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Abstract

Generalised matrix-matrix multiplication forms the kernel of many mathemat-
ical algorithms, hence a faster matrix-matrix multiply immediately benefits these
algorithms. In this paper we implement efficient matrix multiplication for large
matrices using the Intel Pentium single instruction multiple data (SIMD) floating
point architecture. The main difficulty with the Pentium and other commodity pro-
cessors is the need to efficiently utilize the cache hierarchy, particularly given the
growing gap between main-memory and CPU clock speeds. We give a detailed
description of the register allocation, Level 1 and Level 2 cache blocking strategies
that yield the best performance for the Pentium III family. Our results demon-
strate an average performance of 2.09 times faster than the leading public domain
matrix-matrix multiply routines and comparable performance with Intel’s SIMD
small matrix-matrix multiply routines.

1 Introduction

A range of applications such as artificial neural networks benefit from GEMM (gen-
eralised matrix-matrix) multiply routines that run as fast as possible. The challenge
is to use the CPUs peak floating point performance when memory access is funda-
mentally slow. The SIMD (Single Instruction Multiple Data) architecture of Pentium
III processors mean efficient use of the memory hierarchy is critical to being able to
supply data fast enough to keep the CPU fully utilised. In this paper we focus on the
implementation of efficient algorithms on the Pentium SIMD architecture to achieve
fast matrix-matrix multiplies of large matrices. The assembler instructions available
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provide two natural choices for the precision of the calculations: 32-bit floating point
numbers using the SSE (Streaming SIMD Extensions) and 16-bit integer numbers us-
ing MMX (Multimedia Extensions). Our SSE SGEMM code has been nicknamed
Emmerald .

GEMM forms the basis for many of the level-3 BLAS (Basic Linear Algebra sub-
routines), including LAPACK [9]. Thus any GEMM routine is immediately and easily
used in a large range of applications. In this paper we restrict ourselves to 32-bit float-
ing point SGEMM (single precision GEMM) because an integer GEMM is not part
of BLAS and would be useful only in specialised situations. However most of the
techniques discussed for Emmerald would also apply to MMX integer matrix multipli-
cation.

Two freely available research efforts in fast GEMM are PHiPAC [7] and the more
recent ATLAS [14]. Both find the best GEMM for the target architecture by gener-
ating and timing many different matrix multiply kernels, using a search algorithm to
converge to the optimal parameters. ATLAS in particular is competitive with vendor
optimised matrix multiplication routines including the Intel ASCI Option Red GEMM
which has a peak performance just 10% faster than ATLAS using double precision
GEMM [3]. Because it is freely available and shows near optimal performance, es-
pecially on Intel architectures, we compare Emmerald against the performance of AT-
LAS. Our experiments showed that ATLAS achieves a peak of 375 MFlops/s for single-
precision multiplies on a PIII @ 450MHz, or0:83�clock rate. Our matrix-matrix mul-
tiply using SIMD instructions achieves a peak of 890 MFlops/s, or1:98�clock rate.

The rest of this paper is organised as follows. Section 2 describes the GEMM
multiplication routines in general. In section 3 we introduce the concept of blocking
as the main tool used to improve memory access efficiency. Details of how we apply
blocking and low level register allocation in the case of Emmerald are presented in
section 4. Results and comparisons with ATLAS are given in section 5, followed in
Section 6 by details of an application which achieves a price/performance ratio under
USD $1/MFlop/s for distributed training of a very large scale neural network.

2 SGEMM

The GEMM (Generalised Matrix-Matrix) multiply routines form the basis of level-
3 BLAS [9]. Research into matrix-matrix multiplication aims to produce the most
efficient possible GEMM routines for a given architecture. These routines perform the
matrix operation:

C  �op(A)op(B) + �C; (1)

whereC is an(M �N) matrix,op(A) is the(M �K) matrix given byA orAT and
op(B) is the(K �N) matrix given byB orBT .

SIMD technology refers to the ability of a processor to perform asingle instruction
such as a multiply or add onmultiple data. The SSE instructions provide an obvious
way to improve matrix multiply performance since we wish to perform the same se-
quence of operations on large amounts of data. The Intel SSE assembler instructions
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allow one floating point instruction to be performed on 4 pairs of single precision float-
ing point numbers simultaneously [5]. This means up to 4 floating point numbers are in
the same stage of execution in the FPU (floating point unit) pipeline during any given
cycle. The use of special 128-bit registers to hold 4 32-bit numbers at a time restricts
the instructions to single precision, hence our efforts have been directed at producing
ablas_sgemm() compatible function rather than the more commonly used double
precisionblas_dgemm() routine.

