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Abstract { Load balancing increases the e�cient use of existing resources for parallel

and distributed applications. At a coarse level of granularity, advances in runtime sys-

tems for parallel programs have been proposed in order to control available resources

as e�ciently as possible by utilizing idle resources and using task migration. Simulta-

neously, at a �ner granularity level, advances in algorithmic strategies for dynamically

balancing computational loads by data redistribution have been proposed in order to

respond to variations in processor performance during the execution of a given parallel

application. Combining strategies from each level of granularity can result in a system

which delivers advantages of both. The resulting integration is systemic in nature and

transfers the responsibility of e�cient resource utilization from the application pro-

grammer to the runtime system. This paper presents the design and implementation

of a system that combines an algorithmic �ne-grained data parallel load balancing

strategy with a systemic coarse-grained task-parallel load balancing strategy, and re-

ports on recent experimental results of running a computationally intensive scienti�c

application under this integrated system. The experimental results indicate that a

distributed runtime environment which combines both task and data migration can

provide performance advantages with little overhead. It also presents proposals for

performance enhancements of the implementation, as well as future explorations for

e�ective resource management.

1 Introduction

Resource management for applications in distributed computing environments is a complex prob-
lem. Over time, various techniques to manage resources at coarse and �ne levels of granularity have
been proposed. An essential component of resource management at each level is load balancing.
In general, individual processors may vary in performance, external workload, or data distribution.
Therefore, methods to maintain an even distribution of work are usually needed in order to obtain
good speedup and performance. In a distributed computing environment, coarse-grained strategies

�This work was supported by the National Science Foundation Grant EEC-8907070.

1



have been proposed at system level, while �ne-grained strategies have been proposed at algorithmic
level.

1.1 Systemic (Coarse-Grained) Load Balancing

Task-parallel applications that use task migration represent a coarse degree of load balancing. This
involves the transferring of a program's state from one processor to another during runtime. Task-
parallel applications have advantages such as: a natural mapping to the operating system (i.e. the
entire process is transferred) and the ability to release resources (such as workstations) back to
individual users by moving the work elsewhere and freeing up both the CPU and memory.
Systemic load balancing via task migration from heavily to lightly loaded processors is typically

coarse-grained and can be supported by two distinct methods. First, users can write their own
state-transfer routines which can be invoked by the runtime system to migrate or checkpoint a job.
Systems such as LSF [17] and DQS [29] work in this fashion. The disadvantages of these systems are
that they put the burden of checkpointing onto the application developer and therefore, the routines
must be actively maintained along with the rest of the source code. The alternative is to provide
systemic support for checkpointing and migration. Condor [30], and Hector [21] work in this fashion.
However, the Hector distributed runtime environment used in this paper is unique in the depth and
breadth of information gathered about tasks at runtime. Hector is, to the best of our knowledge,
the only runtime system which supports the migration of parallel tasks. These are capabilities
that can be exploited by data-parallel load balancers. In general, the systemic load balancing is
application independent and implemented at the system level (operating system, communications
library, or middleware) relieving the application programmer from this responsibility.

1.2 Algorithmic (Fine-Grained) Load Balancing

Algorithmic load balancing via data migration is supported by the application and is typically
�ne-grained. Data-parallel programs use data migration (or dynamic data allocation) to maintain
a balanced load and therefore are self-balancing. This represents a �ner grain of control than task
migration, because only fractions of a program state have to be moved. Tasks either can negotiate
as peers to exchange data from busy tasks to idle ones or can have a central master that allocates
data to worker tasks. Systems based on Factoring [14] and Fractiling [4][3][13] are examples of the
former, and Piranha [8] is an example of the latter.
Fractiling is a dynamic scheduling technique based on a probabilistic analysis that adapts to

algorithmic and systemic load imbalances while maximizing data locality. It draws from earlier
loop scheduling techniques where iterates are dynamically scheduled in decreasing size chunks to
reduce synchronization and has been successfully implemented in N-body simulations [4][3]. The
early large chunks have relatively little overhead and their uneven �nishing times are smoothed
over by later smaller chunks. Fractiling uses a tiling technique to optimize chunk shapes such that
data locality and reuse are maximized.

