
1

Performance and Scalability of MPI on
PC Clusters

Glenn R. Luecke, Jing Yuan, Silvia Spanoyannis, Marina Kraeva

grl@iastate.edu, yjing@iastate.edu, spanoyan@iastate.edu, kraeva@iastate.edu

292 Durham Center
Iowa State University

Ames, Iowa 50011, USA
January 23, 2000

Abstract. The purpose of this paper is to compare the communication performance and
scalability of MPI communication routines on an NT cluster, a Myrinet Linux cluster, an
Ethernet Linux cluster, a Cray T3E-600, and an SGI Origin 2000. All tests in this paper
were run for the various numbers of processors and 2 message sizes. For most of the MPI
tests used in this paper, the T3E-600 and Origin 2000 outperform the NT cluster, the
Myrinet and Ethernet Linux clusters. In spite of the fact that the Cray T3E-600 is about 5
years old, it performs best of all machines for most of the tests. For mpi_bcast,
mpi_allgather, and mpi_alltoall, the Myrinet Linux cluster outperforms the
NT cluster. For all other MPI collective routines, the NT cluster outperforms the Myrinet
Linux cluster. For all MPI collective routines, the Myrinet Linux cluster performs
significantly better than the Ethernet Linux cluster.

1 Introduction
Today, MPI [6] is the standard message-passing library used for programming distributed
memory parallel computers. Implementations of MPI are available for all commercially available
parallel platforms, including PC clusters. Today, clusters are considered as an inexpensive
alternative to “traditional” parallel computers. The purpose of this paper is to compare the
communication performance and scalability of MPI communication routines on an NT cluster, a
Myrinet Linux cluster, an Ethernet Linux cluster, a Cray T3E-600, and an SGI Origin 2000.

2 Test Environment
The SGI Origin 2000 [1, 4] used for this study is a 128-processor machine in which each
processor is MIPS R10000 running at 250Mhz. There are two levels of cache: 32*1024 byte first
level instruction and data caches, and an 4*1024*1024 byte second level cache for both data and
instructions. The communication network is a hypercube for up to 32 processors and is called a
"fat bristled hypercube" for more than 32 processors since multiple hypercubes were
interconnected via a Cray Link Interconnect. For all tests, the IRIX 6.5 operating system, the
Fortran compiler version 7.3.1.1m and the MPI library version 1.4.0.0.1 were used.

The T3E-600 [1, 5] used is a 512-processor machine located in Eagan, Minnesota. Each
processor is a DEC Alpha EV5 microprocessor running at 300 MHz. There were two levels of



2

cache: 8*1024 byte first level instruction and data caches and a 96*1024 byte second level cache
for both data and instructions. The communication network is a three-dimensional, bi-directional
torus. For all tests, the UNICOS/mk 2.0.5 operating system, the Fortran compiler version
cf90.3.3.0.2 and the MPI library version 1.4.0.0.2 were used.

The NT cluster of PCs [3] used is a 128-processor machine located at the National Center for
Supercomputing Applications in Urbana-Champaign, Illinois. The cluster is a 64-nodes machine,
each node consisting of a dual processor Intel 550 MHz Xeon Pentium III. There are two levels
of cache: 16*1024 byte first level instruction and data caches and a 512*1024 byte second level
cache for both data and instructions. Nodes are interconnected via a Myrinet network (full-
duplex 1.28+1.28 Gigabit/second). The system was running Windows NT Server 4.0 and HPVM
1.1 for Myrinet-clustered compute nodes developed by the Concurrent Systems Architecture
Group at the University of Illinois. For all tests, the MPI library and its HPVM interface were
used (mpi.lib, fm.lib, kernel32.lib, advapi32.lib, and wsock32.lib).

The Linux cluster of PCs [2] used is a 128-processor machine located at the Albuquerque High
Performance Computing Center in Albuquerque, New Mexico. The cluster is a 64-nodes
AltaCluster, by Alta Technology Corporation, each node consisting of a dual processor Intel 450
MHz Pentium II. There are two levels of cache: 16*1024 byte first level instruction and data
caches and a 512*1024 byte second level cache for both data and instructions. Nodes were
interconnected via a Myrinet (full-duplex 1.28+1.28 Gigabit/second) or Fast Ethernet (full-
duplex 100Mbit/second) network. The system was running Linux 2.2.10. For all tests, version
3.0-1 Portland Group Fortran compiler with the -O3 compiler option, and the MPICH-GM for
the Myrinet Linux cluster or MPICH-ETH library for the Ethernet Linux cluster were used.