Traditional dense (square) matrix multiply algorithms requireO(N 3) floating point
additions and multiplications. Strassen’s method reduces this complexity toO(N log

2
7)

by using a divide and conquer algorithm [11]. In practice the algorithm exhibits poor
locality making it hard to reuse data in cache [12]. To compensate for this and the
overhead incurred by recursing down to matrices of size one, a truncation point, typ-
ically aroundM = N = K = 64 is defined after which the traditional algorithm is
used. This produces a hybrid method which does not achieve the optimalO(N log

2
7).

Strassen’s method also has complications which arise when the operand dimensions
are not integer multiples of the truncation point. For these reasons and because cache
re-use is critical for keeping a SIMD CPU fully utilised, we have chosen not to imple-
ment this method. However, we expect that for sufficiently large matrices a hybrid of
Emmerald and Strassen’s method would be advisable.

3 Blocking

In a matrix multiply each element of the result matrix is generated by a dot-product,
where a sequence of floating point numbers are multiplied and accumulated, requiring
two floating point operations for each pair of numbers in the dot product operands.

The 64-bit 100 MHz bus of the PIII allows a maximum throughput of 200 million
single precision values per second from main memory. If we rely purely on main
memory to supply values, we have an upper bound of 200 MFlops/s regardless of
processor speed. Pentiums with SIMD instructions can potentially execute at a MFlop/s
rate four times their clock rate, which would consume values at a rate 9 times the
bandwidth of main memory for a 450 MHz machine. Our algorithm must take into
account the availability of L0 (registers), L1 and L2 caches to overcome the limitations
inherent in deep memory hierarchies. On the PIII the L1 data cache is 16 Kb 2-way
set-associative with a 3 cycle latency to the registers and L2 cache is a unified 512 Kb
4-way set-associative with a 6 cycle latency [3]. The maximum throughput from the
L2 cache is 900 million single precision values per second. Both L1 and L2 caches
are write back, meaning writes go to cache and main memory is only updated when
an updated cache line is overwritten. For a detailed treatment of caches and translation
lookahead buffers the reader is referred to [4, §5].

A standard matrix multiply technique for deep memory hierarchy machines (used
in [3, 7, 14]) is matrix blocking. The fundamental concept is to break a large matrix-
matrix multiply into a series of smaller matrix multiplies where the data required will
fit entirely into cache. This is illustrated in Figure 1. LetA be a matrix of dimension
(M �K) andB be a matrix of dimension(K�N). ThenC  � AB is the(M �N)

result. If we cannot fit all ofA, B andC into L1 cache simultaneously a large time
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Figure 1: Blocking matrix multiplies for improved memory efficiency.

for (x = 0; x < m; x++) { /* outer loop */
for (y = 0; y < n; y++) {

for (z = 0; z < k; z++) { /* inner loop */
c[x*n + y] += a[x*k + z]*b[z*n + y];

}
}

}

Figure 2: Naive matrix multiply code showing the outer loop and the inner loop.

penalty will be incurred each time we fetch an element, either from L2 cache, or worse,
from main memory.

Blocking aims to minimise the calls to a lower level in the memory hierarchy by
doingM=m�N=n smaller matrix multipliesa = bc, with dimensionsa � (m� k),
b � (k�n) andc � (m�n). We chosem, n andk so that the blocksa, b andc all fit
into the current cache level. Hence all the data necessary for the current block multiply
is in the same cache level and lower levels are only accessed when we move onto the
next block. Figure 1 shows how the blockc2;2 is generated from the operation:

c2;2  a2;1b1;2 + a2;2b2;2 + a2;3b3;2: (2)

If M ,N andK are not multiples ofm,n andk respectively we must treat the boundary
cases as different sized blocks or pad with zeros.

The order in which each block multiply is done is one of the blocking parameters.
Figure 2 shows how we define the order of the loops. At each level in the cache hi-
erarchy, the operation we are performing is equivalent to a matrix multiplication that
operates on blocks instead of individual elements. The standard matrix multiply has 2
loops that iterate over the elements ofC and 1 loop to iterate along a row ofA and a
column ofB. This loop performs a dot product that computes one element of the result
matrix. We define the outer loop at a cache level to be whichever of the three necessary
loops that contains the others nested within it. The inner loop at a cache level is the
most nested loop. The middle loop is implicitly whichever loop remains.

