
High-Performance File I/O in Java: Existing Approaches

and Bulk I/O Extensions

Dan Bonachea� Phillip Dickensy Rajeev Thakurz

Abstract

There is a growing interest in using Java as the language for developing high-performance computing

applications. To be successful in the high-performance computing domain, however, Java must not only

be able to provide high computational performance, but also high-performance I/O. In this paper, we �rst
examine several approaches that attempt to provide high-performance I/O in Java|many of which are

not obvious at �rst glance|and evaluate their performance on two parallel machines, the IBM SP and

the SGI Origin2000. We then propose extensions to the Java I/O library that address the de�ciencies in
the Java I/O API and improve performance dramatically. The extensions add bulk (array) I/O operations

to Java, thereby removing much of the overhead currently associated with array I/O in Java. We have

implemented the extensions in two ways: in a standard JVM using the Java Native Interface (JNI) and
in a high-performance parallel dialect of Java called Titanium. We describe the two implementations and

present performance results that demonstrate the bene�ts of the proposed extensions.

1 Introduction

There is a growing interest in using Java for high-performance computing because of the many advantages that

Java o�ers as a programming language. To be useful as a language for high-performance computing, however,

Java must not only have good support for computation but must also be able to provide high-performance �le

I/O, as many scienti�c applications have signi�cant I/O requirements [6, 22, 34]. In this paper, we investigate

the I/O capabilities of Java for high-performance computing and provide suggestions for relatively simple

changes to the Java I/O model that can improve performance signi�cantly.

We �rst examine several approaches that attempt to provide high-performance I/O in Java|many of which

are not obvious at �rst glance|and evaluate their performance. We perform experiments on two di�erent

parallel machines, a distributed-memory system (IBM SP) and a shared-memory system (SGI Origin2000),

both of which employ modern parallel/high-performance �le systems. We then propose extensions to the

Java I/O library that address the de�ciencies in the Java I/O API and improve performance dramatically.

The extensions add bulk (array) I/O operations to Java, thereby removing much of the overhead currently

associated with array I/O in Java. We have implemented the extensions in two ways: in a standard JVM

using the Java Native Interface (JNI) [24] and in a high-performance parallel dialect of Java developed at U.C.

Berkeley called Titanium [35, 38]. We describe the two implementations and present performance results that

demonstrate the bene�ts of these extensions.

�EECS Department, University of California at Berkeley, Berkeley, CA 94720. bonachea@cs.berkeley.edu
yDept. of Computer Science, Illinois Institute of Technology, 10 West 31st Street, Chicago, IL 60616. pmd@work.csam.iit.edu
zMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439. thakur@mcs.anl.gov

1

1.1 I/O in High-Performance Computing

Many computationally intensive scienti�c applications also need to access large amounts of data, and I/O is

often the bottleneck in such applications [6, 22, 34]. A common I/O requirement is as follows. The application

has some large data structures, say multidimensional arrays, distributed among processes in some fashion. The

arrays must be read from or written to a �le containing the global array. The program may begin by reading

in an input array and may then write arrays to �les several times during the course of the computation. The

arrays in these applications are not just byte arrays, but rather consist of integers, or oating-point numbers,

or some other data type. As we shall see in this paper, the fact that they are not just byte arrays is important

in the context of using Java for I/O in such applications. In addition, the �les are usually random-access �les,

and processes seek to di�erent locations in the �les to read/write data.

In this paper, we focus on the problem of concurrent reading or writing of data frommultiple processes/threads

to a common �le in Java. We assume that a large one-dimensional array of integers is block-distributed among

processes and must be read from or written to a common �le containing the global array. While simple,

this example is su�cient to demonstrate the strengths and weaknesses of the Java I/O model as applicable

to the basic needs of high-performance computing applications. Our experiments assume (and employ) a

random-access �le that is striped across the disks of a parallel �le system.

Much of the research related to parallel I/O has been performed in the context of C, and C provides excellent

support for such operations. In particular, C allows the casting of an array of any type into an array of

bytes, and multidimensional arrays can be treated as one-dimensional arrays of the same size. The Unix I/O

functions simply take a pointer to a one-dimensional array, the number of bytes to be read or written, and the

o�set into the �le, and they carry out the request as a single I/O operation. It is also quite simple to perform

parallel reads and writes in C without the need for synchronization (on �le systems that support such access).

In particular, each process can seek to an independent (non-overlapping) region of a shared random-access �le

and then perform its reads or writes to disjoint regions of the �le in parallel.

There are other advantages of C/Unix based I/O as well. One advantage is that local (nonportable) hooks to

a parallel �le system can provide excellent performance enhancements on some machines. For example, the

O DIRECT option available on the XFS �le system on the SGI Origin2000 allows the application to bypass the

system �le cache and write directly to disk. On systems with high disk bandwidth, this option can improve

performance signi�cantly [12]. The disadvantage of this approach, of course, is that it is not portable. Another

advantage of C-based I/O is that there are portable APIs, such as MPI-IO [17], that are implemented in an

optimized fashion for di�erent machines and �le systems.

The situation in Java, however, is quite di�erent. Achieving high-performance parallel �le I/O in Java is

currently a very di�cult issue, primarily because of the constraints imposed by the interface design of the

Java I/O library. However, the widespread standardization and platform independence of Java provide an

ideal vehicle for deploying a high-performance I/O library interface whose implementation can be individually

tuned to fully utilize the capabilities of each underlying architecture.

1.2 Contributions of this Paper

The contributions of this paper are mainly twofold. First, we provide a detailed discussion and performance

analysis of several approaches to parallel �le I/O available in Java and do so across two di�erent parallel

architectures and �le systems. To date, there has been relatively little research focusing on the I/O capabilities

of Java in general, and on its capabilities to perform parallel �le I/O in particular. Second, we propose

extensions to the Java I/O API that can improve performance signi�cantly. These extensions allow users to

perform bulk (array) I/O operations with a single method call. We have implemented these extensions and

validated their performance bene�ts.

2

1.3 Related Work

Other than the large body of work related to parallel I/O [4, 8, 9, 13, 23, 27, 28, 32, 33], the work most

closely related to ours is the Jaguar project [36, 37], which aims to improve Java I/O performance as one of

its goals. Jaguar allows the Java runtime system to be extended with new primitive operations that enable

e�cient access to hardware resources. These primitives are speci�ed as short machine code segments that

are directly inlined into the Java bytecode as it is compiled. The Jaguar project is, in fact, complementary

to the work discussed in this paper, the di�erence being the level at which performance improvement is

targeted. This paper deals with the Java I/O facilities available to the user at the application level. The

Jaguar project provides performance enhancements at a lower system level. Another interesting aspect of the

Jaguar project is the idea of pre-serialized objects, where objects are stored in a pre-serialized format ready

for communication or I/O. A similar idea could be applied to arrays of Java primitive data types, with the

required encoding/decoding being performed by threads executing in the background while the main thread

engages in other computation/communication.

A preliminary version of our work was presented in [2, 11].

1.4 Organization

The rest of this paper is organized as follows. In Section 2 we describe the basic I/O mechanisms de�ned

in Java. In Section 3 we discuss several approaches for performing parallel �le I/O in Java. We study the

performance of these approaches in Section 4. Suggestions for improving the Java I/O model are presented

in Section 5. The implementation of these extensions is discussed in Section 6. Performance results with the

extensions are presented in Section 7. Conclusions and and ideas for future work are presented in Section 8.

2 I/O in Java

To understand the issues associated with performing parallel I/O in Java, it is necessary to briey review the

Java I/O model [18].