The performance results reported in this paper were obtained with a large message size and a
small message size, all using 8 bytes reals, and up to 128 processors. Section 3 introduces the
timing methodology used. Section 4 presents the performance results. The conclusions are listed
in section 5.

3 Timing Methodology
All tests were timed using the following template:

integer, parameter ::ntest=51

real*8, dimension(ntest) :: array_time, time

. . .

do k = 1, ntest

flush(1:ncache) = flush(1:ncache) + 0.1

call mpi_barrier(mpi_comm_world, ierror)

t = mpi_wtime()

… mpi collective routine …

array_time(k) = mpi_wtime()-t

call mpi_barrier(mpi_comm_world, ierror)

A(1) = A(1) + flush(mod(k, ncache))

enddo

call mpi_reduce(array_time, time, ntest, mpi_real8, mpi_max, 0, &



3

mpi_comm_world, ierror)

…

write(*,*) "prevent dead code elimination", A(1), flush(1)

Throughout this paper, ntest is the number of trials of a timing test performed in a single job.
The value of ntest should be chosen to be large enough to access the variability of the
performance data collected. For the tests in this paper, setting ntest = 51 (the first timing was
always discarded) was satisfactory. Timings were done by first flushing the cache on all
processors by changing the values in the real array flush(1:ncache) prior to timing the desired
operation. The value of ncache was chosen so the size of the array flush was the size of the
secondary cache for the T3E-600 (96*1024 bytes), the Origin 2000 (8*1024*1024 bytes), the NT
and the Linux clusters of PCs (512*1024). Note that by flushing the cache before each trial, the
data that may have been loaded in the cache during the previous trial cannot be used to optimize
the communications of the next trial [4]. Figure 1 shows that the execution time without cache
flushing is ten times smaller than the execution time with cache flushing for the broadcast
communication of an 8 bytes message with 128 processors on the Origin.

with/without cache flushing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150

Number of processors

T
im

e
(m

se
c.

)

with flushing

without flushing

Figure 1: Execution times for mpi_bcast for an 8 bytes message on the Origin.

In the above timing code, the first call to mpi_barrier guarantees that all processors reach this
point before they each call the wallclock timer, mpi_wtime. The second call to mpi_barrier is
to make sure that no processor starts the next iteration (flushing the cache) until all processors
have completed executing the collective communication to be timed. The test is executed ntest
times and the values of the differences in times on each participating processor are stored in
array_time. Some compilers might split the whole timing loop into two loops with cache



4

flushing statement in the one and timed MPI routine in the other. To prevent that the statement
"A(1) = A(1) + flush(mod(k, ncache)" was added into timing loop, where A is the array
involved in the communication being timed. To prevent the compiler from considering all or part
of the "code to be timed" as dead code and eliminating it, later in the program the value of A(1)
and flush(1) were used in the write statement. The call to mpi_reduce calculates the maximum
of array_time(k) for each fixed k and places this maximum in time(k) on processor 0 for all
values of k. Thus, time(k) is the time to execute the test for the k-th trial.

Figure 2 shows times in seconds for 100 trials for mpi_bcast test with 128 processors and 10
Kbytes message. Notice that there are several "spikes" in the data with the first spike being the
first timing. The first timing usually was significantly longer than most of the other timings
(likely due to the additional setup time required for the first call to subroutines and functions), so
the time for the first trial was always removed. The other spikes are probably due to the
operating system interrupting the execution of the program. The average of the 99 trials (the first
trial is removed) is 94.7 milliseconds, which is much longer than most of the other trials. The
authors decided to measure times for each operation by first filtering out the spikes as follows.
Compute the median value after the first time trial is removed. All times greater than 1.8 times
this median are candidates to be removed. The authors consider it to be inappropriate to remove
more than 10% of the data. If more than 10% of the data would be removed by the above
procedure then only the largest 10% of the spikes are removed. Authors thought that these
additional (smaller) spikes should influence the data reported. However, for all tests in this
paper, the filtering process always removed less than 10% of the data. Using this procedure, the
filtered value for the time in figure 2 is 87.7 milliseconds instead of 94.7 milliseconds.

80

100

120

140

160

180

200

220

240

0 20 40 60 80 100

Test trials

T
im

e
(m

se
c.

)

Raw data

Average time without filtering

Average time with filtering data

Figure 2: Time for 100 trials for mpi_bcast for a 10 Kbytes message on the Origin
with 128 processors.



5

4 Test Descriptions and Performance Results
This section contains performance results for 11 MPI communication tests using 2, 4, 8, 16, 32,
64, 96 and 128 processors on all machines using mpi_comm_world for the communicator.