The results are accumulated inC, meaning the result is invariant under the ordering
of loops. A clever ordering can take advantage of the particular cache architecture to
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Figure 3: The cache hierarchy with the relative loads ofA & B compared to stores to
C for a write through scheme and a write back scheme.

obtain peak performance. For example, if the cache is write through any storage of a
result incx;y results in data being writtenthrough every cache layer to main memory.
The bus operations required for this write take time away from the bus operations
needed to read from theA andB matrices. In this case we would want to accumulate
cx;y in registers for as long as possible to prevent writes. However, to accumulate
like this we can generate only as many results as fit into registers. From Figure 2, the
only way to limit the number of results being generated in the innermost loop is to
iterate alongax;1:::K=k b1:::K=k;y , i.e. we do a dot product to generate a single result
cx;y, hence avoiding any write backs until the end of the dot product becausec x;y can
remain in a register. Figure 3 shows the write through case on the left side, with many
reads ofA andB for few writes ofC. If the cache is write back, writes only go to L1
and we can write from registers without using the main-memory bus. Thus it might be
preferable to hold as manyA andB elements in registers as possible, while generating
and writing back all theC values theA andB elements contribute to. This would
minimise the reads ofA andB values, another way of reducing bus traffic. Figure 3
shows the write back case on the right, with many writes ofC to L1 for few reads of
A andB. To do this in Figure 2 we would move the inner loop to the outer loop, while
the order of the other two loops will depend on other factors. In Emmerald we try to
minimise both the reads fromA andB as well as write backs toC.

Blocking can be made hierarchical to suit the hierarchical nature of the memory
architecture. Thus if the blocksa, b andc reside entirely in L2 cache, we can further
sub-block them intoa0, b0 andc0 which reside entirely in L1 cache. Finally we must
decide which elements ofa0, b0 andc0 to put in which registers to minimise all calls to
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Parameter Description
M Rows ofA. Fixed.
N Columns ofB. Fixed.
K Columns ofA and rows ofB. Fixed.
m # of rows to block fromA into L2.
n # of columns to block fromB into L2.
k # of columns fromA and rows fromB to block into L2,

mk + kn+mn elements should fit into L2.
L2outer Do we incrementx or y or z in the outer loop ofax;yby;z.
L2inner Do we incrementx or y or z in the inner loop ofax;yby;z.
m

0 # of rows to block fromax;y into L1.
n

0 # of columns to block fromby;z into L1.
k

0 # of columns fromA and rows fromB to block into L1,
m

0
k

0 + k
0
n

0 +m
0
n

0 elements should fit into L1.
L1outer Do we incrementx or y or z in the outer loop ofa 0

x;yb
0

y;z.
L1inner Do we incrementx or y or z in the inner loop ofa 0

x;yb
0

y;z.
L0 How do we allocate registers.

Table 1: Summary of blocking parameters for a 2 level cache architecture.

memory. This depends mainly on the number of registers available. Table 1 summaries
the parameters to consider for blocking.

The behavior of the TLB (translation look-aside buffer) must also be taken into
account when planning a blocking strategy. A new TLB entry must be created when a
virtual address for a newly loaded page is referenced for the first time. If TLB misses
are ignored performance drops of up to 30% have been observed for large matrices [2].
The way to minimize these misses is to limit the number of virtual addresses used by
buffering parts of the matrix into a contiguous address space.

4 Floating-Point SIMD

This section describes the algorithm for using the floating point SIMD instructions to
perform matrix-matrix multiplication. Special attention is paid to the blocking strategy
applied. We start by describing the floating point Intel SIMD architecture. Then we
discuss why the obvious approach of adding SIMD parallelism to ATLAS does not
work, before presenting Emmerald beginning with register allocation and working up
through L1 cache and L2 cache organisation.

