
A Parallel Viterbi Decoding Algorithm

J.S. Reeve

Department of Electronics and Computer Science

University of Southampton

Southampton SO17 1BJ, UK

email jsr@ecs.soton.ac.uk

July 21, 2000

Abstract

In this paper we express the Viterbi algorithm as a matrix-vector

reduction in which multiplication is replaced by addition and addition

by minimisation. The resulting algorithm is then readily parallelised

in a form suitable for implementation on a systolic processor array.

We describe the algorithm for BCH codes which have a task graph

with valence restricted to four inputs and four outputs. The method

is also applicable to convolution codes but the complexity of the task

graph increases with the number of input bits for these codes. Results

for BCH codes are given for two general purpose parallel machines,

an IBM SP2 and a Meiko CS2.

Keywords Trellis decoding, Viterbi decoding, BCH codes.

1 Introduction

Ever since Shannon's[1] development of information theory and the realisa-

tion that real noisy communications channels can be made to behave as if

1



Reeve: A Parallel Viterbi Decoding Algorithm 2

they were perfect, there has been a concerted e�ort to �nd e�ective error cor-

recting codes that allow the channel capacity to approach that of the Shannon

limit. This is particularly important when bandwidth is expensive such as

deep-space applications or mobile phones[10, 13] for both error correction

and channel equalisation[15] as well as digital audio broadcasting[21]. The

technique is also used for image enhancement[17, 18]. Sophisticated codes,

however, do not always, or often, lend themselves to simple algebraic de-

coding methods. For this reason state transition machine based decoding

algorithms, of which the Viterbi algorithm[2] is the best known example,

have become very important. For short codes, which append few parity bit-

s and consequently have limited error correction capability, extending the

Viterbi trellis in time and allowing decoding to operate in pipeline manner is

suÆcient. However, when an extended error correction capability is required,

the number of reachable states in such a decoding machine grows exponen-

tially with the number of appended parity bits, and so direct implementation

in hardware is not feasible[11, 12].

The Viterbi algorithm was developed as an asymptotically optimal decoding

algorithm for convolution codes. It is nowadays commonly also used for de-

coding block codes since the usual[3, 4] algebraic decoding methods are not

always readily adaptable for soft decoding. In soft decision decoding the mo-

dem returns a measure of the relative probability that the data bit is a 0 or a

1. In these circumstances Viterbi decoding of Bose-Chaudhuri-Hocquenghem

(BCH)[5, 6] and convolution codes codes is found to be eÆcient and robust

for small codes. We illustrate the Viterbi algorithm for hard decision decod-

ing (data bits are delivered as either 0 or 1) only, as the adaption to soft

decision decoding is trivial.

Although the Viterbi algorithm is simple it requires O(2L) words of memory,

where L is the length of the generating shift register in bits, which conse-

quently has 2L states. In practical situations it is desirable to select codes

with the highest minimum Hamming distance that can be practicably de-

coded and an increased minimum Hamming distance dmin implies a longer

shift register. Hence it is desirable to have a parallel Viterbi decoder that

distributes the memory requirements among processors.

We describe our method for BCH codes as these are more complex than the

convolution decoding, principally because of the presence of feedback in the



Reeve: A Parallel Viterbi Decoding Algorithm 3

generating shift register. The parallelisation strategy for convolution codes

is the same as that for BCH codes.

2 The Sequential Viterbi Algorithm

BCH codes are a class of cyclic codes that append n � k parity bits to a

message of k bits so that each code word is n bits long. The code parameters

(n; k; dmin) are of the form n = 2m � 1, n � k � mt and the minimum

Hamming distance is dmin � 2t+1. The codes are speci�ed by their generator

polynomials in GF (2) which has the general form g0+g1D+ � � �+gn�kD
n�k.

The encoding process is usually described in terms of a shift register. The

general setup is shown in Figure 1 in which switches s0 and s1 are closed

and s2 open for the �rst k cycles while the message mk of length k is input.

For the next n � k cycles switch s2 is closed and switches s0 and s1 are

open so that the transmitted message consists of the message bits followed

by the parity bits. In Figure 1 the lines represent wires and the + symbols

are exclusive or gates. The gi on the feedback connections indicate that the

wire is present if, and only if, gi = 1, and the labels ri are the shift register

bits. The entire device has a common clock and the arrows represent the

movement of data on each cycle.