Test 1: Ping-Pong Between Processors

Ideally, one would like to be able to run parallel applications with large numbers of processors
without the communication network slowing down execution. One would like the time for
sending a message from one processor to another to be independent of the processors used. To
determine how each machine deviates from this ideal, we measure the time required for
processor 0 to send a message and receive it back from processor j for j = 1 to 127 for all
machines. Because of time limitations we did not test ping-pong times between all processors.
The code for processor 0 to send a message of size n to processor j=1 to 127 and to receive it
back is:

if (rank == 0) then

call mpi_send (A,n,mpi_real8,j,1, mpi_comm_world,ierr)

call mpi_recv(B,n,mpi_real8,j,2,mpi_comm_world,status,ierr)

endif

if (rank == j) then

call mpi_recv(B,n,mpi_real8,0,1,mpi_comm_world,status,ierr)

call mpi_send (A,n,mpi_real8,0,2, mpi_comm_world,ierr)

endif

Notice that processor j receives the message in array B and sends the message in array A. If the
message would be received in A instead of B, then this would put A into the cache making the
sending of the second message in the ping-pong faster than the first. The results of this test are
based on one run per machine (with many trials) because the assignment of ranks to physical
processors will vary from one run to another. Figure 3 and 4 present the performance data for
this test. Each Ping-Pong time is divided by two, indicating the average one-way communication
time. For both message sizes, the T3E shows the best performance. Ideally, these graphs would
all be horizontal lines. Notice that many of the graphs are "reasonably close" to this ideal. The
Origin has the largest variation in times for this test for an 8 bytes message. Notice that the
Ethernet Linux cluster performs roughly 18 times slower for 8 bytes and 5 times slower for 1
Mbyte than the Myrinet Linux cluster.

Notice that for 8 bytes messages, the Myrinet Linux cluster shows better behavior that the
Myrinet NT cluster. This seems to indicate a problem in the MPI implementation for the Myrinet
NT cluster. The authors do not have access to any tools to determinate why there is so much
variation in the performance for 8 bytes messages for the Origin.



6

Ping-Pong between Processors (8 bytes)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

Rank of the distant process

T
im

e
(m

se
c.

)

Origin T3E NT Cluster Myrinet Linux Cluster

Ping-Pong Between Processors (8 bytes)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

Rank of the distant processor

T
im

e
(m

se
c)

Myrinet Linux Cluster Ethernet Linux Cluster

Figure 3: Test 1 (Ping Pong Between Processors) with times in milliseconds



7

Ping-Pong Between Processors (1 Mbyte)

0

10

20

30

40

50

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

Rank of the distant processor

T
im

e
(m

se
c.

)

Origin T3E NT Cluster Myrinet Linux Cluster

Ping-Pong Between Processors (1 Mbyte)

0

20

40

60

80

100

120

140

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

Rank of the distant processor

T
im

e
(m

se
c.

)

Myrinet Linux Cluster Ethernet Linux Cluster

Figure 4: Test 1 (Ping Pong Between Processors) with times in milliseconds

Test 2: The Right Shift

The purpose of this test is to measure the performance of the “right shift” where each processor
receives a message of size n from its “left” neighbor, i.e., modulo(myrank-1,p) is the left
neighbor of myrank. Ideally, the execution time for this test would not depend on the number of



8

processors, since these operations have the potential of executing at the same time. The code
used for this test is:

call mpi_sendrecv(a,n,mpi_real8,modulo(myrank+1,p),tag,b,n, &

mpi_real8,modulo(myrank-1,p),tag,mpi_comm_world,status,ierr)

Figure 5 and 6 present the performance data for this test. Notice that for both message sizes, the
T3E performs and scales best. The Myrinet Linux cluster scales well compared with the rest of
machines.

Right Shift (8 bytes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux Cluster

Right Shift (8 bytes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux Cluster

Myrinet Linux Cluster

Figure 5: Test 2 (Right Shift) with times in milliseconds



9

Right Shift (10 Kbytes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)
Origin

T3E

NT Cluster

Myrinet Linux
Cluster

Right Shift (10 Kbytes)

0

500

1000

1500

2000

2500

3000

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster
Myrinet Linux
Cluster

Figure 6: Test 2 (Right Shift) with times in milliseconds

Test 3: The Barrier

An important performance characteristic of a parallel computer is its ability to efficiently execute
a barrier synchronization. This test evaluates the performance of the MPI barrier:

call mpi_barrier(mpi_comm_world, ierror)

Figure 7 presents the performance and scalability data for mpi_barrier. Notice that the T3E
and the Origin scale and perform significantly better than the NT cluster and the Myrinet Linux



10

cluster. Also notice that the Myrinet Linux cluster significantly outperforms the Ethernet Linux
cluster. Table 1 shows the performance of all machines relative to the T3E for 128 processors.