4.1 Floating Point SIMD Pipeline

There are 8 128-bit specialxmm registers on which the SSE instructions operate. The
instructions in Table 2 are used at the lowest level in Emmerald to implement matrix-
matrix multiplication. ThePS suffix on most of the instructions indicates that the
operation isparallel scalar, meaning the operation works on four 32-bit floating point
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Instruction Cycles Description
MULPS 5 Multiply four floating point numbers.
ADDPS 3 Add four floating point numbers.
MOVUPS >3 Move four floating point numbers to memory.
MOVAPS >3 Move four floating point numbers to memory

aligned on a 128-bit boundary.
SHUFPS 3 Shuffle four floating point numbers around in reg-

isters.
MOVHLPS 3 Shuffle and copy the high pair of values to the low

pair in a new register.
MOVLHPS 3 Shuffle and copy the low pair of values to the high

pair in a new register.
ADDSS 3 Add the first floating point number only.
MOVSS >3 Move the first floating point number to memory.
PREFETCHT0 N/A pre-fetch 32 bytes into L1 cache starting at mem.

Does not cause processor stalls.
CPUID 1 Report on the availability of SIMD instructions.

Table 2: Summary of the floating point SIMD instructions used.

numbers in parallel. We cannot pre-determine how long a memory access will take.
We only know that the minimum time to fetch data is 3 cycles, which occurs when the
data resides in L1 cache.

The Intel FPU pipeline is organised in such a way that one floating point instruction
can be issued per cycle as long as multiplies are followed by an add and there are no
stalls due to register dependencies. The theoretical CPI (cycles per instruction) should
be 1.0 on the code from Figure 4 since it follows the MULPS–ADDPS sequence and
there are no dependencies shorter than the pipeline (up to 5 cycles for multiplies).
However, our experiments have shown that this code, when unrolled 8 times and timed
over several million iterations, achieves a CPI of 1.3, or 1350 MFlops/s on a 450 MHz
CPU. The code is unrolled to amortise the extra cycles taken to do the jump at the
end of each loop. If we unroll sufficiently we observe no change in the CPI upon
unrolling further. This places an upper bound on the MFlops/s achievable for matrix
multiplication assuming all the data can be stored in registers and dependencies are
ignored. A possible explanation for the high CPI is the PIII’s lack of a dedicated 4-way
SIMD FPU. Instead has two 2-way units that cannot always function in parallel [10].

4.2 Converting ATLAS

ATLAS provides a state of the art SGEMM routine. The code for which is freely
available [13]. Our first effort at applying the SIMD instructions was to re-write the
kernel of ATLAS. The kernel uses a square matrix-matrix multiply of sizem = n =

k < NB , assuming all the data can to fit into L1 cache. A search algorithm then
computes the best value ofNB and how to arrange kernel multiplies to suit the memory

7



MULPS(1, 1);
ADDPS(2, 2);
MULPS(3, 3);
ADDPS(4, 4);
MULPS(5, 5);
ADDPS(6, 6);
MULPS(7, 7);

Figure 4: Optimal SIMD code for maximum MFlops/s

hierarchy of the target architecture. The re-write of the ATLAS kernel produced an
improvement of 1.75 times over the non-SIMD kernel. However, we found that a
much faster kernel matrix-multiply could be obtained using narrow rectangular blocks.
Hence we developed Emmerald as as a complete SGEMM implementation.

4.3 L0 (Register) Blocking

Because the PIII SIMD instructions are performing 4 operations in parallel the problem
of how to supply data to the processor fast enough to keep the FPU fully utilised is
exacerbated four-fold. We must devise a scheme to minimise the ratio of memory
accesses to floating point operations. This is done with two core strategies:

� accumulate results for as long as possible to reduce write backs;

� re-use values in registers as much as possible.

The authors of [3] perform multiple dot-products to achieve this. Each dot product
generates:

Ci;j  Ai;1B1;j +Ai;2B2;j + : : :+Ai;KBK;j : (3)

We took the same approach and found by trial and error that the optimal number of
dot-products to do simultaneously is 5. Figure 5 shows how the dot products progress.
Each small black circle represents an element in the current matrix block. Each dashed
square represents one floating point value in axmm register. Thus 4 dotted squares
together form one 128-bitxmm register.

xmm0 keeps the next 4 values from thea 0 row we are operating on. Two registers
(xmm1 andxmm2) alternately keep 4 values from each of the 5 columns of theb

0 (L1
block), we are operating on. The use ofxmm1 andxmm2 in an alternating fashion
allows one register to be loading a value while the other is involved in floating point
operations. The remaining 5 registers accumulate the results, hence using all 8xmm
registers. Figure 6 shows all the operations performed in one iteration of the innermost
loop. It can be clearly seen that 8 floating point operations are done on each column
from b

0 during each iteration, giving a total of 40 flops per iteration. This Figure also
represents the L0 block, the equivalent of a vector-matrix multiply of dimension1 �

4 � 5. The vector-matrix multiply inner assembler loop is shown in Figure 10. The
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xmm3 4 5 6 7 xmm1    2       1 2 1

xm
m

0

xmm3 4 5 6 7 xmm1    2       1 2 1

Iteration 2

Iteration 1
xm

m
0

C BA

C BA

Figure 5: Allocation ofxmm registers, showing progression of the dot products which
form the innermost loop of the algorithm.