1.3 An Integrated Strategy

Advances in runtime systems for parallel programs have been proposed in order to control available
resources as e�ciently as possible. Simultaneously, advances in algorithmic methods of dynami-
cally balancing computational load have been proposed in order to respond to variations in actual
performance. The ideal runtime system should provide support for both systemic and algorithmic
strategies since they have complementary sets of advantages. The systemic coarse-grained strategy
considers all tasks from all applications on the system, while the algorithmic �ne-grained strategy
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is con�ned to individual applications. Once the programmer has expressed the algorithm to be
used, the runtime system should execute the program e�ciently, taking maximum advantage of
available resources. It may have to migrate entire tasks in order to relinquish processors back to
"owners". If it does not have to migrate an entire task, it is desirable to move only the amount of
data needed to rebalance the load. The essential point is that these load balancing strategies can
work in concert to provide additional bene�ts. The resulting integrated load balancing strategy is
systemic in nature, and therefore the burden on the applications programmer is reduced.
Hectiling [22][5] combines Hector, a distributed runtime environment which provides coarse-

grained dynamic load balancing for parallel applications on Sun and SGI workstations, with Frac-
tiling, a �ne-grained dynamic load balancing technique based on a probabilistic analysis that has
been proven to be e�ective in scienti�c applications (i.e. N-body simulations). It manages re-
sources at both levels of granularity and provides a more e�cient utilization of resources than
either technique could provide individually. This paper reports on the design and implementation
of Hectiling, and presents recent experimental results of running N-body simulations in the Hec-
tiling environment. Ongoing work on Hectiling indicates that a runtime system, combining both
task and data migration, can provide performance advantages with little overhead. The paper
presents the successes and limitations of this implementation, as well as proposes future directions
for e�ective resource management.

1.4 Organization of this Paper

This paper is organized as follows. Section x2 presents the pertinent background and related
work in the areas of systemic and algorithmic load balancing. Section x3 describes the design
and implementation of Hectiling and presents experimental results and performance enhancement
techniques. It also discusses the successes and limitations of this integrated system. Finally,
conclusions and future directions of this ongoing research are presented in section x4.

2 Background and Related Work

2.1 Related Work on Systemic (Coarse-Grained) Load Balancing

In the past years, many systems that run sequential and parallel programs on networks of work-
stations, shared memory processors (i.e., using SMPs), and massively parallel processors (MPP),
have been proposed and successfully implemented. Di�ering in their degree of sophistication and in
the methods used to balance the computational load, they o�er a variety of features and services.
A comprehensive survey of task-based job-scheduling systems has been presented by Baker, Fox
and Yau[1]. Features that such systems may contain include: scheduling of sequential and parallel
jobs, load balancing, task migration, the nature and complexity of runtime information-gathering,
and others. Only few of these systems are enhanced to support task migration, and if they do,
the migration applies only to sequential jobs. In general, migration could be supported using two
distinct methods. First, users can write their own state transfer routines which can be invoked by
the runtime system to migrate or checkpoint a task. Systems such as LSF [34] work in this manner.
The alternative is to provide support for task migration and checkpointing by the runtime system.
Systems such as Condor [30] work in this fashion.
All systems mentioned in the survey provide some degree of load balancing at task level. This

load balancing is static in nature, in the sense that at the time of launching a job, the entire system
load and the scheduling of tasks to achieve load balancing across the entire system are considered.
No further action is taken by the runtime system after launching a job if system load varies for any
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reason such as termination of another job which could translate into load imbalance of the parallel
job at hand. To the best of our knowledge, none of the systems mentioned so far in the literature
provide support for migration of parallel tasks or sequential communicating tasks. Therefore, there
is a need to design runtime systems with support for task migration that can provide dynamic load
balancing during job execution.
One of the clustering systems presented in the above mentioned survey is LSF [34]. It is a widely

used commercial package for controlling clusters. LSF works by launching utility tasks on each
candidate host to monitor usage and to provide remote job-launch capability. The usage monitor
reports to a central master, which uses the data to decide which nodes are available for running
jobs. It runs parallel jobs, supports task migration through user-level checkpointing, and gathers
node usage information. The information is used to control the initial mapping of tasks to hosts.
Another clustering system presented in the above mentioned survey and developed at University of
Wisconsin is Condor. It is a widely used public-domain cluster management software package [30].
It groups workstations into "ocks", monitors their availability, and only runs parallel jobs if they
are designed to tolerate variable numbers of hosts during execution. Workstation load average is
used for allocation and the system can either migrate tasks (with system-level checkpointing) or
kill them when the workstation becomes busy with external applications. Condor and LSF systems
use a distributed architecture design. In addition, both use relatively coarse load information for
initial allocation purposes and for determining if hosts are idle or busy. Neither system gathers
information from running tasks and, in addition, LSF does not support systemic checkpointing.
Recent work has highlighted the bene�ts of extracting information from applications during