Generally, I/O in Java is divided into two parts: byte-oriented I/O, which includes bytes, integers, oats,

doubles and so forth, and text-oriented I/O, which includes characters and text. In this paper, we are concerned

only with byte-oriented (binary) �le I/O. In Java, byte-oriented I/O is handled by input streams and output

streams, where a stream is an ordered sequence of bytes of unknown length.

Java provides a rich set of classes and methods for operating on byte input and output streams. These classes

are hierarchical, and at the base of this hierarchy are the abstract classes InputStream and OutputStream.

It is useful to briey discuss this class hierarchy in order to clarify the possible approaches to performing

high-performance I/O in Java. To facilitate this discussion, Figure 1 provides a graphical representation of

this I/O hierarchy. We note that we have not included every class that deals with byte-oriented I/O but have

included only those classes that are pertinent to our discussion.

2.1 InputStream and OutputStream Classes

The abstract classes InputStream and OutputStream are the foundation for all input and output streams.

They de�ne methods for reading/writing raw byte input/output streams.

The InputStream class provides three methods for reading bytes from an input stream. One method reads a

3

InputStream

FileInputStream

ByteArrayInputStream

FilterInputStream

BufferedInputStream

DataInputStream

RandomAccessFileOutputStream

FileOutputStream

ByteArrayOutputStream

FilterOutputStream

BufferedOutputStream

DataOutputStream

Figure 1: This �gure shows the I/O class hierarchy pertinent to this investigation. Note that the

RandomAccessFile class is completely outside of the InputStream and OutputStream hierarchy. As discussed

in Section 2.5, however, a connection can be made between a RandomAccessFile and a FileInputStream or

FileOutputStream.

single byte, another method reads available data into a byte array, and the third method reads the available

data into a particular region of a byte array. We are interested in the third method since it allows distinct

threads to read into distinct regions of the same byte array in parallel. The signature for this method is:

public int read(byte[] buf, int offset, int length) throws IOException

In addition to the three read methods, the InputStream class de�nes methods to skip over bytes in the input

stream, to determine the number of bytes available in an input stream, and to close an input stream.

The OutputStream class provides methods for writing that are analogous to those of InputStream. In partic-

ular, it provides three write methods: one to write a single byte to an output stream, one to write an array

of bytes to an output stream, and one to write a subarray of bytes to an output stream. We are interested

primarily in the third method, which can be used as the basis for performing parallel writes (when used in the

context of random-access �les, as discussed below). The signature for this method is:

public void write(byte[] buf, int offset, int length) throws IOException

In addition to the three write methods, this class also supports methods to ush and close output streams. A

very signi�cant feature of the OutputStream class is that, unlike the InputStream class, it does not support

skipping (or seeking) over bytes in the output stream. This precludes multiple threads from writing to distinct

regions of the output stream, which basically precludes performing parallel writes. The solution to this problem

is discussed in Section 3.

2.2 File Input and Output Streams

The FileInputStreamand FileOutputStream classes are concrete subclasses of InputStream and OutputStream,

respectively, and provide a mechanism to read from and write to �les. FileInputStream provides all the meth-

ods of the InputStream class and de�nes only one new method, which can be used to obtain an opaque �le

descriptor object. The signature for this method is:

4

public final FileDescriptor getFD() throws IOException

Note that the ability to skip over bytes in a �le input stream means that multiple threads can seek to disjoint

regions in an input �le. This feature, in addition to the fact that multiple threads can read into disjoint

sections of a byte array in parallel, provides the basis for parallel reads into a common array.

There are three constructors for �le input streams. One constructor takes as a parameter a string representing

the �le name. Another constructor takes as a parameter a Java.io.File object. The third constructor

requires a FileDescriptor object. For reasons discussed below, the third constructor is most pertinent to

this discussion and has the following signature:

public FileInputStream(FileDescriptor fd)

Similar to the FileInputStream class, the FileOutputStream class also provides the three write methods

available in its superclass and de�nes only one new method for obtaining a FileDescriptor object. The

constructor for this class most pertinent to our discussion takes as a parameter a FileDescriptor and has

the following signature:

public FileOutputStream(FileDescriptor fd)

We note that it is not possible for multiple threads to seek to di�erent locations in a �le output stream since

the class provides no method to do so.

2.3 Byte Array Streams

The ByteArrayInputStream class reads data from a byte array using the methods of the superclass. It

provides two constructors: one that takes a byte array as its parameter (and uses this byte array as the input

source), and one that takes a byte array plus an o�set and a length, and uses this subarray as the input source.

Otherwise, it de�nes no new methods.

The ByteArrayOutputStream class writes bytes into successive components of an internal byte array. The

size of this internal byte array is determined by the class constructors. One constructor takes no arguments

and employs a default bu�er size of 32 bytes. The second constructor takes as an argument the initial size of

the bu�er. In either case, the size of the byte array grows to accommodate additional data. A copy of the

internal byte array can be obtained through the toByteArray method. The signature for this method is:

public synchronized byte[] toByteArray()

2.4 Filter Streams

Filter streams provide methods to chain streams together to build composite streams. For example, a

BufferedOutputStream can be chained to a FileOutputStream to reduce the number of calls to the �le

system.

The FilterInputStream and FilterOutputStream classes de�ne a number of subclasses that manipulate

the data of an underlying stream. The constructor for a FilterInputStream object takes as a parameter

an InputStream object, and the constructor for a FilterOutputStream object takes as a parameter an

5

OutputStream object. Otherwise, these classes provide the same methods de�ned by the InputStream and

OutputStream classes.

Two subclasses of �lter streams are pertinent to this investigation. One subclass is DataInputStream, which al-

lows raw byte input to be treated at the level of Java primitive types. The other subclass, BufferedInputStream,

provides bu�ering for an underlying stream. Similar subclasses are de�ned by FilterOutputStream. It is

worthwhile to briey discuss these two subclasses.

2.4.1 Bu�ered Streams

The BufferedInputStream and BufferedOutputStream classes provide bu�ering for an underlying stream,

where the stream to be bu�ered is passed as an argument to the constructor. The bu�ering is provided by an

internal system bu�er whose size can (optionally) be speci�ed by the user.

2.4.2 Data Streams

All the classes discussed thus far manipulate raw byte data only. Applications, however, deal with higher-

level data types, such as integers, oats, doubles, and so forth. Java de�nes two interfaces, DataInput and

DataOutput, that de�ne methods to treat raw byte streams as these higher-level Java data types. Together,

these interfaces de�ne methods for reading and writing all Java data types. The DataInputStream and

DataOutputStream classes provide default implementations for these interfaces. For example, the two methods

that read and write integers are the following:

public final int readInt() throws IOException

public final void writeInt(int i) throws IOException

It is important to note that these methods read or write a single integer at a time. No method exists in Java

for reading or writing an array of integers (or an array of any data type other than bytes).

2.5 Random-Access Files

As mentioned above, it is not possible to seek to some location in the �le when writing with the FileOutputStream

class because, unlike FileInputStream, FileOutputStream provides no methods for seeking. To overcome

this problem, we use the RandomAccessFile class that provides more sophisticated �le I/O. In particular, it

provides the seek method that we require.

public void seek(long position) throws IOException

It is interesting to note that the RandomAccessFile class sits alone in the I/O hierarchy and duplicates, rather

than inherits, methods from the stream I/O hierarchy. In particular, RandomAccessFile duplicates the read

and write methods de�ned by the InputStream and OutputStream classes and implements the DataInput and

DataOutput interfaces that are implemented by the data stream classes. However, since RandomAccessFile

is not in the stream hierarchy, it cannot be directly used where input or output streams are required.