Origin/T3E 5.8

NT Cluster/T3E 116

Myrinet Linux Cluster/T3E 106

Ethernet Linux Cluster/T3E 933

Table 1: Time ratios for 128 processors for the mpi_barrier test.

mpi_barrier

0.0

0.1

0.2

0.3

0.4

0.5

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

mpi_barrier

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster

Myrinet Linux Cluster

Figure 7: Test 3 (mpi_barrier) with times in milliseconds.



11

Test 4: The Broadcast

This test evaluates the performance of the MPI broadcast:
call mpi_bcast(A, n, mpi_real8, 0, mpi_comm_world, ierror)

for n=1 and n=125000.

Figures 8 and 9 present the performance data for mpi_bcast. The NT cluster, the T3E and the
Myrinet Linux cluster show good performance for 8 bytes messages while the Origin shows poor
performance. However, for 1 Mbyte message, the Origin and T3E significantly outperform the
two Myrinet clusters. Notice that the Myrinet Linux cluster significantly outperforms the
Ethernet Linux cluster. Table 2 shows the performance of all machines relative to the T3E for
128 processors.

Message Size 8 bytes 1 Mbyte

Origin/T3E 2.5 1.5

NT Cluster/T3E 0.6 3.8

Myrinet Linux Cluster/T3E 1.3 5.6

Ethernet Linux Cluster/T3E 10 25.6

Table 2: Time ratios for 128 processors for the mpi_bcast test.

To better understand how well the machines scale implementing mpi_bcast, let us consider the
following simple execution model. Assume the time to send a message of size M bytes from one
processor to another is

α + Mβ.

where α is the latency and β is the communication rate of the network. This assumes there is no
contention and there is no difference in time when sending a message between any two
processors. Assume that the number of processors, p, used is a power of 2, and assume that
mpi_bcast is implemented using a binary tree algorithm. If p = 2k, then with the above
assumptions the time to execute a binary tree broadcast for p processors would be

(log(p)) * (α + Mβ).

Thus, ideally (execution time)/log(p) would be a constant for all such p for a fixed message size.
Thus, plotting

(execution time)/log(p)

will provide a way to better understand the scalability of mpi_bcast for each machine. Figure
10 shows these results. Notice that the (execution time)/log(p) is nearly constant on all machines,
except when p < 8.



12

mpi_bcast (8 bytes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)
Origin

T3E

NT Cluster

Myrinet Linux
Cluster

mpi_bcast (1 Mbyte)

0

50

100

150

200

250

300

350

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

Figure 8: Test 4 (mpi_bcast) with times in milliseconds.



13

mpi_bcast (8 bytes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster

Myrinet Linux
Cluster

mpi_bcast (1 Mbyte)

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster

Myrinet Linux
Cluster

Figure 9: Test 4 (mpi_bcast) with times in milliseconds.



14

mpi_bcast (8 bytes)

0.0
0.1
0.1
0.2
0.2
0.3
0.3
0.4
0.4
0.5

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
L

o
g

(p
)

Origin

T3E

NT Cluster

Myrinet Linux Cluster

Ethernet Linux Cluster

mpi_bcast (1 Mbytes)

0

50

100

150

200

250

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
L

o
g

(p
)

Origin

T3E

NT Cluster

Myrinet Linux Cluster

Ethernet Linux Cluster

Figure 10: Test 4 (mpi_bcast) plotting (execution time)/log(p), where p is the
number of the processors.

Test 5: The Scatter

This test measures the time to execute
call mpi_scatter(B, n, mpi_real8, A, n, mpi_real8, 0,

mpi_comm_world, ierror)

for n=1 and n=1250.



15

For both message sizes, the T3E has the best performance, see Figure 11 and 12. Table 3 shows
the performance of all machines relative to the T3E for 128 processors.

Message Size 8 bytes 10 Kbytes
Origin/T3E 3 3.5
NT Cluster/T3E 1 3
Myrinet Linux Cluster/T3E 3.5 5
Ethernet Linux Cluster/T3E 19 228

Table 3: Time ratios for 128 processors for the mpi_scatter test.

mpi_scatter (8 bytes)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

mpi_scatter (10 Kbytes)

0

5

10

15

20

25

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

Figure 11: Test 5 (mpi_scatter) with times in milliseconds.



