand-coded CMSSL scienti�c library routines. DIGITAL High Per-
formance Fortran90 supports full HPF standard alignment and distribution directives. The DIGITAL
HPF90 compiler [35] optimizes communication by message vectorization and optimized runtime com-
munication routines. The compiler also performs a set of loop-level optimizations, such as strip minig,
loop interchange, and loop fusion. The PGHPF compiler [3] developed by the Portland Group Inc.
also supports full HPF. A set of communication optimizations such as overlap shift operations, collective
communications, and elimination of redundant data copy, and a set of simple loop transformations such
as loop fusion and loop interchange are included in the PGHPF compiler.

Forge90, xHPF, and spf [28] is an interactive parallelization system for MIMD shared and distributed-
memory machines developed by Applied Parallel Research. The main focus of Forge90 is on parallelizing
sequential Fortran programs and allowing users to �ne-tune performance via interactive data distribution
speci�cations and loop transformation invokations. xlHPF [2], developed for IBM, supports a subset of
HPF standards. To our knowledge, the xlHPF compiler has not performed advanced compiler optimiza-
tions as we do.

The CRAFT compilation framework also relates to other more speci�c research e�ort. The technique
for generating collective communication, pioneered by the Crystal compiler [46, 47, 44], has great in
uence

31

on our XFORM-1 optimization. The major di�erences are: (1) The Crystal compiler �nds optimal
(or near optimal) data alignment automatically, while the CRAFT compiler's goal is optimizing data
movement in the presence of user-provided data layout speci�cations. (2) The Crystal compiler does not
optimize inter-procedural data movement as the CRAFT compiler does.

Array section references also frequently occur in HPF programs. Several approaches have addressed
the e�cient execution of array statements involving block-cyclically distributed array sections, e.g. Gupta,
Kaushik, Huang, and Sadayappan's virtual processor approach [54, 41], Chatterjee et al's �nite-state
machine approach [15], Stichnoth's [56, 57] array slice analysis, Kennedy et al's [42] and Thirumalai
and Ramanujam's [58] integer lattice approach. XFORM-1 transformation does not compete with these
work. The XFORM-1 framework adopts similar techniques to implement the communication idioms for
array section movement.

There are also work on global optimization for data movement. Gilbert and Schreiber [32, 16] designed
a dynamic programming algorithm for optimizing temporary storage use for Fortran 90 array statements.
Chatterjee, et al. [17, 18] extended that work to allow loop nests. Ju, Wu, and Carini [40] (and later
Hwang, Lee, and Ju [39]) proposed a synthesis scheme for combining consecutive data reference patterns
to reduce communication. Another line of work optimize communication using data-
ow analysis, e.g.
Amarasinghe and Lam's [6], Gong, Gupta and Melhem's [33], and Gupta, Schonberg, and Srinivasan's
[34]. The current implementation of CRAFT compiler assumes owner-compute rule for compilation of
data movement. In the near future, we will extend our XFORM-1 framework to incorporate global
optimization techniques.

Current work in XFORM-2 transformations focused on the application of individual transformations:
when it is legal to apply a transformation, and if the transformation directly contributes to certain
goal. The heuristic used in combining these optimizations, however, are ad hoc. Two commonly used
strategies are: to decide in advance the order in which these transformations should be applied, or to apply
all di�erent possible combinations of transformations. Both have been proven to be either inadequate
or too expensive. Some work has been done in devising e�cient algorithms for combining a set of loop
transformations, e.g. Wolf and Lam's [61, 62], and Appelbe and Smith's [7].

6 Conclusions

In this paper, we have described the theoretical and experimental results of the CRAFT compiler project.
We studied optimization issues in compiling High Performance Fortran for distributed-memory parallel
machines. We presented a two-phase transformative framework: an abstract, algebraic transformation
and runtime technique (XFORM-1) for reducing communication overhead, and a set of more machine-
dependent transformations (XFORM-2) for increasing parallelism and reducing communications in data-
parallel loops.

The advantages we see of the two-phase framework are conceptual cleaness and portability due to
(1) the ability to detect and optimize alignment tra�c and data layout conversion at the abstract level
and leave machine-dependent communication details to the runtime system, and (2) the reduction of
complexity in XFORM-2 transformations, because the data alignment problem has been resolved in
XFORM-1 phase.

The new XFORM-1 algebraic transformation framework (including algebraic representation of data
movement, alignment and distribution, a communication algebra, and runtime layout conversion and
communication services) allows a compiler to reduce data movement at the abstract level and leave
machine-dependent details to the runtime system. By modeling di�erent stages of data mapping (align-

32

ment, distribution, physical mapping) and data movement using communication expressions and providing
algebraic rules to simplify each stage of data movement, the algebraic framework is conceptually clean
and portable to di�erent target architectures.