runtime [9]. For example, Nguyen et al. have shown that extracting runtime information can
be minimally intrusive and can substantially improve the performance of a parallel job scheduler
[19], whereas Gibbons proposed a simpler system to correlate runtimes to di�erent job queues
[10]. In either case, information gathered from tasks as they run can support job scheduling
and allocation. The Hector distributed runtime environment is intended to support this model
[24]. It uses a distributed architecture, provides system-level checkpointing routines, supports
execution of unmodi�ed MPI programs, and gathers extensive information during runtime about
the performance of hosts and individual tasks. Hector is designed to provide an infrastructure
that controls parallel programs during their execution and monitor their performance. Therefore it
combines the bene�ts of both distributed and centralized processing. The central decision-maker
and control process is called a \master allocator" or \MA". Running on each candidate platform
(where a \platform" can range from a desktop workstation to an SMP) is a supervisory task called
a \slave allocator" or \SA". The SA's gather performance information from the \tasks" (MPI
processes) under their control and execute commands issued by the MA. Thus, it combines the
functions of monitoring and execution contained in LSF's two distributed daemon processes [34].
Hector's instrumentation combines three di�erent mechanisms [24]. First, static host informa-

tion is gathered by the SA when it is launched. Second, dynamic host information is gleaned
from a series of system calls to read memory usage and CPU usage. Third, Hector's modi�ed
MPI library provides task self-instrumentation that is monitored by the SA. This instrumentation
includes a breakdown of time spent communicating and computing, as well as a map of the task's
communication topology.
Task migration is supported by the run time system and a specially modi�ed version of MPI to

properly handle messages in transit. In this way, applications do not need code changes in order
to support task migration [21]. Both Hector and Hectiling use the MPICH, an implementation of
MPI by the Argonne National Laboratories and Mississippi State University.
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2.2 Related Work on Algorithmic (Fine-Grained) Load Balancing

Load balancing at the application level is algorithmic and �ne-grained. Therefore load balancing
techniques at this level of granularity have to be integrated into the speci�c application. Selecting
a technique that o�ers best performance and is relatively simple to integrate is essential to the suc-
cess of the resulting application. While load balancing can be applied to all parallel applications,
scienti�c applications are of particular interest due to their intensive computational requirements.
In addition, a large class of scienti�c applications are irregular in nature and therefore their per-
formance is severely degraded due to load imbalance. Imbalance over a few time steps of the
computation could primarily be caused by changes in data distributions. Furthermore, within
one time step, imbalance could be caused by irregularity of data distribution, di�erent processing
requirements of interior versus boundary data, and by system e�ects.
Problems in scienti�c computing are in general data-parallel and have previously employed vari-

ous methods to balance processor loads and to exploit locality. For example, in unstructured prob-
lems, static partitioning and repetitive static partitioning heuristics have been the only methodology
used so far to overcome dynamic load imbalance [15][28] [27][33][25][6][7]. Most of these methods
use pro�ling by gathering information on the work load from a previous time step in the execution
of the algorithm in order to estimate the optimal work load distribution at the present time step.
"Pro�ling", in this context, refers to detailed performance analysis that is only available after the
program is �nished, or at least after the current program iteration is completed. The cost of these
methods increases with the number of processors and problem size [32][26][27] [33]. Randomly
assigning certain size amount of work to processors has also been considered to improve the perfor-
mance of simulations due to load imbalance [11]. With random assignment, the load imbalances of
individual work units mute each other out to some extent. However, performance of these scienti�c
applications is then severely degraded by loss of locality.
Another important observation is that the above methods employ a static assignment of work

load to processors during a time step, due to an assumption that the data distribution changes
slowly between time steps. These assumptions are not valid in the entire spectrum of scienti�c
applications and therefore these methods are not robust, especially in the case of applications
where none of the existing load balancing strategies accommodate the unpredictable behavior of
simulations (i.e. plastic deformations, nonisothermal multiphase ow, etc.). Therefore, there is
a need for developing new techniques that address load imbalances between time steps as well as
during a time step.
Dynamic scheduling schemes attempt to maintain balanced loads by assigning work to idle