16

mpi_scatter (8 bytes)

0

2

4

6

8

10

12

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster
Myrinet Linux
Cluster

mpi_scatter (10 kbytes)

0

200

400

600

800

1000

1200

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux Cluster

Myrinet Linux Cluster

Figure 12: Test 5 (mpi_scatter) with times in milliseconds.

Let us assume that the mpi_scatter was implemented by an algorithm based on a binary tree.
Initially the root processor 0 owns p messages m0, ..., mp-1, each of size M bytes, that have to be
sent to processors 1, ..., p-1 respectively. First, processor 0 sends mp/2, ..., mp-1 to processor p/2.
For the second step, processors 0 send messages mp/4, ..., mp/2-1 to processor p/4 and concurrently
processor p/2 sends messages m3p/4, ..., mp-1 to 3p/4. The scatter is completed by repeating these
steps log(p) times. Based on the model described above, the execution time would be

αlog(p) + (p-1)Mβ.



17

If we now assume that a large message is being scattered, then M is large and the execution time
will be dominated by (p-1)Mβ. Thus, the (execution time)/(p-1) would be constant for a fixed
message size as p increases. This allows us to better understand the scalability of mpi_scatter
for large messages. Figure 13 shows that the (execution time)/(p-1) is nearly constant on all
machines. When M is small, then both terms of the above expression are significant. That makes
it difficult to evaluate the scalability for the simple execution-time model presented above.

mpi_scatter (10 Kbytes)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
(p

-1
)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

mpi_scatter (10 Kbytes)

0

2

4

6

8

10

12

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
(p

-1
)

Ethernet Linux
Cluster

Myrinet Linux
Cluster

Figure 13: Test 5 (mpi_scatter) plotting the (execution time)/(p-1), where p is the
number of the processors.



18

Test 6: The Gather

This test measures the time to execute
call mpi_gather(A, n, mpi_real8, B, n, mpi_real8, 0,

mpi_comm_world, ierror)

for n=1 and n=1250.

Figures 14 and 15 present the performance data for this test. For an 8 bytes message, the
performance on all machines is similar with the NT cluster performing best. For 10 Kbytes
message, the T3E has the best performance, then the Origin and the NT cluster, finally the
Myrinet Linux cluster. Table 4 shows the performance of all machines relative to the T3E for
128 processors.

Message Size 10 Kbytes
Origin/T3E 3.5
NT Cluster/T3E 3
Myrinet Linux Cluster/T3E 5
Ethernet Linux Cluster/T3E 286

Table 4: Time ratios for 128 processors for the mpi_gather test.

The scalability analysis for mpi_gather is the same as that for mpi_scatter. Figure 16 shows
that the (execution time)/(p-1) is roughly constant on all machines except the Ethernet Linux
cluster for the large message size. Notice that the Ethernet Linux cluster does not perform well
compared with the other machines.

Test 7: The All-Gather

This test measures the time to execute:
call mpi_allgather(A(1), n, mpi_real8, B(1,0), n, mpi_real8,

mpi_comm_world, ierror)

for n=1 and n=1250.

Figures 17 and 18 present the performance data for this test. For the 8 bytes message, the
performance and scalability of the T3E, the Origin and the NT cluster are good compared to that
of the Myrinet Linux cluster. For the 10 Kbytes message, the NT cluster performs poorly relative
to the T3E, the Origin, and both the Linux clusters. Table 5 shows the performance of all
machines relative to the T3E for 128 processors.

Message Size 8 bytes 10 Kbytes

Origin/T3E 1.2 2.8

NT Cluster/T3E 0.7 8.9

Myrinet Linux Cluster/T3E 3.1 1.4

Ethernet Linux Cluster/T3E 353 8

Table 5: Time ratios for 128 processors for the mpi_allgather test.



19

mpi_gather (8 bytes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

mpi_gather (10 Kbytes)

0

5

10

15

20

25

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

Figure 14: Test 6 (mpi_gather) with times in milliseconds.



20

mpi_gather (8 bytes)

0

2

4

6

8

10

12

14

16

18

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster
Myrinet Linux
Cluster

mpi_gather (10 Kbytes)

0

200

400

600

800

1000

1200

1400

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster
Myrinet Linux
Cluster

Figure 15: Test 6 (mpi_gather) with times in milliseconds.