There is, however, a (not entirely obvious) way to form a connection between the RandomAccessFile class

and the rest of the stream hierarchy. This can be done by getting the �le descriptor of a random-access

�le with getFD() and using the �le descriptor as a parameter to the constructor for a FileInputStream or

6

FileOutputStream object. Once this connection is made, a random-access �le can be chained to �lter streams

and byte-array streams.

3 Approaches to Parallel File I/O in Java

In this section we describe six di�erent approaches for performing parallel �le I/O in Java. Most of these

approaches are di�erent ways of working around the problem that Java does not directly support the reading

or writing of arrays of any data type other than bytes.

3.1 Using Raw Byte Arrays

If the data to be read or written is already in the form of a byte array, it is trivial to read or write the data

using the Java methods for reading/writing byte arrays. As noted above, however, byte is the only data type

for which such array operations are de�ned.

Let us assume that multiple threads of a parallel program need to write di�erent parts of a byte array to

a common �le. Assume further that the �le system permits concurrent writes to disjoint locations in a �le.

We can perform the I/O as follows. Each thread in the parallel program creates a RandomAccessFile object,

calculates its o�set in the shared �le, and seeks to that position. It then uses the write method de�ned by

the RandomAccessFile to write its portion of the byte array in a single operation, as shown below.

// this is executed by the main thread

byte buf[] = new byte[buf_size];

// this code is executed by all of the threads.

// First create a RandomAccessFile object, then

// calculate offset in file

RandomAccessFile raf = new RandomAccessFile (filename,access);

raf.seek(position);

// calculate offset within byte array and number

// of bytes to write, then perform write

raf.write(buf,my_start_buf,num_bytes);

It is important to note that this approach works correctly both when an existing �le is overwritten and when

a new �le is created, because of the semantics of the seek method. In particular, a seek to a location past

the end of the �le, followed by a write, extends the length of the �le [30].1

3.2 Converting to/from an Array of Bytes

As we shall see in Section 4, I/O involving byte arrays is simple and also performs well. The problem, however,

is that real applications do not operate on arrays of bytes. Rather, they deal with arrays of other data types,

1These semantics were introduced in the Java 1.1 language speci�cation.

7

such as integers, oats, and doubles. Java, unfortunately, provides no methods for performing I/O operations

on such arrays. Furthermore, unlike C, Java does not allow users to simply cast an array of some other type

into an array of bytes. Nonetheless, we can still use the byte-array methods by explicitly converting an array

of some other data type into an array of bytes, and vice versa.

For example, we can write an array of integers by �rst right-shifting one byte at a time into a byte array and

then writing the byte array. Similarly, we can read an array of integers by �rst reading into a byte array and

then converting the bytes into integers. The only issue encountered in the conversion from bytes to integers

stems from the fact that Java does not have unsigned data types. Thus, if the high bit of a given byte is set,

it is interpreted as a negative number when converted to an integer. More precisely, the lower eight bits of

the integer are copied from the eight bits of the byte, and the upper 24 bits are set to 1 (sign extension). We

must, therefore, take care of the sign bit when converting bytes to integers. The conversion can be done as

follows without explicitly checking the sign bit (that is, without a branch):

// Assume we are converting the byte array, buf, into integers in

// an integer array, int_array.

for (int i=0; i < int_array.length; i++) {

int_array[i] = (((int)buf[4*i+3]) & 255)

| ((((int)buf[4*i+2]) & 255) << 8)

| ((((int)buf[4*i+1]) & 255) << 16)

| ((((int)buf[4*i+0]) & 255) << 24);

}

3.3 Using Data Streams

It is possible to read/write a single integer at a time by using the methods de�ned in the DataInput and

DataOutput interfaces. As noted above, the RandomAccessFile class implements these interfaces, making it

relatively easy to perform parallel I/O operations using data streams. The pseudo-code for this approach is

shown below. Note that the writeInt method is called several times in a loop, writing one integer at a time,

which is very expensive. (It induces a method-call overhead linear in the number of primitive data values to

be written.)

// main program

int[] int_array = new int[num_ints];

// each thread calculates its position in the

// file and the array, and calculates the number of

// integers it needs to read or write.

RandomAccessFile raf = new RandomAccessFile(filename,access);

raf.seek(position);

for (int i = start_buf; i < (start_buf+num_ints_to_write); i++)

raf.writeInt(int_array[i]);

3.4 Using Bu�ered Data Streams

As we shall see in Section 4, using regular (unbu�ered) data streams results in the poorest performance across

all approaches studied, because a call to the I/O subsystem is made for every integer read or written. It is thus

8

desirable to seek approaches that internally bu�er data before reading/writing. The problem, however, is that

the RandomAccessFile class does not implement bu�ering, and the FilterInput and FilterOutput streams

(of which bu�ered streams are a subclass) only work with objects of type InputStream and OutputStream.

There is a way to use system bu�ering for a RandomAccessFile object as follows. A RandomAccessFile can be

chained to a FileInputStream or FileOutputStream object through its �le descriptor. The FileInputStream

or FileOutputStream object can be chained to a BufferedInputStream or

BufferedOutputStream object, which can then be chained to a DataInputStream or DataOutputStream

object.2

We note, however, that it is not safe to use bu�ered data streams for writing concurrently from multiple

processes or threads to overlapping regions of a common random-access �le. This is because each thread

or process maintains its own local bu�er, and the bu�ers of di�erent processes may not be coherent. This

problem does not exist in the case of concurrent reads, of course.

The pseudo code for using bu�ered streams is shown below, with the caveat that, depending on the imple-

mentation, there is potential for erroneous results. Speci�cally, it is probably a bad idea to call seek() on

the RandomAccessFile object after any reads or writes take place on the associated stream objects, as this

will most likely result in bu�er-consistency errors, leading to data corruption. (One can avoid this particular

di�culty by closing and reopening all the �le objects when a seek is necessary.) It is also advisable to explicitly

flush() the DataOutputStream object before closing any �le objects to prevent the possibility of losing the

�nal bu�er of data written.

RandomAccessFile raf = new RandomAccessFile(filename,access);

FileDescriptor fd = raf.getFD();

FileOutputStream fos = new FileOutputStream(fd);

BufferedOutputStream bos= new BufferedOutputStream(fos);

DataOutputStream dos = new DataOutputStream(bos);

// each thread calculates its offset within the array,

// its offset in the file, and the number of

// elements to write to disk.

raf.seek(position);

for (int i = start_buf; i < (start_buf + num_ints_to_write; i++)

dos.writeInt(int_array[i]);

Although this approach has introduced bu�ering, the Java method-call overhead is still linear in the number

of primitive data values being read or written, which we shall see is a performance problem.

3.5 Using Bu�ering with Byte Array Streams

Another approach to bu�ering a data input or output stream is to chain it to an underlying byte array stream.

Then the read and write methods invoked on the data stream will be directed to the underlying byte array

stream rather than directly to disk. This composite stream is de�ned as follows:

RandomAccessFile raf = new RandomAccessFile(filename,access);

ByteArrayOutputStream bos = new ByteArrayOutputStream(size);

DataOutputStream dos = new DataOutputStream(bos);

2This trick relies on some under-speci�ed aspects of the Java I/O subsystem. Speci�cally, it assumes an implementation where
the seek pointer state is associated with the opaque FileDescriptor object and not the enclosing RandomAccessFile object.