XFORM-2 transformations consist of a set of new optimizations (e.g. block-cyclic permutation and
interleaved reduction) and a set of re�ned techniques that are adopted from existing work (e.g. processor-
memory skewing, increasing granularity). We have shown that processor-memory skewing and increas-
ing granularity) are general-purpose optimizations that are applicable to a broad class of loop nests,
while block-cyclic permutation and interleaved reduction are applicable to programs that involve divide-
and-conquer algorithms and reduction opertions, respectively. We have also shown that many of these
optimizations are also applicable to modern parallel machines. Finally, we hope that our collection
of XFORM-2 transformations may serve as a basis for automated optimizations, which, in commercial
systems, have too often been ignored or hard-wired in hand-coded library routines.

Both XFORM-1 and XFORM-2 transformations can be implemented e�ciently in an optimizing
compiler. They have been implemented and integrated into the CRAFT compiler. The complexity of
the algebraic transforms is linear in the number of array references in the program, under HPF's \owner-
compute" model. Complexity of most post-partition optimization primitives is polynomial in the number
of array references in each loop nest. Since we use a linear ordering in applying these optimizations,
overall complexity of XFORM-2 transformations remains polynomial.

Recently, there has been some progress on the part of industry toward applying some simple kinds
of layout optimizations in HPF compilers. For example, TMC's CM-Fortran compiler version 2.1 has
included some similar optimization techniques for a subset of layout directives (shift/shift combination).
We hope that eventually most commercial compiler groups will adopt our two-phase transformative
strategy, or something very similar to it, to make sure that users can write HPF code without worrying
about compiler blind spots (like \copy in { copy out" calling sequences, or redundant sequences of copies
through heap temporaries whenever non-trivial alignments are in force).

References

[1] A survey of hpf compilers and tools. available at http://www.ac.upc.es/HPFSurvey/indexlist1.html.

[2] Xl high performance fortran for aix. IBM Inc., 1996.

[3] Pghpf workstation 2.2 release note. the Portland Group Inc., 1997.

[4] J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener. Fortran 90 Handbook.
McGraw Hill, 1992.

[5] J. R. Allen. Dependence Analysis for Subscript Variables and Its Application to Program Transfor-
mation. PhD thesis, Rice University, April 1983.

[6] A.P. Amarasinghe and M. S. Lam. Communication optimization and code generation for distributed
memory machines. In Proceedings of ACM SIGPLAN'93 Programming Language Design and Imple-
mentation, Albuquergue, New Mexico, June 1993.

[7] W. Appelbe and K. Smith. Determining transformation sequences for loop parallelization. In Pro-
ceedings of the 5th Workshop on Languages and Compilers for Parallel Computing, New Haven,
Connecticut, August 1992.

33

[8] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers, 1988.

[9] Shahid H. Bokhari. Multiphase Complete Exchange on A Circuit Switched Hypercube. Technical
report, ICASE, NASA Langley Research Center, 1991.

[10] P. Bose. Interactive program improvement via eave. In Proceedings of the International Conference
on Supercomputing, 1988.

[11] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M. Wu. Compiling fortran 90/hpf for
distributed memory mimd computers. Journal of Parallel and Distributed Computing, 1994.

[12] M. Bromley, S. Heller, T. McNerney, and G. L. Steele Jr. Fortran at Ten Giga
ops: The Connection
Machine Convolution Compiler. In ACM SIGPLAN '91 Conference on Programming Language
Design and Implementation, pages 145{156, June 1991.

[13] B. Chapman, H. Herbeck, and H.P. Zima. Automatic Support for Data Distribution. In Proceedings
of the 6th Distributed Memory Computing Conference, April 1991.

[14] Barbara Chapman, Piyush Mehrotra, and Hans Zima. Vienna FORTRAN { A Fortran Language Ex-
tension for Distributed Memory Multiprocessors. In High Performance FORTRAN Forum, Houston,
Texas, January 1992.

[15] S. Chatterjee, J. Gilbert, F. Long, R. Schreiber, and S. Teng. Generating local addresses and
communication sets for data-parallel programs. In Proceedings of Principles and Practice of Parallel
Programming, pages 149{158, San Diego, CA, May 1993.

[16] S. Chatterjee, J. Gilbert, R. Schreiber, and S. Teng. Optimal evaluation of array expressions on
massively parallel machines. Technical Report CSL-92-11, XEROX Palo Alto Research Center,
December 1992.