21

mpi_gather (10 Kbytes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
(p

-1
)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

mpi_gather (10 Kbytes)

0

2

4

6

8

10

12

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
(p

-1
)

Ethernet Linux
Cluster
Myrinet Linux
Cluster

Figure 16: Test 6 (mpi_gather) plotting the (execution time)/(p-1), where p is the
number of the processors.



22

mpi_allgather (8 bytes)

0

1

2

3

4

5

6

7

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

mpi_allgather (10 Kbytes)

0

50

100

150

200

250

300

350

400

450

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

Figure 17: Test 7 (mpi_allgather) with times in milliseconds.

Notice that on Ethernet Linux cluster the times for 8 bytes messages are larger than the ones for
10Kb messages when more than 8 processors were used.



23

mpi_allgather (8 bytes)

0

100

200

300

400

500

600

700

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)
Ethernet Linux
Cluster

Myrinet Linux
Cluster

mpi_allgather (10 Kbytes)

0

50

100

150

200

250

300

350

400

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster

Myrinet Linux
Cluster

Figure 18: Test 7 (mpi_allgather) with times in milliseconds.

The mpi_allgather is sometimes implemented as p-1 right shifts executed by each of the p
processors [7], where each processor i initially owns a message mi of size M bytes. The jth right-
shift is defined by: each processor i receives the message m(p+(i-j)) mod p from processor (i-1) mod
p. Assuming each right shift can be executed in the amount of time to send a single message of
mi of size M bytes from one to another processor, the execution time of mpi_allgather is

(p-1)(α+Mβ).



24

Thus, (execution time)/(p-1) will be a constant for all such p for a fixed message size. Thus,
plotting

(execution time)/(p-1)

will provide a way to better understand the scalability of mpi_allgather for each machine.
Figures 19 and 20 show that (execution time)/(p-1) is roughly constant for all the machines
except for the NT cluster for large p.

mpi_allgather (8 bytes)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
(p

-1
) Origin

T3E

NT Cluster

Myrinet Linux
Cluster

mpi_allgather (10 Kbytes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
(p

-1
) Origin

T3E

NT Cluster

Ethernet Linux
Cluster

Figure 19: Test 7 (mpi_allgather) plotting (execution time)/(p-1), where p is the
number of the processors.



25

mpi_allgather (8 bytes)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
(p

-1
)

Ethernet Linux
Cluster
Myrinet Linux
Cluster

mpi_allgather (10 Kbytes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
(p

-1
)

Ethernet Linux
Cluster
Myrinet Linux
Cluster

Figure 20: Test 7 (mpi_allgather) plotting (execution time)/(p-1), where p is the
number of the processors.



26

Test 8: The All-To-All

For mpi_alltoall, each processor sends a distinct message of the same size to all other
processors and hence produces a large amount of traffic on the communication network. This test
measures the time to execute

call mpi_alltoall(C(1,0), n, mpi_real8, B(1,0), n, mpi_real8,

mpi_comm_world, ierror)

for n=1 and n=1250.

Figures 21 and 22 present the performance data for this test. Notice that for the 8 bytes message,
the T3E and NT cluster perform and scale significantly better than the Origin and Myrinet Linux
cluster. However, for the 10 Kbyte message, the NT cluster performs and scales poorly. Table 6
shows the performance of all machines relative to the T3E for 128 processors.

Message Size 8 bytes 10 Kbytes
Origin/T3E 0.9 3.3
NT Cluster/T3E 2.7 7.3
Myrinet Linux Cluster/T3E 4.7 3.1
Ethernet Linux Cluster/T3E 117 116

Table 6: Time ratios for 128 processors for the mpi_alltoall test.

Like the mpi_allgather, the mpi_alltoall is usually implemented as cyclically shifting the
messages on the p processors [7]. Initially processor i owns p messages of size M bytes denoted
by mi

0, mi
1,…,mi

p-1. At the step 0 < j < p, each processor i sends mi
(p+(i-j)) mod p to the processor

(i-j) mod p. Thus the execution time would be

(p-1) * (α+Mβ).

Thus, (execution time)/(p-1) will be a constant for all such p for a fixed message size, just like
the case of the mpi_allgather. Then, plotting

(execution time)/(p-1)

will provide a way to better understand the scalability of mpi_alltoall for each machine.
Figures 23 and 24 show these results. Notice that the (execution time)/(p-1) remains nearly the
same with the various number of processors for the T3E and Myrinet Linux cluster. Also notice
that the NT cluster scales poorly for 10 Kbyte messages and the Ethernet Linux cluster shows
poor performance and scaling for 8 bytes messages.