9



xm
m

0

xm
m

0

xm
m

0

xm
m

0

xm
m

0
xm

m
3

xm
m

3

xm
m

2

xm
m

1

xm
m

1

xm
m

5
xm

m
5

xm
m

6
xm

m
6

xm
m

7
xm

m
7

xm
m

4
xm

m
4

xm
m

1

xm
m

2

B

C

A

b
0 column 1 b

0 column 2 b
0 column 3 b

0 column 4 b
0 column 5

a0
1;4

c0
1;1

c0
1;1

c0
1;1

b0
4;1

b0
3;1

b0
1;1

b0
1;2

b0
3;2

b0
4;2

c0
1;1

c0
1;2

c0
1;2

c0
1;2

c0
1;2

b0
2;1

a0
1;1

0a1;2a0
1;3

a0
1;4

a0
1;1

a0
1;3

a0
1;2

b0
2;2

Figure 6: Floating point operations performed in one iteration of the innermost loop.

a
0 row is fetched in line 2, and the 5b 0 columns are fetched alternately intoxmm1 and
xmm2 in lines 3, 4, 7, 10, and 13. Note that the results are not stored back immediately
but continue to be accumulated intoxmm3,4...7.

Loads of theb0 values are usually done with greater than 3 cycles between the load
and use. This accounts for the 3 cycle latency between L1 cache and registers. Loads
from a

0 are done once for the next 40 floating point operations with at least 3 cycles
before their first use. This can be seen in Figure 10 where thea

0 value is loaded in line 2
then it is not used until line 5. Other techniques used to improve pipeline performance
are:

� The b0 block is buffered into an area of memory assumed to be in L1 cache
constantly (to be discussed further in section 4.4). This has the further advantage
of reducing TLB misses [2].

� Theb0 values in the buffer are all aligned on 128-bit boundaries to allow use of
the faster MOVAPS call instead of the MOVUPS call (see Table 2).

� The next 8a0 values in the row are pre-cached into L1 cache approximately 66
instructions in advance. This can be seen in line 1 of Figure 10. The placement
of thePREFETCHT0 commands was done by trial and error as recommended by
Intel [5].

� Code generation is used to completely unroll the assembler loop (Figure 10) for
all allowable values ofk 0. Care must be taken to ensure this does not overflow
the L1 instruction cache.

Data shuffling must sometimes be done on thexmm registers to re-order the four float-
ing point values. This is required if the four results in a register are accumulated into
one, or the four results must be written back to non-contiguous memory. Shuffling is
an expensive operation and acceptable results are only achieved if shuffles are rare.

At the end of the dot-product we have 5 registers which hold 5 elements of the
result matrix to be accumulated intoC. However these registers each hold four values
that must first be summed into one before the result is written back. This process is
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b + d

c+ a+

b+ d

c+ a+

d c b a b a b a

d+ b c+ a d + b

3 2 1 0

S : (3! 2)
X X X X X

X X X

X X X

X = don’t care

S : (2! 0)

S : (0; 1! 2; 3)

S : (i! j) = shuffle from i to j

Figure 7: Shuffling operations required to accumulate parallel results into one scalar
value.

illustrated in Figure 7. A minimum of 3 shuffle instructions are required, each taking a
minimum of 3 cycles. Starting with onexmm register to be accumulated, a copy is made
shuffling the low pair into the high pair. This copy is added in parallel to the original. A
copy is made of the result, shuffling value 3 into value 2, before being added to the first
result. Now we have the accumulated result in position 2, which is shuffled to position
0 to allow access by theMOVSS instruction. Note that if we shuffle the high pair into
the low pair in the first step, we avoid the final shuffle. However, limitations of the
SHUFPS instruction do not allow this. The overhead of this procedure is minimised by
putting off the shuffling and write back for as long as possible using long dot products.