9

Note that it is advantageous to specify the correct bu�er size to the ByteArrayOutputStream constructor,

instead of just using the default bu�er size of 32 bytes, in order to avoid the cost of having the implementation

grow (reallocate) the bu�er as needed.

As in the previous cases, the individual threads seek to their correct position in the integer array and the shared

�le. In the case of a write, the thread simply writes all its data to the output data stream, which in turn

writes it to the underlying byte array stream. Once the write is complete, the thread uses the toByteArray

method to write the data from the byte array to the shared �le. This is shown below.

for(int i = start_buf; i < (start_buf + num_ints_to_write; i++)

dos.writeInt(int_array[i]);

raf.seek(position);

raf.write(bos.toByteArray());

Note that the toByteArray() method returns a newly allocated copy of the internal byte array maintained

by the ByteArrayOutputStream; therefore, this approach imposes the CPU and memory-footprint overheads

of an additional data copy.

It is slightly more complicated to use byte array streams for read operations. First, each thread declares its own

byte array, creates the ByteArrayInputStream and DataInputStream objects, and seeks to the appropriate

location in the �le. Next, each thread reads from the �le into its byte array using the low-level read method.

Finally, the data is transfered from the byte array into the integer array using the read method of the data

input stream class. The pseudo-code for this operation is given below.

// each thread allocates its own buffer

byte[] buf = new byte[num_bytes_to_read];

ByteArrayInputStream bis = new ByteArrayInputStream(buf);

DataInputStream dis = new DataInputStream(bis);

raf.seek(position);

raf.readFully(buf, 0, num_bytes_to_read);

for (int i = start_buf; i < (start_buf + num_ints_to_read); i++)

int_array[i] = dis.readInt();

Note that, in both cases, the method-call overhead is still linear in the number of primitive data values being

read or written.

3.6 Other Approaches

There are at least two other ways of performing I/O in Java. One way is to use object serialization [18]. We

explored this approach initially, but found that Java adds some additional bytes to the �le in order to store

object-related information. This makes it di�cult to perform parallel reads or writes because the threads

would not know where to seek in the �le. Object serialization in Java is also known to be very slow [5].

Another way is to not use the I/O methods de�ned in Java, but rather to use the Java Native Interface

(JNI) [24] to extend the existing libraries with new methods specialized for handling array-based I/O. We

used this method to implement the bulk I/O extensions proposed in this paper. See Section 6 for details.

10

4 Performance Results for Existing Java I/O Methods

In this section we present the results of our experiments with the various approaches described above. We

�rst describe the two machines used for our experiments.

4.1 Computational Platforms and Experimental Setup

We conducted experiments on two parallel machines located at Argonne National Laboratory, an IBM SP and

an SGI Origin2000. At the time we performed our experiments, the SP was con�gured with 80 compute nodes

and 4 I/O processors. Each I/O processor controlled four SSA disks, each of 9 Gbyte capacity. The Origin

was con�gured with 128 compute processors and ten Fibre Channel controllers connected to a total of 110

disks of 9 Gbyte capacity each. On both machines, we used the native parallel/high-performance �le systems,

namely, PIOFS on the SP and XFS on the Origin2000.

The programs we ran on both machines were parallel multiprocess Java programs. Each process ran on a

di�erent Java Virtual Machine. We could have simply spawned Java processes, but our parallel program also

needed some additional information that MPI [16] typically provides, such as the total number of processes

in the computation and the rank of a process in the process group (in order to determine its position in the

shared �le). One way to get around this problem is to use one of the several research projects in this area, such

as JavaNOW [31] or an MPI wrapper for Java [25]. We used a simpler approach, however, in which we invoked

the Java program from within a simple MPI program written in C. The MPI program used MPI functions

to determine the rank of the process and the number of processes, and then invoked the Java program using

the system() call in C, passing the rank and number of processes as command-line arguments. The timings

were measured across the I/O calls in the Java program. Each Java process had its own private array, but

all processes shared the global �le. On the SP, we used a 4 Mbyte array per process, whereas on the Origin

we used a 32 Mbyte array per process. These sizes were chosen based on some experiments to determine the

right size for good I/O performance on these machines. Each process read (or wrote) multiple times; the total

�le size read (or written) was 1 Gbyte. On the SP, we used IBM's Java software, which was conformant with

the behavior of Sun's JDK 1.1.2. On the Origin, we used version 3.1.1 of SGI's Java software, which was

conformant with the behavior of Sun's JDK 1.1.6.

4.2 Results

The results of our experiments are shown in Figure 2. We note that our intention was not to compare

performance between the two machines since they have very di�erent I/O con�gurations. Rather, we wanted

to compare the performance of the various approaches on a particular machine, for two di�erent machines.

The experiments can basically be divided into two categories. The �rst category, which includes the �rst two

approaches discussed in Section 3, uses the Java I/O methods for reading/writing arrays of bytes. In the �rst

case of this category, we assume the data is already in byte form; in the second case (called encode/decode in

Figure 2), we explicitly perform the conversion from integer arrays to byte arrays and vice versa. The second

category, which includes all the other experiments, uses the data stream classes either alone or chained to

some underlying stream that provides bu�ering.

The I/O performance is quite poor when using the data stream classes and methods, even when bu�ered. The

poor performance of the data stream classes stems from three factors. First, when used without bu�ering,

this approach requires a call to the I/O subsystem for every element of the array. This may be acceptable

when I/O requirements are small, but is certainly not acceptable for large scienti�c applications. Secondly,

even when bu�ering is provided by an underlying stream, this approach still requires invoking a method for

11

0 20 40 60 80
Number of Processors

0.0

50.0

100.0

150.0

B
a

n
d

w
id

th
 (

M
B

 p
e

r
S

e
co

n
d

)

Write Operations on IBM SP2

Raw Byte Array
Encode/Decode
Data Streams
Buffered Data Streams
Byte Array Streams

0 20 40 60 80
Number of Processors

0.0

20.0

40.0

60.0

80.0

100.0

B
a

n
d

w
id

th
 (

M
B

 p
e

r
S

e
co

n
d

)

Read Operations on IBM SP2

Raw Byte Array
Encode/Decode
Data Streams
Buffered Data Streams
Byte Array Streams

0 20 40 60 80
Number of Processors

0.0

50.0

100.0

150.0

B
a

n
d

w
id

th
 (

M
B

 p
e

r
S

e
co

n
d

)

Write Operations on SGI Origin 2000

Raw Byte Array
Encode/Decode
Data Streams
Buffered Data Streams
Byte Array Streams

0 20 40 60 80
Number of Processors

0.0

200.0

400.0

600.0

800.0

B
a

n
d

w
id

th
 (

M
B

 p
e

r
S

e
co

n
d

)

Read Operations on SGI Origin 2000

Raw Byte Array
Encode/Decode
Data Streams
Buffered Data Streams
Byte Array Streams

Figure 2: The performance of various approaches to high-performance �le I/O in Java

12

every element of the array. With 64 processes and a 1 Gbyte array, each process must make over four million

calls to the readInt or writeInt methods. With a single process, this number increases to over 268,000,000.

Clearly this is a signi�cant obstacle to achieving high-performance �le I/O. The third problem is that many

of the methods of the DataOutputStream class write to the underlying stream one byte at a time, and each

such write requires a lock acquisition [19].