27

m p i_ a ll to a ll (8 b y t e s )

0

1

2

3

4

5

6

7

8

9

1 0

0 5 0 1 0 0 1 5 0

N u m b e r o f P r o c e s s o r s

T
im

e
(m

se
c.

)

O r ig in

T 3 E

N T C lu s te r

M y r in e t L in u x
C lu s te r

mpi_alltoall (10 Kbytes)

0

50

100

150

200

250

300

350

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

Figure 21: Test 8 (mpi_alltoall) with times in milliseconds.



28

mpi_alltoall (8 bytes)

0

50

100

150

200

250

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster

Myrinet Linux
Cluster

mpi_alltoall (10 Kbytes)

0

1000

2000

3000

4000

5000

6000

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster

Myrinet Linux
Cluster

Figure 22: Test 8 (mpi_alltoall) with times in milliseconds.



29

mpi_alltoall (8 bytes)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
(p

-1
) Origin

T3E

NT Cluster

Myrinet Linux
Cluster

mpi_alltoall (10 Kbytes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
(p

-1
) Origin

T3E

NT Cluster

Myrinet Linux
Cluster

Figure 23: Test 8 (mpi_alltoall) plotting (execution time)/(p-1), where p is the
number of the processors.



30

mpi_alltoall (8 bytes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
(p

-1
)

Ethernet Linux
Cluster

Myrinet Linux
Cluster

mpi_alltoall (10 Kbytes)

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

0 50 100 150

Number of Processors

T
im

e(
m

se
c.

)/
(p

-1
)

Ethernet Linux
Cluster

Myrinet Linux
Cluster

Figure 24: Test 8 (mpi_alltoall) plotting (execution time)/(p-1), where p is the
number of the processors.

Test 9: The Reduce

This test measures the time to execute:
call mpi_reduce(A,C,n,mpi_real8,mpi_sum,0,mpi_comm_world,ierror)

for n=1 and n=125000.

Figures 25 and 26 present the performance data for MPI reduce with the sum operation. The
results of the min and max operations are similar. The Origin has the worst performance for the 8



31

bytes message and has the best performance for a 1 Mbyte message. Table 7 shows the
performance of all machines relative to the T3E for 128 processors.

Message Size 8 bytes 1 Mbyte
Origin/T3E 2.5 0.6
NT Cluster/T3E 0.7 2.4
Myrinet Linux Cluster/T3E 1.1 2.6
Ethernet Linux Cluster/T3E 9.8 11

Table 7: Time ratios for 128 processors for the mpi_reduce test.

mpi_reduce (8 bytes)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

mpi_reduce (1 Mbyte)

0

50

100

150

200

250

300

350

400

450

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

Figure 25: Test 9 (mpi_reduce sum) with times in milliseconds.



32

mpi_reduce (8 bytes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)
Ethernet Linux
Cluster

Myrinet Linux
Cluster

mpi_reduce (1 Mbyte)

0
200
400
600
800

1000
1200
1400
1600
1800

0 50 100 150

Number of Processors

T
im

es
(m

se
c.

)

Ethernet Linux
Cluster

Myrinet Linux
Cluster

Figure 26: Test 9 (mpi_reduce sum) with times in milliseconds.

The discussion of the scalability of this algorithm is beyond the scope of this paper, see [7] for an
algorithm for implementing mpi_reduce.

Test 10: The All-Reduce

The mpi_allreduce is same as the mpi_reduce except that the result is sent to all processors
instead of only to the root processor. This test measures the time to execute

call mpi_allreduce(A,C,n,mpi_real8,mpi_sum,mpi_comm_world,ierror)

for n=1 and n=125000.

Figures 27 and 28 present the performance data for mpi_allreduce sum operation. The results
of the min and max operations are similar. Notice that for the 8 bytes message, the T3E performs



33

best, and for the 1 Mbyte message, both the T3E and NT cluster perform well. Table 8 shows the
performance of all machines relative to the T3E for 128 processors.

Message Size 8 bytes 1 Mbyte
Origin/T3E 2.2 0.9
NT Cluster/T3E 0.7 2.5
Myrinet Linux Cluster/T3E 2.8 3
Ethernet Linux Cluster/T3E 9.9 13.8

Table 8: Time ratios for 128 processors for the mpi_allreduce test.

mpi_allreduce (8 bytes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

mpi_allreduce (1 Mbyte)

0

100

200

300

400

500

600

700

800

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

Figure 27: Test 10 (mpi_allreduce sum operation) with times in milliseconds.