[17] S. Chatterjee, J. Gilbert, R. Schreiber, and S. Teng. Automatic array alignment in data-parallel
programs. In Proceedings of the 20th Annual ACM Symposium on Principles of Programming Lan-
guages, 1993.

[18] S. Chatterjee, J. Gilbert, R. Schreiber, and S. Teng. Optimal Evaluation of Array Expressions on
Massively Parallel Machines'. Technical report, Xerox Corporation, Palo Alto Research Center,
December 92.

[19] Marina Chen. A Parallel Language and its Compilation to Multiprocessor Machines. In 19th Annual
Symposium on Principles of Programming Languages, January 1986.

[20] Marina Chen, Young-il Choo, and Jingke Li. Theory and pragmatics of generating e�cient parallel
code. In Parallel Functional Languages and Compilers, chapter 7. ACM Press and Addison-Wesley,
1991.

[21] Marina Chen and James Cowie. prototyping Fortran-90 Compilers for Massively Parallel Machines.
In Proceedings of the ACM SIGPLAN'92 Conference on Programming Language Design and Imple-
mentation, June 1992.

[22] Marina Chen and Yu Hu. Optimizations for Compiling Iterative Spatial Loops to Massively Parallel
Machines. In Proceedings of the 5th Workshop on Languages and Compilers for Parallel Computing,
New Haven, CT, 1992.

34

[23] The Connection Machine CM-5 Technical Summary. Technical report, Thinking Machines Corpora-
tion, 1991.

[24] CM Fortran Reference Manual. Thinking Machines Corporation, Cambridge, Massachusetts, July
1991.

[25] C* User's Guide and Programming Guide. Thinking Machines Corporation, Cambridge, Mas-
sachusetts, November 1990.

[26] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, and E. Santos. Logp: Towards a real-
istic model of parallel computation. In Proceedings of the Fourth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, San Diego, CA, May 1993.

[27] A. L. Fisher and A. M. Ghuloum. Parallelizing complex scans and reductions. In Proceedings of the
ACM SIGPLAN'94 Conference on Programming Language Design and Implementation, 1994.

[28] Forge 90 DistributedMemory Parallelizer: User's Guide. Technical report, Applied Parallel Research,
1992.

[29] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran D
Language Speci�cation. In High Performance FORTRAN Forum, Houston, Texas, January 1992.

[30] Geo�rey C. Fox, Mark A. Johnson, Gregory A. Lysenga, Steve W. Otto, John K. Salmon, and
David W. Walker. Solving Problems on Concurrent Processors. Prentice Hall, 1988.

[31] Anwar M. Ghuloum. Compiling Recurrent and Irregular Serial Code for High Performance Computer.
PhD thesis, Carnegie-Mellon University, 1996.

[32] J. Gilbert and R. Schreiber. Optimal Expression Evaluation for Data Parallel Architectures. Journal
of Parallel and Distributed Computing, 13(1), September 1991.

[33] C. Gong, R. Gupta, and R. Melhem. Compilation techniques for optimizing communication in
distributed memory systems. In Proceedings of International Conference on Parallel Processing, St.
Charles, IL, August 1993.

[34] M. Gupta, E. Schonberg, and H. Srinivasan. An uni�ed data-
ow framework for optimizing com-
munication. In Proceedings of 7th Workshop on Languages and Compilers for Parallel Computing,
Ithaca, NY, August 1994.

[35] J. Harris. Compiling High Performance Fortran for Distributed-Memory Systems. Digital Technical
Journal, 7(3), 1995.

[36] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling fortran d for mimd distributed-memory
machines. Communications of ACM, 35(8):66{80, August 1992.

[37] Ching-Tien Ho. Optimal Communication Primitives and Graph Embeddings on Hypercubes. PhD
thesis, Department of Computer Science, Yale University, 1990.

[38] High Performance Fortran Language Speci�cation. Technical report, Rice University, Houston Texas,
May 1993.

[39] G.H. Hwang, J.K. Lee, and D.C. Ju. An array synthesis scheme to optimize fortran 90 programs.
In Proceedings of Principles and Practice of Parallel Programming, April 1995.

35

[40] D.C. Ju, C.L. Wu, and P. Carin. The synthesis of array functions and its use in parallel computation.
In Proceedings of International Conference on Parallel Processing, 1992.

[41] S.D. Kaushik, C.H. Huang, and P. Sadayappan. Compiling array statements for e�cient execution
on distributed memory machines: two-level mappings. In Proceedings of 8th Workshop on Languages
and Compilers for Parallel Computing, August 1995.