processors at runtime. Thus, they accommodate systemic as well as algorithmic variances. In
general, there is a tension between exploiting data locality and dynamic load balancing as the
re-assignment of work may necessitate access to remote data. The cost of dynamic schemes is loss
of locality, which translates into increased overhead. Another potential shortcoming involves the
amount of data exchanged among tasks to balance the load. If the amount of data is too large,
the resulting corrections might be too coarse. If the amount of data is too small, the process of
exchanging data might incur much overhead. Thus, in master/worker parallelism if the increment of
workload that the master distributes is too small or too large, this might lead to either ine�ciency
or imbalance.
Since loops are the most prevalent source of parallelism in scienti�c applications, their scheduling

on parallel machines has received considerable attention. The fundamental tradeo� when scheduling
parallel loops is processor load imbalance versus overhead due to synchronization and communica-
tion. Parallel loop scheduling schemes have been widely analyzed and measured [20][31][18][16].
Factoring, a scheduling scheme that evolves from earlier loop scheduling techniques, balances
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processor loads while reducing the overhead of synchronization [14]. Loop iterates are dynamically
scheduled in decreasing size chunks such that early larger chunks have relatively little overhead, and
their uneven �nishing times are smoothed over by later smaller chunks. The technique minimizes
the cumulative contributions of load imbalances and scheduling synchronization. A technique for
reducing communication, called Tilling, statically partitions the iteration space into tiles whose
shape is chosen to maximize data reuse and locality. Factoring selects the optimal chunk sizes,
(i.e. how many iterates to group together), while Tiling selects optimal chunk shapes (i.e. which
iterates to group together).
Another technique, Fractiling, combines the load balancing advantages of Factoring with the

data reuse properties of Tiling [2][13]. In this combined scheme, chunk sizes are determined glob-
ally according to a Factoring rule, while chunk shapes are determined locally according to a Tiling
rule. The Fractiling method was developed in response to the shortcomings of other methods and
has successfully been applied to N-body simulations [3][4]. It is based on a probabilistic analysis
and therefore accommodates load imbalances caused by predictable events (such as irregular data)
and unpredictable events (such as data access latency). Fractiling adapts to algorithmic and system
induced load imbalances while maximizing data locality. In Fractiling, the computation space is
initially placed to processors in tiles, to maximize locality. Processors that �nish early "borrow"
decreasing size subtiles of work units from slower processors to balance loads. The sizes of these
subtiles are chosen so that they have a high probability of �nishing before the optimal time. Subtile
assignments are computed in an e�cient way by exploiting the self-similarity property of fractals.
These decreasing size chunks are represented by multidimensional subtiles of the same shape se-
lected to maximize data reuse. The subtiles are combined in Morton order in larger subtiles, thus
preserving the self-similarity property [3][4]. Early in the program run, large performance variations
can be accommodated by exchanging large subtiles. As the computation progresses, the subtiles
shrink so that smaller variations can be corrected. By having subtile sizes based on a uniform size
ratio, a complex history of executed subtiles does not need to be maintained. Each task simply
keeps track of the size of its currently executing subtile, and in this way, the unit of data exchange
among tasks is the largest subtile currently being executed by any task. Thus the algorithm in-
herently minimizes the global "bookkeeping" overhead. This technique allows negotiations by idle
resources to replace pro�ling. The load balancing actions are a function of performance, in the
sense that idle processors have performed well, but are not a function of a direct performance
measurement. Rather, they simply exchange work from "busy" processors to "idle" ones. This
reduces overhead, as detailed data collection is not needed, and increases responsiveness, as load
balancing can occur during an iteration step. The bulk of load balancing work is performed by idle
tasks and therefore little negative e�ect on runtime is expected. Additionally, Fractiling does not
take into account the source of load imbalance in order to spur useful performance gains. Even
applications where the amount of computation per data element varies dynamically can bene�t,
because it would simply have to search for idle and busy resources.
In the implementation of Fractiling in a distributed environment, one of the processors selected