+ + + + +

g g g

r r r r

g gg0 1 2 n-k-1 n-k3

s

s
sm

c
k

n

0

2

1

0 1 2 n-k-1

Figure 1: Shift Register Encoding using BCH Codes

Although it is possible to program the functionality of the shift register en-

coder for a software simulation of the encoding process, it is more convenient



Reeve: A Parallel Viterbi Decoding Algorithm 4

to generate the state transition matrix which is necessary to implement the

Viterbi decoder.

The state transition table has entries that are labeled by the state number -

the base 10 number represented by the bit reversal of the shift register bits.

The state transition table for the BCH code (7,4,1) with generator D3+D+1

Table 1: The State Transition Table for the 7-4-3 BCH Code

in0 in1 State out0 out1
0 4 0 0 3

5 1 1 2 1

1 5 2 4 7

4 0 3 6 5

2 6 4 3 0

7 3 5 1 2

3 7 6 7 4

6 2 7 5 6

is shown in Table 1, in which for example state 4 goes to state 3 when a 0 bit

is output and to state 0 when a 1 bit is output. Likewise state 4 is arrived

at when state 2 outputs a 0 bit and also when state 6 outputs a 1 bit.

The sequential Viterbi decoding algorithm is best illustrated by example

and by constructing the corresponding trellis diagram.

Figure 2 shows the decoding paths for the input sequence f0; 0; 0; 0; 0; 0; 0g.

The state number on the left hand side represents the state of the encoding

shift register (bit reversed with respect to Figure 1). The error corrected

path is the one that starts and ends in state 0. Thick lines (with larger

arrow heads) in the Figure 2 are the path branches for input bit 0 and thin

lines are the path branches for the input bit 1. The weight of a path is its

Hamming distance from the input stream, which in this case is simply the

number of thin lines that it contains. Some of these weights are indicated

by italic numbers on the diagram. Where more than one path meets at a

node the one with the lowest weight is selected and the others discarded

since these cannot result in complete paths with lesser weight. If paths at a



Reeve: A Parallel Viterbi Decoding Algorithm 5

0

1

2

3

5

6

7

step 0 1 2 3 4 5 6 7
bit stream 0 0 0 0 0 0 0
state

4

1 1 1 1 3 3 3

2 2 2 2

Figure 2: The Viterbi Trellis for the BCH (7,4,3) Code with Input Sequence

f0,0,0,0,0,0,0g

node in the trellis diagram have equal weight then an arbitrary decision has

to be made. In Figure 1 the state machine starts o� in state 0 and a 0 is

received and two possible paths are generated. One with Hamming weight

0 leaves the machine in state 0, and the other of Hamming weight 1, leaves

the machine in state 1. For this latter path the presumption is that the

received 0 was transmitted as a 1. We continue in this manner for n time

steps, remembering all paths that are correctable, that is all paths that have

Hamming weight less than or equal to dmin. Because of the policy of keeping

only one path in a given state at a particular time, only one path at most

can possibly emerge in state 0 at time n.

3 The Parallel Viterbi Algorithm

Although the trellis representation of the Viterbi algorithm is informative, it

highlights the sequential nature of the algorithm. In this section we couch

the Viterbi algorithm in terms of a path cost minimisation problem that

is closely related to matrix multiplication. The parallel algorithm is then

constructed by row-wise partitioning of this matrix. Our method is closely

related to the parallelisation reported by Kumar [7] of Floyd's [8] minimum

cost path algorithm.



Reeve: A Parallel Viterbi Decoding Algorithm 6

We represent the state of the Viterbi trellis at a given time by a weight vector

~w, each element, ws, of which gives the Hamming weight of the current path

in state s. The special value ws = dmin indicates that there is no correctable

path through state s. As an example consider the BCH (7,4,3) code from the

previous section. At the current time the weight of the path through each

state is w = (w0; w1; � � � ; w7). To �nd the weight of the path through a given

state at the next time step we look to the state table. For instance the state

0 can be reached from the state 0 if the data bit is 0 and from the state 4 if

the input bit is 1. So the new value for the weight at the state 0 is

w0

0
=

(
minfw0; w4 + 1g on inputting 0

minfw0 + 1; w4g on inputting 1

For decoding purposes it is convenient to represent this table as a matrix

S in which the elements sij = 1 if state i can be arrived at from state j,

otherwise sij = 0. The form of this matrix for the BCH (15,7,2) code is

shown in Figure 3.