4.4 L1 Blocking

The L1 data cache is 16Kb 2-way set associative. This means there are two banks of
cache, each of which can hold 2048 single precision values in one cache bank. The line
of the cache bank into which a value is inserted is determined by the least significant
bits of its address. If that line in the cache is already used in both banks, i.e. two values
already share addresses with the same least significant bits, then the value is loaded
into the least recently accessed bank [3]. We cannot assume 100% utilisation of both
cache banks for matrix data is possible because at any one time there are intermediate
variables and old data in the cache over which we have no control. It is safer to assume
that we can fully utilise one bank with matrix data. We do this by ensuring the matrix
data has contiguous addresses so that every element has different least-significant bits,
hence making sure no matrix data overlaps in cache [2]. This leaves a cache bank
free to hold sundry matrix data and variables without fear of our matrix data being
constantly ejected from the cache. There is still a small chance that some matrix data
will be ejected if, for instance, there are two or more intermediate variables which map
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Figure 8: L1 Blocking Scheme.

to the same cache line as some of the matrix data. The random replacement policy
prevents us from putting the matrix data into just one bank, but we are ensuring that we
only use one of the two cache lines available for an address.

To hold just thea0 andb0 matrices in L1 permanently we have a maximum length
of k0 = 341 for the dot products. Because the innermost loop computes 4 elements of
each dot product, we choose a multiple of four for the column length. In fact we unroll
the inner loop by a multiple of four times so we want an overall multiple of 16 fork

0,
up to a maximum of 336.

Sinceb0
� (336 � 5) is large compared toa0

� (1 � 336), b0 is buffered into L1
cache. We want to re-loadb0 rarely, so L1outer as defined in Table 2 moves along 5
columns ofb0 at a time. L1inner iterates over one row ofa at a time. We rely on the
pre-fetching to get thea0 values into L1 ahead of time. This is shown in Figure 8. To
summarise:

� m
0 = 1,

� n
0 = 5,

� k
0
� 336,

� L1inner = rows ofa,

� L1outer= columns ofb.

4.5 L2 Blocking

The L2 cache is 512Kb, 4-way set associative. We set L2inner to takek columns of
A (and hencek rows ofB) at a time. This is the inner loop because it allows ac

block to be completely read into L2 from main memory, written back by the CPU and
then stored to main memory before the nextc block is accessed. Eachc block is only
touched once each perblas_sgemm() call. This is important because it minimises
the amount of theC matrix that we need in L2 cache at any one time, hence minimising
conflicts with thea andb blocks and main memory transactions. If we move this loop
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to L2outer or the L2 middle loop, we would generate results which map into multiple
c blocks, hence requiring multiplec blocks to be in L2 cache which would increase
conflicts. Put another way, caches require tight temporal or spatial locality to work
effectively and our choice of L2inner forces the result addresses generated to have good
locality. A useful heuristic is to loop over the largest block in the outer loop and the
smallest in the inner loop [15]. This reflects the idea that we should re-read the largest
block rarely. Thec block is the smallest in L2 so we have additional motivation to
iterate over it in the inner loop. We avoid readingC at all if � = 0 (3).

Now we choose L2outer, the outermost loop of the entire algorithm. The two alter-
natives are to loop alongm rows ofA or n columns ofB per iteration. Note that we
buffer only b0 into L1 cache, relying on pre-fetching to get thea 0 values from L2 to
L1. Thus it is more important thata values be in L2 thanb values, sinceb 0 values are
assumed to be in L1. According to the LRU (least recently used) replacement policy
of the Intel cache [3], the data most recently read is more likely to be in L2 than older
data. Thus L2outer should loop alongn columns ofB per iteration, leaving the middle
loop of the L2 blocking to move alongm rows ofA, hence readinga values more
frequently thanb values. If reading thea values ejectsb values from L2 cache, we do
not incur too large a penalty due to the rarity of such reads as discussed in Section 4.4.
This argument only holds ifa andb blocks contain an equal number of elements, oth-
erwise we fall back on our heuristic and put the larger block in the outer loop. Figure 9
illustrates this blocking fork = 336. We choosem, n andk to be multiples of the L1
blocking parameters to avoid extra boundary cases for every L2 block.

We might consider buffering each L2 block in the same way we bufferedb
0 in L1.