as master and called Fractiling Master controls and maintains the entire data exchange information.
In addition, it performs computation as all the other processors do, called Fractiling Tasks. When
computation starts, the Fractiling Master divides the computation space into P tiles, one per
processor. Each Fractiling Task starts by working �rst on half of its tile. When this subtile
is �nished, the Fractiling Task sends a Fract Ask message to the Fractiling Master to request
additional work. The Fractiling Master updates its information and assigns a new subtile size to
the requesting Fractiling Task. If a Fractiling Task completes its own tile, and there is still work
left in other Fractiling Task's tile, the Fractiling Master sends a request to another Fractiling Task
to send data to the idle Fractiling Task. The data is then forwarded to the idle Fractiling Task
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which works on the received data and sends the result back to the owner. The above process is
repeated until there is no more work left in any Fractiling Task's tile. When assigning subtiles to
the Fractiling Tasks, the Fractiling Master always observes the following rules: (i) a task will have
to have all the work completed in its own tile before starting to help another Fractiling Task; (ii)
after completing its own tile, a Fractiling Task will always work on a tile with the largest available
un�nished subtile size.
Experimentation on both a distributed memory shared-address space and a message passing

environment with Fractiling schemes applied to N-body simulations have been presented in [2][3][4].
The distributed memory shared-address space implementation was run on a KSR-1 at the Cornell
Theory Center and the message passing environment implementation was run on an IBM SP2
at the Maui High Performance Computing Center. In experiments involving both uniform and
nonuniform data distributions, performance of N-body simulation codes was improved by as much
as 53% by Fractiling. The corresponding coe�cient of variation in processor �nishing time among
the simulation tasks was extremely small, indicating a very good load balance was obtained. Since
performance improvements were obtained even on uniform data distributions, underscoring the
need for a scheduling scheme that accommodates system-induced variance.
Section x3. describes our integration of Fractiling into the Hector environment and presents some

of the experimental results obtained from running N-body simulations.

3 Hectiling

Hector achieves better resource utilization by migrating tasks from highly loaded workstations to
idle or lightly loaded workstations. Since task sizes are unequal, an application using this coarse-
grained load balancing strategy only will continue to su�er from load imbalance. On the other
hand, applications employing �ne-grained data parallel load balancing strategies, such as Fractiling,
ensure a high degree of load balancing by migrating data from one task to another. However,
in a distributed computing environment a Fractiling application may su�er from poor resource
utilization, because it does not support task migration. One or more of the processors executing
Fractiling tasks may become heavily loaded by other applications, thereby signi�cantly degrading
the performance of the Fractiling application. Having the capability to migrate a Fractiling task
from a heavily loaded to an idle or lightly loaded processor, would enable the Fractiling application
to utilize resources more e�ciently.
To take advantage of the bene�ts o�ered by Hector and Fractiling, a new system integrating both

has been designed and implemented. This system, Hectiling [22][5], combines systemic information
gathering and task migration capabilities of Hector with �ne-grained algorithmic load balancing
advantages of Fractiling. Since Fractiling requires communication to control exchanges of data
between tasks and Hector has the proper information gathering facility, their combination results
in a system which can provide a more e�cient resource utilization.

3.1 Design and Implementation

An architecture for Hectiling is described in [22] and shown in Figure 1. The �rst phase of this design
involves re-routing of \Fractile Ask messages" from Fractiling Tasks to the Fractiling Master via
the MA. This requires a communication channel from Fractiling Tasks to the MA. The integration
imposes several challenges. In Hector paradigm, the MPI tasks don't communicate with the MA.
Thus, a communication mechanism has to be devised from the task to the MA, and care has to
be taken so that non-Fractiling tasks, where task-to-MA communication is not required, could
also run under the same integrated system. To accomplish this, the location and port number of
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the MA must �rst be conveyed to all Fractiling Tasks. Once the Fractiling Master receives this
information, it "registers" with the MA by opening a socket and sending its port number and host
name to the MA. As a result, the MA is able to recognize which of the tasks is the Fractiling
Master and where to forward the Fractile Ask messages. During the execution of the Fractiling
application, when the MA receives a Fractile Ask message, it �rst checks to see if the Fractiling
Master has been "registered". If so, the message is forwarded to the Fractiling Master. If not, the
message is put into a queue which has already been created at the beginning of the execution of
the Fractiling application. This queue is being maintained by the MA throughout the execution
of the application. Once the Fractiling Master registers with the MA, all pending messages are
forwarded to it. At the same time, the MA sends a message to the Fractiling Master's SA, which
in turn interrupts the Fractiling Master allowing it to read the associated message from its socket
(see Figure 2). This mechanism was designed to address the fact that UNIX does not allow task
interrupts on remote machines.
The integration also imposes another challenge on Hector migration mechanism. In Hector all