Our parallelisation strategy is equivalent to distributing the S matrix in

row-wise fashion so for the particular code shown in Figure 3 cutting the

matrix in half results in a two processor solution for which the matrix-vector

reduction is independently done on each processor although each processor

requires all of the weight vector. If we continue to bisect the S matrix

we generate more complex task graphs, so that for 8 processors the task

graph looks like Figure 4 in which the circles represent processors and the

arcs represent the transition of the paths and their Hamming weights. This

parallel decoding machine operates in lock step for n cycles for a (n; k; dmin)

code. For BCH codes the in-valence of the task graph never exceeds 4,

whereas for convolution codes the in-valence depends on the number, k, of

input bits. The task graph for all k = 1 convolution codes of any constraint

length on 8 processors is exactly that of Figure 4.

Thus our parallel Viterbi decoding algorithm for a (n; k; dmin) BCH code

consists of n matrix multiplications each of which takes time proportional

to n=p, where p is the number of processors. This gives an overall time

complexity of O(n2=p). The memory complexity of our method is O(2n�k)

because the paths and their weights must be stored for each state. The S

matrix does not need storing as it is eÆciently generated as the algorithm



Reeve: A Parallel Viterbi Decoding Algorithm 7

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5

2

2.5

3

x 10
4

nz = 65536

BCH 31 16 7 State Matrix

Figure 3: The Form of the State Transition Matrix for the BCH (31,16,7)

Code

proceeds.

4 Results

We have timed our algorithm on two di�erent general purpose parallel pro-

cessors for a variety of codes whose sizes (number of states) and task graph

valences are given in Table 2.

The �rst machine used was a Meiko CS2 which consists of 8 nodes each with

two 125MHz SPARC II processors sharing 128 Mbytes of memory. These

nodes are interconnected by a layered cross-bar switch of message latency

� 4 � 10�4 seconds and an asymptotic bandwidth of 2 32-bit Mega-words

per second when coding in C and using the MPI libraries[9] to handle the

communications. The results for this machine are shown in Table 3. There



Reeve: A Parallel Viterbi Decoding Algorithm 8

4

2 5

6

3

7

1

0

Figure 4: Task Graph for the BCH (31,16,7) Code on 8 Processors

Code No of Procs Size

(n; k; dmin) 4 8 16 2n�k

(255,239,5) 2 4 4 216

(63,45,7) 4 4 4 218

(31,11,5) 2 4 4 220

(127,106,7) 2 2 4 221

Table 2: Task graph valences of the codes used in the evaluation. The size

is the number of states for each code.

is insuÆcient memory on a single node to time the (127,106,7) code.

Code Number of Processors

(n; k; dmin) 1 2 4 8 16

(255,239,5) 41 24 16 19 19

(63,45,7) 66 35 18 8 6

(31,11,5) 98 51 25 14 12

(127,106,7) - 835 392 207 195

Table 3: Timings (in seconds) to Decode Selected Codes on the CS2

The other machine used was an IBM SP2 which consists of 16 nodes, each

with a single 166MHz RS6000 processor and 256 Mbytes of memory, intercon-

nected by a layered cross-bar switch of message latency � 2:5�10�5 seconds

and an asymptotic bandwidth of 4 32-bit Mega-words per second again when

coding in C and using the MPI libraries to handle the communications. The

results for this machine are shown in Table 4



Reeve: A Parallel Viterbi Decoding Algorithm 9

Code Number of Processors

(n; k; dmin) 1 2 4 8 16

(255,239,5) 26 29 19 18 15

(63,45,7) 13 12 11 6 4

(31,11,5) 22 18 11 9 6

(127,106,7) 259 267 174 87 86

Table 4: Timings (in seconds) to Decode Selected Codes on the SP2

5 Summary

Although from the results tables it is not always apparent that our parallel

version of the Viterbi algorithm works eÆciently, this is solely the e�ect of

the communications costs. We have demonstrated this by running all the

test cases without computing paths and weights but just passing the data.

This is diÆcult to quantify though, as the task graph changes with the num-

ber of processors. The origins of the communications costs lie in the large

message latency and contention within the cross-bar switches. Our algorith-

m is clearly systolic and could be implemented very eÆciently on a purpose

built machine. We are currently embarking on a project to construct a re-

con�gurable Viterbi decoder using FPGA technology which will provide a

machine architecture that directly maps the task graph for a particular code.

Each block of a FPGA can have separately attached memory and serial links

can be established between blocks. This will circumvent the network con-

tention problem and reduce the overhead of general purpose message passing

software.