Although bu�ering improved the performance of data streams by orders of magnitude (for example, from

0.00074 Mbytes/sec to 0.19 Mbytes/sec), it could not match the performance of writing byte arrays directly,

which was more than 100 Mbytes/sec. We also observed that the size of the bu�er was quite important

when using the bu�ered data streams. In particular, choosing the correct bu�er size more than tripled the

throughput. (We should also note that a nontrivial amount of experimentation was required to �nd the

best bu�er size.) Again, the di�erence in performance, however, was only in the range of 1 Mbyte/sec to

3 Mbytes/sec, for example.

As expected, the best performance was obtained when using the Java I/O facilities for directly reading and

writing arrays of bytes. In fact, the �rst approach, which simply assumed the data was already in byte form,

provided performance essentially identical to that obtained when using C. However, there was a signi�cant

drop in performance (for all but one experiment) when the application itself had to convert data from an array

of integers to an array of bytes or vice versa (encode/decode). With this method, a more realistic scienti�c ap-

plication that actually performs non-trivial computations may see an even larger performance degradation|in

our test program, the CPU could be devoted more or less entirely to performing the encode/decode transfor-

mations with no degradation to the overall running time.

4.3 Results on the IBM SP

One striking result on the SP is the rather signi�cant drop in performance observed when moving from 32 to

64 processors using raw byte arrays. The reason for this drop is the contention caused by the undercon�gured

I/O subsystem with only four I/O processors. This trend was not observed for any other approach because

they were not operating at a bandwidth approaching the hardware limit. The best write performance was

obtained using raw byte arrays with 32 processors (resulting in a bandwidth of 106 Mbytes/sec). The best

result with encode/decode was 20 Mbytes/sec with 64 processors. The maximum throughput observed across

all the other approaches was 7.5 Mbytes/sec, obtained with 64 processors and using byte array streams for

bu�ering.

The best performance obtained for the read operations was 96 Mbytes/sec when using raw byte arrays with

16 processors. There was a small decrease in performance when the number of processors was increased

to 32 and 64, this again due to the undercon�gured I/O subsystem. The best performance obtained using

encode/decode was 30 Mbytes/sec with 64 processors. The best performance for all the data stream methods

was 7.5 Mbytes/sec, again obtained with 64 processors and using byte array streams for bu�ering.

4.4 Results on the SGI Origin2000

For writing on the Origin2000, encode/decode performed quite close to raw byte arrays. We believe this is

because the bottleneck in the case of writing is the serialization that the XFS �le system imposes on concurrent

writes, rather than the extra computation and memory copy that encode/decode entails. With 64 processors,

raw byte arrays achieved a throughput of 97 Mbytes/sec, while encode/decode resulted in a throughput of

89 Mbytes/sec. The best performance observed using data streams was 4.1 Mbytes/sec, obtained using bu�ered

output streams with a 0.5 Mbyte bu�er.

Raw byte arrays achieved excellent performance for reading. For example, a throughput of 631 Mbytes/sec

13

was observed when using 16 processors. We see a decrease in performance when the number of processors

was increased to 64 because of increased contention for I/O resources. Encode/decode resulted in a maximum

throughput of 158 Mbytes/sec with 64 processors. The maximum throughput obtained using the data stream

methods was 4 Mbytes/sec, when either byte arrays or bu�ered streams were used to bu�er the data streams.

5 Improving Java I/O Performance

The above results demonstrate that the I/O methods that directly read/write arrays of bytes are the only

existing methods in Java that provide reasonable I/O performance. Real applications, however, do not operate

on byte arrays; they need the ability to read or write arrays of other data types, such as integers and oats.

The data stream methods that operate on such data types do not allow users to read or write arrays of data

types. One can read or write only a single data item at a time, resulting in poor I/O performance.

We propose a straightforward extension to the Java I/O libraries that alleviates this problem. The extension

adds bulk (array) I/O operations to the existing libraries, thereby removing most of the method-call overhead

currently associated with array I/O.

5.1 Bulk I/O Extensions

We propose adding three new subclasses (BulkDataInputStream, BulkDataOutputStream, and

BulkRandomAccessFile) to the java.io hierarchy as pictured in Figure 3. These new classes implement

the methods from two new interfaces, BulkDataInput and BulkDataOutput, which are subinterfaces of

the DataInput and DataOutput interfaces that currently provide single-primitive I/O. BulkDataInput and

BulkDataOutput are both very simple. Each class adds two new methods for performing array-based I/O

(with overloads to handle the di�erent data types): one method for performing I/O on an entire array and a

second for performing I/O on a contiguous subset of the elements in an array. The interfaces are shown below

with the methods for int[] and float[] (the overloaded methods for boolean[], char[], byte[], short[],

long[], and double[] have been omitted for brevity).

public interface BulkDataInput extends DataInput {

public void readArray(int[] array) throws IOException;

public void readArray(int[] array, int arrayoffset, int count) throws IOException;

public void readArray(float[] array) throws IOException;

public void readArray(float[] array, int arrayoffset, int count) throws IOException;

}

public interface BulkDataOutput extends DataOutput {

public void writeArray(int[] array) throws IOException;

public void writeArray(int[] array, int arrayoffset, int count) throws IOException;

public void writeArray(float[] array) throws IOException;

public void writeArray(float[] array, int arrayoffset, int count) throws IOException;

}

The BulkDataInputStream class implements the methods from BulkDataInput; BulkDataOutputStream im-

plements the methods from BulkDataOutput; and BulkRandomAccessFile implements both interfaces.

14

BulkDataOutputStream

OutputStream

DataOutputStream

FilterOutputStream

BulkRandomAccessFile

RandomAccessFile

BulkDataInputStream

InputStream

DataInputStream

FilterInputStream

Figure 3: I/O class hierarchy with the bulk I/O extensions

5.2 Design Motivation

The extensions use subclassing to add support for bulk I/O to the java.io.* classes that implement the

DataInput/DataOutput abstract interfaces. The new bulk classes add support for performing bulk I/O on a

single-dimensional array of any primitive type, while inheriting all the traditional single-element I/O methods

from their respective superclasses. To use the extensions, programmers merely change the declaration of their

top-level I/O object to the new bulk equivalent and add calls to the readArray and writeArray methods,

where appropriate, to perform bulk I/O on arrays of arbitrary length with a constant method-call overhead.

Below is a simple example using the BulkRandomAccessFile object that reads some header information (using

the inherited single-value method readInt()) and then calls a bulk read into a array of doubles:

BulkRandomAccessFile braf = new BulkRandomAccessFile("myfile","r");

int numEntries = braf.readInt();

double[] myArray = new double[numEntries];

braf.readArray(myArray);

Note that the bulk extensions do not directly support arrays of multiple dimensions or whose elements are of

reference type. However, multidimensional arrays can be accessed by calling the methods for one-dimensional

arrays several times.

Finally, we note that the two new stream-based classes (BulkDataInputStream and BulkDataOutputStream)

are not only useful for �le I/O, but could also be used with network I/O streams; therefore, these extensions

could also bene�t high-bandwidth networking applications.

6 Implementation of the Extensions

While it is certainly possible to na��vely implement these methods entirely at the application level, it is best to

implement them with a small amount of help from native code to achieve the desired performance improvement.

As demonstrated in the previous sections, Java already provides relatively high-performance routines for I/O

operations on byte arrays, so all we really need is a way to e�ciently convert an array of regular primitive

types to or from an array of bytes. Once this is accomplished, the converted array of bytes can be passed to

the appropriate byte array I/O method of the superclass to execute the operation.

15

Leveraging the existing functionality of the parent classes in this way makes the implementation relatively

simple and portable. Moreover, this implementation strategy is essential in the case of BulkDataInputStream

and BulkDataOutputStream where the programmer is free to construct the object by composing it with any

arbitrary object implementing the stream interface. In the case of BulkRandomAccessFile (which is not

composable as a stream), we have the option of directly making calls to the underlying �le system, but this

approach requires intimate knowledge of the native code that implements the RandomAccessFile methods

and is therefore inherently JVM-speci�c and nonportable. For this reason, we did not explore that option.