the MPI tasks are treated equally, and the migration process is the same for all tasks. However,
in Hectiling the migration of the Fractiling Master is di�erent from the ones of Fractiling Tasks.
This is due to the fact that the MA needs to forward the Fractile Ask message to the Fractiling
Master. Thus, the MA has to have the information about the location of the Fractiling Master,
and this is achieved by the registration process of Fractiling Master presented above. In case of
migration, the Fractiling Master �rst un-registers itself with the MA, and upon completing the
migration it re-registers itself again with the MA. The un-registration process consists of two steps.
First, when the MA decides to migrate the Fractiling Master, it sends an End-of-Channel message
to the Fractiling Master, and stops forwarding any Fractile Ask message to it. If the MA receives
any Fractile Ask messages from the Fractiling Tasks before the migration is complete, it queues
these messages. This process ensures that no Fractile Ask message is lost during the migration
of the Fractiling Master. In the second step, the Fractiling Master closes its socket as soon as it
receives the End-of-Channel message, and only then the migration could start. The re-registration
process involves the opening of a new socket and sending of the associated port number and the
new host name to the MA. After re-registration, the MA sends any messages queued during the

8



Fractiling
Master

Local
Socket

Master
Allocator

Fractiling
Task

1. State
Update

Slave
Alloc.

2. Forwarded
State Update3. Orders

Signal

4. Signal 5. Local
Queue

Figure 2: Fractiling State Update: Interrupt-driven Model

migration to the Fractiling Master.
In cases where low-overhead measurements of performance can be made, some improvements in

Fractiling performance are possible. For example, measurements of nearness to completion and
of relative performance can allow the amount of data exchange to be proportional to the actual
performance. In general, the measurements required are less expensive than the ones used in pro-
�ling, and can be immediately used instead of waiting until a subtile execution is completed. An
advantage of the integration of Fractiling and Hector into a single framework is that it speci�cally
facilitates this performance improvement. Since the MA periodically gathers information from the
SAs about the tasks running under them, the nearness to completion of subtiles can be collected
and forwarded to the Fractiling Master without any extra overhead. This enables the Fractiling
Master to transfer data from a slow Fractile Task to a Fractiling Task which is about to �nish.
As a result, the Fractiling Tasks would not run out of data, and thus would not have to request
the Fractiling Master to transfer data. This results in minimizing communication and better re-
source utilization. Another advantage of this integrated design is the re-routing of the Fractile Ask
message via the MA. Since the re-routing is implemented using sockets, it is faster than a direct
MPI based communication between Fractiling Master and Fractiling Tasks. In general, the MPI
communications use lower level communication primitives (i.e., sockets) which involve at least one
extra level of interface. A third advantage of this integrated design is that the controlling and the
decision making component of the Fractiling Master could be moved as a module inside the MA,
and this would reduce some of the communication overhead.

3.2 Experimental Results and Performance Enhancements

The experiments with the integrated system were conducted in two phases. In the �rst phase,
Hectiling experiments were conducted without process migration. The results are described in
Section x3.2.1. Section x3.2.2 describes the results of experiments with Hectiling using process
migration. These implementations, written in C and using MPICH implementation of MPI, were
run on a dataset of 100k particles. Experiments were conducted on a system which consists of thirty-
two 90 MHz Ross HyperSPARC processors arranged in a cluster of eight 4-processor machines.
Three di�erent data distribution were used: a uniform distribution ("Uniform"), a nonuniform
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Gaussian distribution ("Gaussian"), and a nonuniform Gaussian distribution with the center shifted
to the center of one of the octants of the computation space ("Corner").