References

[1] C.E. Shannon, \A mathematical theory of communication.," Bell Sys-

tems Technical Journal, vol. 27, pp. 379{423, 1948.

[2] A.J. Viterbi, \Error bounds for convolution codes and an asymptotical-

ly optimum decoding algorithm," IEEE. Transactions on Information

Theory, vol. 13, pp. 260{269, 1967.



Reeve: A Parallel Viterbi Decoding Algorithm 10

[3] E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill Inc, 1968.

[4] R.E. Blahut, Theory and Practice of Error Control Codes., Addison-

Wesley., 1983.

[5] R.C. Bose and D.K. Ray-Chaudhuri, \On a class of error-correcting

binary group codes.," Information and Control, vol. 3, pp. 68{79, 1960.

[6] A. Hocquenghem, \Codes correcteurs d'erreurs," Chi�res (paris), vol.

2, pp. 147{156, September 1959.

[7] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to

Parallel Computing, Design and Analysis of Algorithms, Benjamin-

Cummings., 1994.

[8] R.W. Floyd, \Algorithm 97: Shortest path.," Communications of the

ACM, vol. 5, no. 6, pp. 345, 1962.

[9] W. Gropp, E. Lusk, and A. Skjellum, USING MPI, Portable Parallel

Programming with the Message Passing Interface, MIT Press., 1992.

[10] E Biglieri, G Caire, and G Taricco, \Coding for the fading channel: a

survey," Signal Process., vol. 80, pp. 1135{1148, 2000.

[11] YN Chang, H Suzuki, and KK Parhi, \A 2-Mb/s 256-state 10-mW rate-

1/3 Viterbi decoder," IEEE J. Solid-State Circuit, vol. 35, pp. 826{834,

2000.

[12] SJ Hong and WE Stark, \Design and implementation of a low complex-

ity VLSI turbo-code decoder architecture for low energy mobile wireless

communications," J. VLSI Signal Process. Syst. Signal Image Video

Technol., vol. 24, pp. 43{57, 2000.

[13] KS Kim, IH Song, HG Kim, YH Kim, and SY Kim, \A multiuser

receiver for trellis-coded DS/CDMA systems in asynchronous channels,"

IEEE Trans. Veh. Technol., vol. 49, pp. 844{855, 2000.

[14] WC Lee, HM Park, and JS Park, \Viterbi decoding method using

channel state information in CODFM system," IEEE Trans. Consum.

Electron., vol. 45, pp. 533{537, 1999.



Reeve: A Parallel Viterbi Decoding Algorithm 11

[15] G Leus and M Moonen, \Viterbi and RLS decoding for deterministic

blind symbol estimation in DS-CDMA wireless communication," Signal

Process., vol. 80, pp. 745{771, 2000.

[16] G Masera, G Piccinini, MR Roch, and M Zamboni, \VLSI architectures

for turbo codes," IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 7, pp. 369{379, 1999.

[17] C Miller, BR Hunt, MW Marcellin, and MA Neifeld, \Image restoration

with the Viterbi algorithm," J. Opt. Soc. Am. A-Opt. Image Sci. Vis.,

vol. 17, pp. 265{275, 2000.

[18] MA Neifeld, RZ Xuan, and MW Marcellin, \Communication theoretic

image restoration for binary-valued imagery," Appl. Optics, vol. 39, pp.

269{276, 2000.

[19] K Page and PM Chau, \Improved architectures for the add-compare-

select operation in long constraint length Viterbi decoding," IEEE J.

Solid-State Circuit, vol. 33, pp. 151{155, 1998.

[20] JI Park, SB Wicker, and HL Owen, \Trellis-based soft-output adaptive

equalization techniques for TDMA cellular systems," IEEE Trans. Veh.

Technol., vol. 49, pp. 83{94, 2000.

[21] MD Shieh, CM Wu, HH Chou, MH Chen, and CL Liu, \Design and

implementation of a DAB channel decoder," IEEE Trans. Consum.

Electron., vol. 45, pp. 553{562, 1999.

[22] SJ Simmons, \An error bound for reduced-state Viterbi decoding of

TCM codes," IEEE Commun. Lett., vol. 3, pp. 266{268, 1999.

[23] CY Tsui, RSK Cheng, and C Ling, \Low power rake receiver and Viterbi

decoder design for CDMA applications," Wirel. Pers. Commun., vol.

14, pp. 49{64, 2000.