Nonetheless, it is an optimization that should probably be considered when implementing the extensions for a

particular JVM. In general, encapsulating array I/O within specialized bulk methods as we have done provides

the Java library implementation the opportunity to optimize such methods for a particular JVM, architecture,

and �le system.

The only general implementation complexity that arises is maintaining the platform-independent on-disk

representation required by the Java standard. Speci�cally, implementations of the writeArray() methods

on a little-endian architecture (such as Intel x86) must perform a byte-swapping pass on the array data

to ensure that data is written out in big-endian order as required by the Java standard [15]; an analogous

transformation must take place during input using readArray() on little-endian machines. We implemented

the bulk I/O extensions in two environments to evaluate their e�ectiveness: in a standard JVM using the Java

Native Interface (JNI) and in a high-performance parallel dialect of Java called Titanium. We discuss each

implementation below.

6.1 Implementation Using JNI

The JNI speci�cation [24] describes an interface to native code libraries that is provided by all fully compliant

JVM implementations. The JNI routines used to access arrays provide the JVM a great deal of exibility to

avoid constraining the implementation. For example, when native code requests a pointer to the elements of

an array, the JVM may freely choose to return a direct pointer to the elements or return a pointer to a copy

of the elements (although it must report which option it chose).3

Implementing the extensions using JNI was relatively straightforward; the only challenge was in reducing the

number of data copies to the absolute minimum to reduce CPU and memory overheads. It turns out that,

at the very least, one data copy is required to convert an array of primitive type (such as int[]) into a byte

array. This is due to the fact that JNI abstracts away the internal in-memory representation of arrays, which

prevents an in-place, zero-copy type cast. If the JVM insists on performing copies rather than providing native

code with direct pointers to array elements, then the number of copies may be increased to at most three

copies. However, in all the JVMs we have tested thus far, our extensions operate in single-copy mode.

An underlying assumption in the JNI implementation is that the single required copy can be performed

faster than the encode/decode approach presented in Section 3. The implementation uses the memcpy()

routine provided in the standard C library, which presumably operates close to the full memory bandwidth

of the underlying architecture and, in general, should be faster than a lengthy computational loop in Java.

Performance results for the JNI implementation of the extensions are presented in Section 7.

Our JNI implementation of the bulk extensions should work without modi�cation on any standard JVM and

is available for public download from [3].

3The JNI 1.1 speci�cation (which corresponds to Java 1.2) adds a new GetPrimitiveArrayCritical() function that increases

the probability of obtaining a direct pointer to an array's elements in a JVM that employs a copying garbage collector. Our
implementation uses this function when it is available.

16

6.2 Implementation in Titanium

Titanium is a high-performance, explicitly parallel, SPMD dialect of Java developed at U.C. Berkeley for

programming shared-memory and distributed-memory parallel systems. Titanium incorporates the power of

Split-C [29], a low-level SPMD language, into a high-level object-oriented programming language that frees

the programmer from much of the tedium associated with writing and debugging parallel programs. Titanium

is almost a superset of Java 1.0 [15], including all the expressiveness and safety features of that language, with

a wealth of new features that support high-performance SPMD programming, such as user-de�ned immutable

classes, zone-based memory management, local and global references, exible and e�cient multi-dimensional

arrays, unordered loop iteration, and a library of useful parallel primitives including barrier, broadcast, ex-

change, and various reductions [1, 20, 38]. The compiler performs extensive static analysis (with some as-

sistance from programmer-inserted type quali�ers) to statically guarantee freedom from deadlock on barrier

synchronization [14]. The primary goals of the language, in order of importance, are performance, safety, and

expressiveness. Titanium is especially well adapted for writing grid-based scienti�c parallel applications, and

several such major applications have been written and continue to be further developed [35].

The Titanium compiler performs various optimizations using knowledge of the parallel control ow and trans-

lates programs entirely to C, where they are compiled (and optimized further) by a C compiler and then linked

to the proper Titanium runtime libraries (there is no JVM). The Titanium backend has been ported to several

platforms, including SMPs running Solaris or POSIX threads, Solaris and Linux uniprocessors, Cray T3E,

IBM SP2, IBM SPPower3, Tera MTA, SGI Origin2000, and the Berkeley NOW (a shared-nothing cluster of

Ultra-SPARCs [7, 26]).

The bulk I/O extensions described in the previous section were integrated into the Titanium I/O libraries with

a minimal amount of e�ort. The Titanium runtime system exposes the in-memory representation of arrays to

native code, which allows the extensions to be implemented as a direct type cast with zero data copies in the

common case (however, a single data copy is still required on little-endian platforms where byte-swapping is

necessary). Note that this zero-copy implementation strategy is only valid because of the restriction to single-

dimensional arrays of nonreference type; this restriction guarantees that the array element data all resides

contiguously in memory and can be cast to a byte array with no data motion.4

Bonachea [2] investigates the performance of the Titanium implementation of the extensions on an Ultra-

SPARC with a single-disk local �lesystem. They report that the extensions provide a performance improvement

exceeding 2x for sequential access and 40x for random access over the fastest con�gurations that the legacy I/O

libraries have to o�er. Furthermore, they show that the I/O performance of the bulk extensions is virtually

identical to the I/O performance of C on that platform|this is not a terribly surprising result, because the

Java code using the bulk I/O extensions is compiled by Titanium down to C code that looks very similar to

the I/O code that a programmer would hand-write in C. Performance results of the Titanium implementation

of the extensions on our two parallel architectures are shown in Section 7.

6.3 Safety Issues

The new bulk I/O extensions maintain the level of language safety present in the legacy Java I/O library.

Safety is a very important feature of Java, and when evaluating a change or extension to the language, it is

crucial to stop and consider whether the change compromises the existing safety of the language. We now

sketch the reasoning why the bulk extensions don't a�ect the safety of Java.

Intuitively, the new bulk methods accomplish what can already be done given the existing Java I/O li-

4The single-dimensional restriction of the bulk I/O methods is not a serious limitation in Titanium because the language
includes a more powerful structured-array abstraction called grids that provide better support for multidimensional calculations.
Bonachea [2] reports the bulk I/O extension described in this paper has also been successfully adapted to work with grids and
the I/O performance gains are comparable.

17

brary, albeit much faster. In Section 3 we demonstrated that one could use an appropriate composition

of DataOutputStream and ByteArrayOutputStream objects to change an arbitrary list of Java primitive

values into a single dimensional, untyped byte array using the write*() methods and a loop. Similarly,

DataInputStream and ByteArrayInputStream allow one to extract an arbitrary list of Java primitive values

from an untyped byte array. These untyped byte arrays can be used to perform bulk I/O using the existing

methods in the DataInput/DataOutput interface (which as noted, currently only provide bulk I/O methods

for byte arrays).

The bulk extensions accomplish exactly this behavior,5 except they do it much faster by reducing the number

of method calls necessary to a small constant, providing enormous speedups in practice.

7 Performance of the Extensions

We ran the same set of experiments used in Section 4 to test the performance of the bulk I/O extensions

implemented with JNI and in Titanium. We compare the results for the bulk extensions to the performance

of the encode/decode approach, which provided the best integer-array performance within the con�nes of the

legacy Java I/O libraries (recall that this is the approach where the application itself performs the conversion

between integers and bytes). We also measured the performance of an MPI-based, native C implementation

of the same test program (with identical bu�er sizes) that directly uses the read() and write() system calls

to perform I/O. The results are shown in Figure 4.