Then we guarantee thata, b andc do not conflict in L2 cache (ignoring a few sundry
variables), recalling from Section 4.4 that contiguous memory less than the size of a
bank will be placed into non-overlapping cache lines. Without buffering we cannot
assume that the memory used for a block is contiguous since a block is taken from
different spans of the main memory allocated to a matrix. Buffering also decreases
TLB misses. Emmerald combines L1 and L2b buffering into one process. At the
start of thesgemm() call theb matrix is copied into block major order, at the same
time performing the constant� multiplication and preparation for L1 buffering which
requires alignment and re-ordering of elements within L1 blocks to fit the preferred
assembler loop access pattern. This requires memory and time overhead which makes
Emmerald inefficient for small matrices. ATLAS uses the same technique without the
re-ordering of individual elements in L1 blocks [15].

Empirically we determined that utilisation of approximately 70% of the L2 cache is
optimal. Due to varying PIII L2 cache sizes, theusable L2 cache size is a runtime tun-
able parameter and L2 blocking dimensions are determined at runtime. We first choose
the largestk � 336 such thatk (nearly) evenly dividesK. Thea andb dimensions are
then chosen to keep thea andb blocks the same size while filling the usable L2 cache.
Allowing a andb to be different sizes reduced performance.

Our experiments showed that including L2 blocking allows average performance
levels to be maintained across operands too big to fit into L2. To summarise:

� k
0 = k � 336

� L2inner = columns ofA, rows ofB,

13



M

k = 336

c
a

b

B

N

AC

100

m =

k = 336

n = 100

Figure 9: L2 Blocking Scheme

� L2outer= columns ofB.

5 Results

Our experiments were carried out on PIII processors running Linux kernel 2.2.12. For
the floating point experiments a kernel patch was necessary to activate the floating
point SIMD instructions and registers. All code was written usinggcc with inline
assembler calls to new instructions. Version 2.9.1 or better ofgas is required to use
these instructions.

The performance of Emmerald was measured by timing matrix multiply calls with
sizeM = N = K = 16 up to 700. The following steps were taken to ensure a
conservative performance estimate:

� wall clock time on an unloaded machine is used rather than CPU time;

� the stride of the matrices, which determines the separation in memory between
each row of matrix data, is fixed to 700 rather than the optimal value (the length
of the row);

� caches are flushed between calls tosgemm().

Figure 11 shows Emmerald’s performance compared to ATLAS and a naive three-
loop matrix multiply. The average performance of Emmerald after size 100 is 760
MFlops/s or1:69�clock rate of the processor and 2.09 times faster than ATLAS. A
peak rate of 890 MFlops/s is achieved whenm = n = k = stride = 320. This
represents1:98�clock rate. On a PIII 550 MHz we achieve a peak of 1090 MFlops/s,
demonstrating scaling of performance with clock speed. The largest tested size was
m = n = k = stride = 3696 which ran at 940 MFlops @ 550 MHz. To put these
results in context, the naive matrix multiply implemented as shown in Figure 2 achieves
an average of 29 MFlops/s for large matrices. Thus Emmerald is 26 times faster than a
naive multiply.
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; Pre-fetch 8 A matrix values to L1
1: prefetcht0 48(ebx)

; Load four A matrix value
2: movups (esi),xmm0

; Load four B matrix values from buffer col 1
3: movaps (edi),xmm1

; Load four B matrix values from buffer col 2
4: movaps -288(ecx),xmm7

; four A values * four B values from col 1
5: mulps xmm0,xmm1

; Accumulate four values into col 1 result
6: addps xmm1,xmm2

; Load four B matrix values from buffer col 3
7: movaps -272(ecx),xmm1

; four A values * four B values from col 2
8: mulps xmm0,xmm7

; Accumulate four values into col 2 result
9: addps xmm7,xmm3

; Load four B matrix values from buffer col 4
10: movaps -256(ecx),xmm7

; four A values * four B values from col 3
11: mulps xmm0,xmm1

; Accumulate four values into col 3 result
12: addps xmm1,xmm4

; Load four B matrix values from buffer col 5
13: movaps -240(ecx),xmm1

; four A values * four B values from col 4
14: mulps xmm0,xmm7

; Accumulate four values into col four result
15: addps xmm7,xmm5

; four A values * four B values from col 5
16: mulps xmm0,xmm1

; Accumulate four values into col 5 result
17: addps xmm1,xmm6

Figure 10: SIMD code for 5 dot products of length 4
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Figure 11: Performance of Emmerald on a PIII running at 450 MHz compared to
ATLAS SGEMM and a naive 3-loop matrix multiply. Note that ATLAS does not make
use of the PIII SSE instructions.