3.2.1 Hectiling without migration

For testing in phase one, �ve implementations of the N-body simulations based on the Parallel
Fast Multipole Algorithm (PFMA) by Greengard [12] have been used: (i.) without Fractiling
(PFMA); (ii.) with Fractiling (Fractiling); (iii.) under the Hector environment and without Frac-
tiling (HPFMA); (iv.) with Fractiling under Hector environment (HFractiling); and (v.) with
Hectiling (Hectiling) [23].
All distributions were run on 4, 8, 16 and 32 processors while the system was exclusively used

for these experiments, to exclude the e�ects of any external loads. The costs of the "Uniform",
"Gaussian", and "Corner" distributions are shown in Figures 3, 4, and 5. From these results, it
can be seen that in almost all cases the costs of Fractiling, HFractiling, and Hectiling are lower
than those of PFMA and HPFMA. When HFractiling is compared to Hectiling, it can be seen
that the cost of Hectiling is generally lower. However, as the number of processors increases, the
cost of Hectiling becomes higher than that of HFractiling. The coe�cients of variation (c.o.v.) of
processors �nishing times are shown in Figures 6, 7 and 8. They are signi�cantly lower for Hectiling
and HFractiling when compared to PFMA.
From the results presented in this section, it can be seen that the cost of Hectiling is slightly

lower than those of HFractiling and Fractiling when a lower number of processors is used. How-
ever, when a higher number of processors is used, the cost of Hectiling is higher. The underlying
communication structure and the nature of the Fractiling algorithm are responsible for these di�er-
ences in costs. Hectiling uses UNIX sockets to implement this communication. The MA maintains
a single socket for receiving Fractile Ask and Hector update messages, whereas Fractiling routes
Fractile Ask messages directly from the Fractiling task to the Fractiling master by using the MPI
infrastructure. Eventhough Hectiling adds an additional hop to the route taken by the Fractile Ask
messages, the socket implementation is faster. As a result, the overall cost of Hectiling is lower
than that of HFractiling.
However, as the number of processors increases, the number of Fractile Ask messages also in-

creases due to a larger number of Fractiling chunks. As the running application proceeds, the
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Figure 6: Coe�cients of Variation for Uniform Distribution
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Figure 7: Coe�cients of Variation for Gaussian Distribution
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Figure 8: Coe�cients of Variation for Corner Distribution

chunks sizes become smaller and require less time to complete. This translates into an increased
communication overhead, due to an increase in frequency of Fractile Ask messages. Therefore,
at a higher number of processors, this creates a bottleneck in the MA and the cost of Hectiling
increases disproportionately. This problem can be alleviated by two techniques which could be
simultaneously applied. One technique is to reduce the number of Fractiling chunks by increasing
the minimum chunk size. The other is to create separate sockets, one for Fractile Ask messages
and another for Hector update messages.
Increasing the minimum chunk size would reduce the total number of Fractiling chunks. As a

result, the number of Fractile Ask messages would be reduced. However, with the increasing of the
minimum chunk size, the probability of an increased load imbalance is higher. A careful tuning
of the minimum chunk size should reduce the impact of the increased communication overhead.
Experiments using 32 processors for a uniform data distribution with various minimum chunk sizes
were conducted. The experimental results show that increasing the minimum chunk size from one
to two iteration units, increases the performance by 8% for HFractiling and 12% for Hectiling, while
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Figure 9: Costs for Uniform Distribution without load

increasing the chunk size from one to four iteration units increases the performance by only 5% for
HFractiling and 10% for Hectiling. With a minimum chunk size of one iteration unit versus two
iteration units, the increase in communication overhead is larger than the gain obtained by load
balancing. When the minimum chunk size is four iteration units versus two iteration units, the
bene�t of reducing the communication overhead is outweighed by the increase in load imbalance.
Therefore, these experiments establish an optimal minimum chunk size of two iteration units for
best performance. In general, optimal minimum chunk size may vary depending on the use of a
speci�c architecture, application, data distribution, etc. These results support the theory on which
Fractiling is based. In addition, these results show that the amount of performance improvement is
larger for Hectiling than for HFractiling. More experiments using di�erent minimum chunk sizes,
data distributions, and problem sizes are required to determine the optimum chunk size for best
performance.
The other technique for improving performance requires a separate dedicated socket for Frac-

tile Ask messages. Presently, the MA processes all messages it receives in order of their arrival.
As a result, towards the end of the computation when the frequency of messages increases, Frac-
tile Ask messages stall at the MA before being forwarded to the Fractiling Master. To reduce the
average stalling time the MA can use two separate sockets, one for the Fractile Ask messages and
another one for Hector update messages. Messages at the Fractile Ask message socket should be
given priority in such a way that the stalling time is reduced and that the Hector update messages
do not su�er from starvation. Creating separate sockets will require major modi�cation of the MA
code. This work is in progress and results will be reported in the future.