[42] K. Kennedy, N. Nedeljkovic, and A. Sethi. A linear-time algorithm for computing the memory
access sequence in data-parallel programs. In Proceedings of the 5th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Santa Barbara, CA, July 1995.

[43] B. Leasure. The parafrase project's fortran analyzer. Technical Report 85-504, Dept. Computer
Science, University of Illinois at Urbana Champaign, 1985.

[44] Jingke Li. Compiling Crystal for Distributed Memory Machines. PhD thesis, Dept. of Computer
Science, Yale University, 1991.

[45] Jingke Li and Marina Chen. Generating Explicit Communication from Shared-Memory Program
References. In Supercomputing, pages 865{876, 1990.

[46] Jingke Li and Marina Chen. Proceedings of the Workshop on Programming Languages and Compilers
for Parallel Computing, chapter Automating the Coordination of Interprocessor Communication.
MIT Press, 1990.

[47] Jingke Li and Marina Chen. The data alignment phase in compiling programs for distributed-memory
machines. Journal of Parallel and Distributed Computing, 1991.

[48] John Merlin, Bryan Carpenter, and Tony Hey. shpf: A subset high performance fortran compilation
system. Dept. Electronics and Computer Science, University of Southampton, 1996.

[49] S. S. Pinter and R. Y. Pinter. Program optimization and parallelization using idioms. In Proceedings
of Principles of Programming Languages, 1990.

[50] R. Ponnusamy, R. Thakur, A. Choudhary, and G. Fox. Scheduling Regular and Irregular Commu-
nication Patterns on the CM-5. In Proceedings of Supercomputing '92, 1992.

[51] T. Ponnusamy, A. Choudhary, and G. Fox. Communication Overhead on CM5: An Experimental
Performance Evaluation. In Proceedings of Frontiers '92, 1992.

[52] X. Roden and P. Feautrier. Detection of recurrences in sequential programs with loops. In Lecture
Notes in Computer Science, vol. 694, 1993.

[53] Gerald H. Roth. Optimizing Fortran90D/HPF for Distributed-Memory Computers. PhD thesis, Rice
University, 1997.

[54] K.S. Gupta S, S.D. Kaushik, C.H. Huang, and P. Sadayappan. Compiling array statements for
e�cient execution on distributed memory machines: two-level mappings. Journal of Parallel and
Distributed Computing, (32):155{172, 1996.

[55] T. Schmiermund and S. R. Seidel. A Communication Model for the Intel iPSC/2. Technical report,
Michigan Technological University, 1990.

36

[56] James M. Stichnoth. E�cient compilation of array statements for private memory multicomput-
ers. Technical Report CMU-CS-93-109, School of Computer Science, Carnegie Mellon University,
February 1993.

[57] J.M. Stichnoth, D. O'Hallaron, and T.R. Gross. Generating communication for array statements:
Design, implementation, and evaluation. Journal of Parallel and Distributed Computing, 21(1):150{
158, April 1994.

[58] A. Thirumalai and J. Ramanujam. Fast address sequence generation for data-parallel programs using
integer lattices. In Proceedings of the International Parallel Processing Symposium, 1995.

[59] Cmssl for cm fortran (cm-5 edition), version 3.1. Technical report, Thinking Machines Corporation,
June 1993.

[60] Chau-Wen Tseng. An Optimizing Fortran D Compilers for MIMD Distributed-Memory Machines.
PhD thesis, Rice University, 1993.

[61] M. Wolf and M. Lam. Maximizing parallelism via loop transformations. In Proc. 3rd Workshop on
Programming Languages and Compilers for Parallel Computing. UC. Irvine, 1990.

[62] M. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of the ACM SIGPLAN'91
Conference on Programming Language Design and Implementation, pages 30{44, Toronto, Ontario,
Canada, June 1991.

[63] M.J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, 1989.

[64] Jan-Jan Wu. An interleaving transformation for parallelizing reductions for distributed-memory
multiprocessors. The Journal of Supercomputing, to appear, 1999.

[65] Jan-Jan Wu and Marina Chen. An algebraic machinery for optimizing data motion for hpf. to appear
in Scienti�c Programming, Vol. 6, No. 4, 1997.

[66] J. Allan Yang and Young-il Choo. Parallel-program transformation using a metalanguage. In Proceed-
ings of The Third ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
Williamsburg, Virginia, pages 11{20, April 1991.

[67] H. Zima and B. Chapman. Compiling for distributed memory systems. In Proceedings of the IEEE
Special Section on Languages and Compilers for Parallel Machines, pages 264{287, February 1993.

37