Emmerald’s performance fluctuates considerably between consecutive matrix di-
mensions. This is due to boundary effects where we switch to a non SIMD SGEMM
(such as ATLAS) when the matrix edges blocks are too small to be efficiently com-
puted with Emmerald. ATLAS avoids these fluctuations by having separately opti-
mized small matrix code [14]. We could use SIMD small matrix code such as described
by Intel in [6], however decreased bus efficiency in the absence of long dot products
means we gain little performance over using ATLAS for this calculation. The kink in
the performance of Emmerald at dimension336 indicates the transition point where L2
caching is required to maintain performance for very large matrices.

The SIMD matrix multiply code released by Intel is for matrices up to dimension
6 � 6 [6], designed with applications such as 3D transformations in mind. This code
runs at 633 MFlops/s. How to compare this result to our SGEMM is not clear be-
cause these small matrices reside entirely in L1 cache, thus no performance penalty
is incurred from main memory accesses. On the other hand a large proportion of the
operations on small matrices are data shuffles which are not necessary when we can
do long dot-product style operations on large matrices. These data shuffles prevent us
from using the Intel code as the kernel multiply for a high-performance arbitrary ma-
trix size GEMM. Assuming that the benefits of long dot-products should outweigh the
penalty of fetching from main-memory when we correctly block our code, the compar-
ison shows that we have a reasonable performance. If this assumption is not true, then
we have excellent performance.
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6 Application to Ultra Large Scale Neural Networks

To illustrate the use of Emmerald in a real-world application, we used it as the core of
a distributed Neural-Network training algorithm for large-scale Linux clusters [1].

We performed an experiment in which a neural network with 1.8 million adjustable
parameters was trained to recognize machine-printed Japanese characters from a database
containing 6 million training patterns. The training was run onBunyip 1, a 196 proces-
sor, Linux-based Intel Pentium III cluster consisting of 98 dual 550 MHz processor
PC’s.

We trained the network in a continuous run for56 hours and52 minutes, requir-
ing a total of31:2 Peta Flops (1015 single-precision floating-point operations), with an
average performance of 152 GFlops/s (single precision). Total memory usage during
training was 38.6 GBytes. The total machine cost, including the labor cost in construc-
tion, was USD$149,500, giving a final price/performance ratio of 98¢ USD / MFlops/s
(single precision). We believe this to be the first time the $1 / MFlops/s barrier has
been broken for a supercomputing application.

7 Alternative SIMD Architectures

The blocking and memory organization techniques covered in this paper apply to all
deep memory hierarchy machines. The code that requires tailoring to specific SIMD
architectures covers the dot product style inner loops, L1 block element re-ordering,
alignment for fast 128-bit loads, L1 block dimensions and cache prefetch commands.

In principle Emmerald can be easily ported by re-writing the inner assembly loop
in Figure 10 and adjusting the L1 block sizes to suit the size of the L1 cache and the
number of registers. Other SIMD architectures are more flexible than the Pentium
SSE architecture, providing more instructions and more registers. Thus we expect
Emmerald, or similar GEMMs, implemented on alternative SIMD platforms, to exhibit
performance boosts greater than those reported in this paper. For example the Motorola
AltiVec architecture has 32 Kb of L1 data cache and 32 128-bit registers [8]. In this case
we might re-write the inner loop to use L1 blocks ofa

0
� (1�160)andb0

� (24�160).
The inner loop would also more efficient since we can use one instruction for multiply
and accumulate instead of two. Other candidate architectures for simple ports include
AMD’s 3DNow! and Sun’s MAJC [10].

8 Conclusion

We have described the construction of a fast SIMD generalised matrix-matrix multiply
for the Intel PIII architecture. Details of the assembly inner loop, L1 blocking for
SIMD architectures and L2 blocking were discussed.

The Emmerald code is available from http://csl.anu.edu.au/�daa/research.html. We
compared Emmerald to ATLAS, the leading public domain non-SIMD SGEMM. The
average performance of Emmerald is 2.09 times faster than ATLAS which equates to a

1http://tux.anu.edu.au/Projects/Beowulf/
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generalized matrix multiply running at a MFlop/s rate of 1.69 times the clock speed of
the processor.

To illustrate the use of Emmerald in a real-world application, we used it as the core
of a distributed Neural-Network training algorithm for large-scale Linux clusters. A
sustained performance of 152 GFlops/s on a 198 processor Linux Cluster was achieved,
with a price/performance ratio of 98¢ USD / MFlops/s (single precision).
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