For read operations on the SP, the performance of the bulk extensions in Titanium was almost identical to

the native C performance. The performance using JNI was slightly degraded due to the extra copy that

the JVM performs when using JNI. The performance of both implementations was vastly superior to that of

encode/decode.

For writing on the SP, we observe similar results. When executing on 32 processors, Titanium achieved a

thoughput of 117 MBytes/sec compared with 121 MBytes/sec for native C code. When executing on 64 pro-

cessors, however, the relative performance of Titanium dropped rather signi�cantly from 104 MBytes/sec to

75 MBytes/sec. (The reason for this drop in relative performance is unclear, and we are currently investi-

gating it.) The JNI extensions also performed quite well, resulting in a throughput of 96 MBytes/sec with

32 processors and 87 MBytes/sec with 64 processors.

On the Origin2000, bulk I/O with Titaniumagain performed almost as well as native C, achieving a throughput

of 536 Mbytes/sec with 16 processors and 511 Mbytes/sec with 64 processors. The JNI version performed

worse than the native C and Titanium implementations, due to the extra data copy involved. However, as

expected, the JNI implementation still outperformed the encode/decode approach by a signi�cant margin. For

writes on the Origin, both Titanium and JNI performed much better than encode/decode up to 16 processors,

but for 32 and 64 processors, encode/decode performed slightly better. We are investigating this anomaly, but

we believe we can tune the implementations of the bulk I/O extensions to achieve comparable performance.

7.1 Preliminary Results with JIT Optimizations

A fair question to ask is whether very clever compiler optimizations (for example, those provided by the best

modern JIT technology) can improve the bulk I/O performance of the legacy Java I/O libraries. Preliminary

tests on such systems give results very similar to those we've reported above, showing the legacy I/O libraries

5There is actually a very subtle di�erence that may arise depending on how the bulk extensions are implemented. If the
"casting" operation is implemented as a literal type-cast (as in the Titanium implementation), then the byte array produced will
be an alias of the typed array. Implementations in safety-critical dialects can allocate a temporary bu�er and perform a single
memcpy() operation to remedy this detail (the way arrays are handled by JNI requires this copy of any JNI-based implementation).

18

0 20 40 60 80
Number of Processors

0.0

50.0

100.0

150.0

B
a

n
d

w
id

th
 (

M
B

 p
e

r
S

e
co

n
d

)

Write Operations on IBM SP2

Native C
Titanium
Java/JNI
Encode/Decode

0 20 40 60 80
Number of Processors

0.0

50.0

100.0

150.0

B
a

n
d

w
id

th
 (

M
B

 p
e

r
S

e
co

n
d

)

Read Operations on IBM SP2

Native C
Titanium
Java/JNI
Encode/Decode

0 20 40 60 80
Number of Processors

0.0

20.0

40.0

60.0

80.0

100.0

B
a

n
d

w
id

th
 (

M
B

 p
e

r
S

e
co

n
d

)

Write Operations on SGI Origin 2000

Native C
Titanium
Java/JNI
Encode/Decode

0 20 40 60 80
Number of Processors

0.0

200.0

400.0

600.0

B
a

n
d

w
id

th
 (

M
B

 p
e

r
S

e
co

n
d

)

Read Operations on SGI Origin 2000

Native C
Titanium
Java/JNI
Encode/Decode

Figure 4: Performance of the bulk I/O extensions

19

still perform rather poorly for bulk I/O. This result is not really that surprising if one considers the nature

of the code in question. The performance of the single-value-at-a-time methods on un-bu�ered DataInput-

Stream/DataOutputStream and RandomAccessFile objects is fundamentally limited by the high number of

system calls, and no amount of compiler optimization can remove this bottleneck. The outlook for optimizing

calls to the single-value-at-a-timemethods on bu�ered stream objects seems equally hopeless, because the ow

of control is interprocedural and interclass, it performs frequent synchronization, and contains calls to native

code that may throw exceptions. Even if the majority of the method calls can be removed, there is still the

high overhead of synchronization, frequent bu�er management operations, and numerous extra data copies.

For these reasons, even the best JIT optimizers have little e�ect on the performance of bulk I/O using the

standard legacy interfaces.

It seems the only serious candidate for achieving reasonable bulk I/O performance from the legacy Java I/O

libraries through clever optimization is the encode/decode approach. It turns out this approach is signi�cantly

more amenable to traditional optimization techniques than the other approaches which use the legacy I/O

libraries, although the resulting performance still falls slightly short of the bulk extensions. Recall this approach

spends the majority of its computation time inside a loop similar to the one presented in Section 3.2, so let

us take a moment and examine the optimization opportunities on this code. A good optimizer will perform

common subexpression elimination and strength reduction on the array indexing operations, converting the

four multiplication operations into a single addition operation. Similarly, a good optimizer would probably

also unroll the loop several times to reduce loop overheads and allow better code scheduling. Assuming both

arrays are local variables, a very clever optimizer may even be able to hoist all the array bounds checks out of

the loop and into the loop preheader. However, it seems extremely unlikely that even the smartest optimizer

would be capable of recognizing that this sequence of memory references and arithmetic computations is

semantically equivalent to a simple bulk memory copy operation - this is a crucial transformation that is

explicitly implemented in the bulk extensions and helps them to perform so much better than any other

approach. Initial results reect this intuition and show the bulk extensions still outperform the encode/decode

approach by a noticeable margin, even in the presence of the best JIT optimizers.

8 Conclusions and Future Work

This work demonstrates that using the data stream methods in Java generally provides poor results, even

with careful bu�er size selection. Thus, to obtain reasonable performance, the application is forced to use the

low-level I/O methods that read and write arrays of bytes. To use these methods, the application must itself

convert the array of integers (for instance) to an array of bytes. A better solution is for Java to provide data

stream methods that operate on arrays of integers and other primitive data types. This would signi�cantly

simplify the implementation of array I/O operations in Java, and would provide the Java implementation the

opportunity to optimize such methods for each di�erent platform. We have proposed extensions to the Java

I/O API that support bulk (array) I/O. We have implemented these extensions using JNI and in Titanium,

and our performance results indicate that they perform as well as native C code for reading/writing arrays.

A limitation of the proposed extensions is that they support �le I/O on one-dimensional arrays of nonrefer-

ence types only. The basic reason is that multidimensional arrays in Java are unstructured and their data

elements are stored noncontiguously (multidimensional arrays are represented as a hierarchy of references to

one-dimensional arrays which could possibly di�er in size). In any case, a programmer could certainly perform

I/O on the constituent one-dimensional fragments of a multidimensional Java array with the caveat that the

application may have to store some additional application-dependent meta-information in order to recover

the shape of a multidimensional array read in this fashion. It is not clear what it means to perform I/O on

nonprimitive (that is, reference) types, although the object serialization approach pioneered in Java 1.1 is

probably a good start.

Another limitation of the Java I/O API is that it does not support asynchronous (or nonblocking) I/O.

20

Asynchronous I/O can be useful for overlapping I/O with computation and communication in the program

and is supported by other I/O APIs such as MPI-IO [17] and POSIX [21]. We are currently working on

de�ning bulk asynchronous I/O extensions to Java and implementing them using JNI and in Titanium.

The bulk I/O extensions we have presented overcome the performance limitations of the lowest-level I/O

methods in Java. For high-performance computing, application developers may also bene�t from a higher-

level parallel I/O library (such as MPI-IO [17]) for Java. Such libraries, if implemented in Java, would

undoubtedly bene�t from the proposed bulk extensions.