34

mpi_allreduce (8 bytes)

0

1

2

3

4

5

6

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)
Ethernet Linux
Cluster

Myrinet Linux
Cluster

mpi_allreduce (1 Mbyte)

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster

Myrinet Linux
Cluster

Figure 28: Test 10 (mpi_allreduce sum operation) with times in milliseconds.

Test 11: The Scan

This test measures the time to execute
call mpi_scan(A, C, n, mpi_real8, mpi_sum, mpi_comm_world, ierror)

for n=1 and n=125000. Mpi_scan is used to perform a prefix reduction on data distributed
across the group. The operation returns, in the receive buffer of the process with rank i, the
reduction of the values in the send buffers of processes with ranks 0,...,i (inclusive).

Figures 29 and 30 present the performance data. The results for the min and max operations are
similar. Notice that the T3E performs and scales significantly better than all the other machines.
Table 9 shows the performance of all machines relative to the T3E for 128 processors.



35

Message Size 8 bytes 1 Mbyte
Origin/T3E 76 9.5
NT Cluster/T3E 16.4 12
Myrinet Linux Cluster/T3E 21 27
Ethernet Linux Cluster/T3E 24 31

Table 9: Time ratios for 128 processors for the mpi_scan test.

mpi_scan (8 bytes)

0

2

4

6

8

10

12

14

16

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

mpi_scan (1 Mbyte)

0

1000

2000

3000

4000

5000

6000

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Origin

T3E

NT Cluster

Myrinet Linux
Cluster

Figure 29: Test 11 (mpi_scan) with times in milliseconds.



36

mpi_scan (8 bytes)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster

Myrinet Linux
Cluster

mpi_scan (1 Mbyte)

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150

Number of Processors

T
im

e
(m

se
c.

)

Ethernet Linux
Cluster

Myrinet Linux
Cluster

Figure 30: Test 11 (mpi_scan) with times in milliseconds.

5 Conclusion
The purpose of this paper is to compare the communication performance and scalability of MPI
communication routines on a NT cluster, a Myrinet Linux cluster, an Ethernet Linux cluster, a
Cray T3E-600, and a SGI Origin 2000. For most of the MPI tests used in this paper, the T3E-600



37

and Origin 2000 outperform the NT cluster, the Myrinet and Ethernet Linux clusters. In spite of
the fact that the Cray T3E-600 is about 5 years old, it performs best of all machines for most
tests. For mpi_bcast, mpi_allgather, and mpi_alltoall, the Myrinet Linux cluster
outperforms the NT cluster. For all other MPI collective routines, the NT cluster outperforms the
Myrinet Linux cluster. For all MPI collective routines, the Myrinet Linux cluster performs
significantly better than the Ethernet Linux cluster with the performance difference increasing as
the number of processors increases.

6 References:

1. Cray Research Web Server. http://www.cray.com

2. AHPCC Linux Supercluster. http://www.alliance.unm.edu/

3. NCSA NT Cluster. http://www.ncsa.uiuc.edu/General/CC/ntcluster/

4. Origin Server. Technical report, Silicon Graphics, April 1997.

5. A. Anderson, J. Brooks, C. Grassl, and S. Scott. Performance of the CRAY T3E Multi-
processor. In Proceedings of SC97, 1997.

6. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI, the Complete
Reference. Scientific and Engineering Computation. The MIT Press, 1996.

7. G. R. Luecke, B. Raffin, and J. J. Coyle. The Performance of the MPI Collective
Communication Routines for Large Messages on the Cray T3E600, the Cray Origin 2000,
and the IBM SP. The Journal of Performance Evaluation and Modelling for Computer
Systems, July 1999.

8. Cray Research. Application Programmer Library Reference Manual. Publication SR-2165.

9. H. Dietz and T. Mattox. Inside the KLAT2 Supercomputer: The Flat Neighborhood Network
& 3D.

10. M. Barnett, S. Gupta, D. G. Payne, L. Shuler, R. van de Geijn, and J. Watts. Building a High
Performance Collective Communication Library. In Supercomputing'94, Washington D. C.,
November 1994. IEEE Computer Society Press.

7 Acknowledgements
We thank SGI and Cray Research for allowing us to use their Origin 2000 and T3E-600 located
in Eagan, Minnesota.

We would like to thank The National Center for Supercomputing Applications at the University
of Illinois in Urbana-Champaign, Illinois, for allowing use to use their NT Supercluster.

We would also like to thank the University of New Mexico for access to their Albuquerque High
Performance Computing Center. This work utilized the UNM-Alliance Roadrunner Supercluster.