3.2.2 Hectiling with migration

In this phase of testing three implementations of N-Body Simulations, using Fractiling, HFractiling
and Hectiling were studied. Unfortunately due to system problems, experiments could not be
executed on 32 processors. The experiments were executed on 2, 4, 8 and 16 processors. To
determine the optimum chunk size, we conducted limited experiments with all the distributions on
16 processors with minimum chunk sizes of one, two and four iteration units. The results show
that the cost was least when the chunk size was two iteration units. As a result, a minimum chunk
size of two iteration units was chosen for all the experiments in this phase. There were two sets of
experiments in this phase. The �rst set of experiments were conducted with no external load. The
costs of runs on all distributions without external load are shown in Figures 9, 10, and 11. The
second set of experiments were conducted with controlled external load to measure the performance
of migration. A specially developed external application which takes 50% of the processor cycles
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Figure 11: Costs for Corner Distribution without load

was launched on half the processors. The execution costs for all the distributions of the second set
of experiments are shown in Figures 12, 13 and 14.
From these �gures it can be seen that when there is no external load, the cost of HFractiling

is slightly higher than that of Fractiling, and the cost of Hectiling is always lower than that of
Fractiling. The reason for this behaviour has been discussed in subsection x3.2.1. However, when
there is external load, the cost of Fractiling is found to be always higher than that of HFractiling
or Hectiling, and also is found considerably higher than that of Fractiling with no external load.
This can attributed to the external load, which takes away CPU cycles, resulting in an increase
of Fractiling cost. In the case of HFractiling or Hectiling, the external load causes the process to
migrate to an idle processor where it can use the CPU exclusively. As a result, the introduction of
external load does not result in cost increase. Due to migration overhead, the costs of HFractiling
and Hectiling with external loads are slightly higher than those of Fractiling with no external loads.
The results show that because of its capability to migrate tasks from busy workstations to idle ones,
Hectiling performs much better than Fractiling when external work loads are present. The results
also show that Hectiling performs better than HFractiling. In addition, under no load conditions,
Hectiling slightly outperforms both Fractiling and HFractiling, which indicates that the overhead
of Hectiling is considerably low.
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15



4 Conclusions and Future Work

Load balancing improves the e�cient use of resources and therefore the performance of parallel and
distributed applications. Over time, systemic techniques have improved the performance of runtime
systems at coarse-grained levels, while algorithmic techniques have improved the performance of
applications at �ne-grained levels. Combining strategies from both levels of granularity can result
in methods which deliver advantages of both. This paper described lessons learned from the suc-
cesses and limitations of Hectiling, a system that combines an algorithmic strategy for data-parallel
load balancing with a systemic strategy for task-parallel load balancing. In addition, avenues for
performance enhancement have been explored.
Earlier experiments with algorithmic and systemic load balancing strategies showed their ability

to improve performance. A systemic coarse-grained load balancing was supported in Hector by
monitoring and re-balancing loads via task migration. Algorithmic, �ne-grained load balancing
was supported using Fractiling by redistributing the data assignments among tasks.
After observing that Fractiling could bene�t by accessing the run-time information gathered

by Hector, it was decided to develop an interface between them. In the complete interface, the
Fractiling Master draws on performance information gathered at runtime by Hector to make better
informed reallocation decisions. This allows techniques such as prefetching and �ne-grained data
redistribution. A partially completed interface was tested in order to measure the overhead of pass-
ing state-update messages through Hector's Master Allocator. The performance of the interfaced
version was better than that of Fractiling alone or Fractiling under Hector, in the presence of exter-
nal load as well as its absence. This performance improvement is due to the fact that the overhead
of Hectiling is considerably low while allowing dynamic process migration. For larger number of
processors, the Hectiling cost could be reduced in a few ways. One way to improve performance
is through tuning of the minimum chunk size. Experiments with di�erent minimum chunk sizes
show that performance improvements can be obtained simply by tuning of the Fractiling scheme.
In addition, redesigning the Master Allocator with multiple sockets may overcome the performance
bottlenecks.
Extensions to both Hector and Fractiling may also prove fruitful. For example, support for a dis-

tributed shared memory environment would enable thread-migration-based load balancing and the
combination of Hector and Fractiling would then support the three ways that computational load
can be redistributed (task, data, and thread migration). In addition, enhancements to Fractiling
that are currently being pursued, may in turn improve the functionality of the resulting integrated
system.
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