One optimization not yet explored in the JNI implementation of the bulk extensions is to recycle the internal

temporary byte-array bu�er in subsequent calls to the bulk I/O methods, thereby amortizing the allocation

costs over many calls. We expect the results of this optimization to be somewhat application dependent;

therefore, one possibility is to support it as an application-tunable option.

Acknowledgments

We would like to thank the entire Titanium team, especially Kathy Yelick and Ben Liblit, for their invaluable

help. This work was supported in part by the Mathematical, Information, and Computational Sciences

Division subprogram of the O�ce of Advanced Scienti�c Computing Research, U.S. Department of Energy,

under Contract W-31-109-Eng-38. This material is based in part on work supported by DARPA contract

No. F30602-95-C-0136, an Army Research O�ce grant no. DAAG55-98-1-0153, and a Sloan fellowship. The

information presented here does not necessarily reect the position or the policy of the Government or other

supporting agencies, and no o�cial endorsement should be inferred.

References

[1] Aiken, A. and D. Gay. Memory Management with Explicit Regions. In Proceedings of Programming

Language Design and Implementation Conference, Montreal, June 1998.

[2] Bonachea, D. Bulk File I/O Extensions to Java. In Proceedings of the ACM 2000 Java Grande Conference,

pages 16{25, June 2000.

[3] Dan Bonachea's Home Page. http://www.cs.berkeley.edu/~bonachea.

[4] Bordawekar, R., Del Rosario, J., and Alok Choudhary. Design and Evaluation of Primitives for Parallel

I/O. In Proceedings of Supercomputing '93, pages 452-461, Portland, OR, 1993. IEEE Computer Society

Press.

[5] Carpenter, B., Fox, G., Ko, S.H., and S. Lim Object Serialization for Marshalling Data in a Java Interface

to MPI. In Proceedings of the ACM 1999 Java Grande Conference, pages 66{71, June 1999.

[6] Crandall, P., Aydt, R., Chien, A., and D. Reed Input-Output Characteristics of Scalable Parallel Appli-

cations. In Proceedings of Supercomputing '95, ACM press, December 1995.

[7] Culler, D. et al. Parallel Computing on the Berkeley NOW. In Proceedings of the 9th Joint Symposium

on Parallel Processing, 1997.

[8] Del Rosario, J., Bordawekar, R., and Alok Choudhary. Improved Parallel I/O via a Two-Phase Run-Time

Access Strategy. In Proceedings of the IPPS '93 Workshop on Input/Output in Parallel Computer Systems

pages 56-70, Newport Beach, CA, 1993.

[9] Del Rasario, J. and A. Choudhary. High Performance I/O for Parallel Computers: Problems and

prospects. IEEE Computer, 27(3):59-68, March 1994.

21

[10] Dickens, P. and R. Thakur. A Performance Study of Two-Phase I/O. In Proceedings of the 4th Inter-

national Euro-Par Conference. Lecture Notes in Computer Science 1470. Springer-Verlag, pages 959-965,

September 1998.

[11] Dickens, P. and R. Thakur. An Evaluation of Java's I/O Capabilities for High-Performance Computing.

In Proceedings of the ACM 2000 Java Grande Conference, pages 26{35, June 2000.

[12] Dickens, P. and R. Thakur. On Implementing High-Performance Collective I/O. Submitted to The

Journal of Parallel and Distributed Computing

[13] Feitelson, D., Corbett, P., Baylor, S., and Y. Hsu. Parallel I/O Subsystems in Massively Parallel Super-

computers. In IEEE Parallel and Distributed Technology, 3(3):33-47, Fall 1995.

[14] Gay, D. and A. Aiken. Barrier Inference. In Proceedings of Principles of Programming Languages Con-

ference, San Diego, January 1998.

[15] Gosling, J. and G. Steele. The Java Language Speci�cation, Addison-Wesley, June 1996.

[16] Gropp, W., Lusk, E., and A. Skjellum. Using MPI: Portable Parallel Programming with the Message-

Passing Interface. Second Edition. The MIT Press, Cambridge, Massachusetts, 1999.

[17] Gropp, W., Lusk, E., and R. Thakur. Using MPI-2: Advanced Features of the Message-Passing Interface.

The MIT Press, Cambridge, Massachusetts, 1999.

[18] Harold, E.R. Java I/O. O'Reilly & Associates, March 1999.

[19] Heydon, A. and M. Najork. Performance Limitations of the Java Core Libraries. In Proceedings of the

ACM 1999 Java Grande Conference, pages 35{41, June 1999.

[20] Hil�nger, P. Titanium Language Working Sketch, rev 0.22, September 1999.

[21] IEEE/ANSI Std. 1003.1. Portable Operating System Interface (POSIX){Part 1: System Application

Program Interface (API) [C Language], 1996 edition.

[22] Kotz, D. and N. Nieuwejaar. Dynamic File-Access Characteristics of a Production Parallel Scienti�c

Workload. In Proceedings of Supercomputing '94, pages 640-649, November 1994.

[23] Kotz, D. Disk-Directed I/O for MIMD Multiprocessors. it ACM Transactions on Computer Systems,

15(1):41-74, February 1997.

[24] Liang, S. The Java Native Interface: Programmer's Guide and Speci�cation. Addison-Wesley, 1999.

[25] MPI-Java Home Page. http://www.npac.syr.edu/projects/pcrc/HPJava/mpijava.html.

[26] NOW Project web page. http://now.cs.berkeley.edu/.

[27] Parallel I/O Archive. http://www.cs.dartmouth.edu/pario.

[28] Seamons, K., Chen, Y., Jones, P., Jozwiak, J., and M. Winslett. Server-Directed Collective I/O in Panda.

In In Proceedings of Supercomputing '95, San Diego, CA, December 1995. IEEE Computer Society Press.

[29] Split-C Project web page. http://www.cs.berkeley.edu/Research/Projects/parallel/

castle/split-c/.

[30] Sun Microsystems Java 1.1 Documentation. http://java.sun.com/products/jdk/1.1/docs.html

[31] Thiruvathukal, G., Dickens, P., and S. Bhatti. Java on Networks of Workstations (JavaNOW): A Parallel

Computing Framework Inspired by Linda, Actors, and the Message Passing Interface. Submitted to

Concurrency: Practice and Experience.

[32] Thakur, R. and A. Choudhary. An Extended Two-Phase Method for Accessing Sections of Out-of-Core

Arrays. Scienti�c Programming 5(4):301-317, Winter 1996.

22

[33] Thakur, R., Choudhary, A., More, S, and S. Kuditipudi. Passion: Optimized I/O for Parallel Applications.

IEEE Computer, 29(6):70-78, June 1996.

[34] Thakur, R., Lusk, E., and W. Gropp. I/O in Parallel Applications: The Weakest Link. International

Journal of High Performance Computing Applications, 124:389{395, Winter 1998.

[35] Titanium Project web page. http://www.cs.berkeley.edu/Research/Projects/titanium/.

[36] Welsh, M. and D. Culler. Jaguar: Enabling E�cient Communication and I/O from Java. To appear in

Concurrency: Practice and Experience, Special Issue on Java for High-Performance Applications.

[37] Welsh, M. Tigris: A Java-Based Cluster I/O System Technical report, June 1999.

[38] Yelick, K. et al. Titanium: A High-Performance Java Dialect. In Proceedings of the ACM 1998 Workshop

on Java for High-Performance Network Computing, Stanford, CA, February 1998.

23

