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SUMMARY

This paper presents the design, implementation, and deployment of the DISCOVER web-based
computational collaboratory. Its primary goal is to bring large distributed simulations to the
scientists’/engineers’ desktop by providing collaborative web-based portals for monitoring, interaction
and control. DISCOVER supports a 3-tier architecture composed of detachable thin-clients at the front-
end, a network of interactions servers in the middle, and a control network of sensors, actuators, and
interaction agents at the back-end. The interaction servers enable clients to connect and collaboratively
interact with registered applications using a browser. The application control network enables sensors and
actuators to be encapsulated within, and directly deployed with the computational objects. The application
interaction gateway manages overall interaction. It uses Java Native Interface to create Java proxies that
mirror computational objects and allow them to be directly accessed at the interaction server. Security and
authentication are provided using customizable access control lists and SSL-based secure servers.
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1. INTRODUCTION

Simulations are playing an increasingly critical role in all areas of science and engineering. As
the complexity and computational cost of these simulations grows, it has become important for
scientists and engineers to be able to monitor the progress of these simulations, and to control or steer
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them at runtime. The utility and cost-effectiveness of these simulations can be greatly increased by
transforming traditional batch simulations into more interactive ones. Closing the loop between the user
and the simulations enables experts to drive the discovery process by observing intermediate results,
by changing parameters to lead the simulation to more interesting domains, play what-if games, detect
and correct unstable situations, and terminate uninteresting runs early. Furthermore, the increased
complexity and multi-disciplinary nature of these simulations necessitates a collaborative effort among
multiple, usually geographically distributed scientists/engineers. As a result, collaboration-enabling
tools are critical for transforming simulations into true research modalities.

Enabling collaborative interaction and steering of high-performance parallel/distributed applications
presents many challenges. A key issue is the definition and deployment of interaction objects with
sensors and actuators [1] [2] that can be used to monitor and control the applications. These sensors
and actuators must be co-located with the computational data-structures in order to be able to control
individual application data structures. Defining these interfaces in a generic manner and deploying them
in distributed environments can be non-trivial, as computational objects can span multiple processors
and address spaces. The problem is further compounded in the case of dynamic applications (e.g.
simulations on adaptive meshes) where computational objects can be created, deleted, modified and
redistributed on the fly. Another issue is the deployment of a control network that interconnects
these sensors and actuators so that commands and requests can be routed to the appropriate set of
computational objects, and information returned can be collated and coherently presented. Finally, the
interaction and steering interfaces presented by the application need to be exported so that they can be
easily (and consistently) accessed by a group of collaborating users to monitor, analyze, and control
the application.

This paper presents the design, implementation, and deployment of the DISCOVER (Distributed
Interactive Steering and Collaborative Visualization EnviRonment) web-based computational
collaboratory. Its primary goal is to bring large distributed simulations to the scientists’/engineers’
desktop by providing collaborative web-based portals for interaction and control. The DISCOVER
architecture consists of detachable thin-clients at the front-end, a network of interactions servers in
the middle, and a control network of sensors, actuators, and interaction agents at the back-end. The
interaction servers enable clients to connect to and collaboratively interact with registered applications
using a browser. The application control network enables sensors and actuators to be encapsulated
within, and directly deployed with the computational objects. Interaction agents resident at each
computational node register the interaction objects and export their interaction interfaces. These agents
coordinate interactions with distributed and dynamic objects. The application interaction gateway
manages the overall interaction with the application. It uses the Java Native Interface (JNI) [3] to
create Java proxy objects that mirror the computational objects and allow them to be directly accessed
by the interaction web-server. Security and authentication services are provided using customizable
access control lists and SSL-based secure servers.

The rest of the paper is organized as follows: A brief overview of related research is presented
in Section 2. Section 3 outlines the DISCOVER system architecture. Section 4 presents the design,
implementation, and operation of the interaction and collaboration web-server. Section 5 describes the
design and implementation of control network, the application interaction substrate and its interface
to the interaction server. Section 6 describes the client collaborative interaction and steering portal.
Section 7 presents conclusions and outlines current and future work.
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2. RELATED WORK

Many interactive computational problem-solving environments are being proposed and developed to
address different aspects of application composition, configuration and execution. Similarly, a number
of groupware infrastructures that provide collaboration capabilities have evolved separately. Existing
interactive and collaborative PSE’s are classified and briefly describe below. Details surveys have been
presented in [4] [5]. The primary goal of DISCOVER is to combine the two capabilities to provide a
collaborative PSE for application interaction and control.

1. Systems for interactive program construction: Systems in this category, e.g. SCIRun [6],
provide support for interactive program construction. SCIRun allows users to graphically
connect program components to create a data-flow style program graph. It is primarily targeted to
developing new applications. While SCIRun does provide some steering capabilities, it does not
support simultaneous steering of multiple applications, or collaborative interaction and steering
by multiple users.

2. Systems for performance optimizations: These systems are aimed at optimizing performance
of applications. For example, in the Autopilot [7] system, sensors have a variety of sensor policies
that optimize application performance. However, they do not provide support for accessing
application objects for interactive monitoring and steering.

3. Systems for remote application configuration and deployment: These systems use existing
high performance metacomputing back-end resources and provide powerful visual authoring
toolkits to configure and deploy distributed applications. The CoG Kits [8] provide commodity
access to the Globus[9] metacomputing environment. The WebFlow [10] and Gateway [11]
systems provide support for configuring, deploying and analyzing distributed applications. These
systems, however, do not provide any support for runtime application level interaction and
steering.

4. Systems for interactive run-time steering and control:

(a) Event based steering systems: In these systems, monitoring and steering actions are
based on low-level system “events” that occur during the course of program execution.
Application code is instrumented and interaction takes place when the pre-defined events
occur. The Progress [12] and Magellan [13] system use this approach and require a server
process executing in the same address space as the application to enable interaction. The
Computational Steering Environment (CSE) [14] uses a data manager as a blackboard for
communicating data values between the application and the clients.

(b) Systems with high-level abstractions for steering and control: The Mirror Object Steering
System (MOSS) ([15][16][17]) provides a high-level model for steering applications.
Mirror objects are analogues to application objects (data structures) and are used for
monitoring and steering. These object export application methods to the interactivity
system through which steering actions are accomplished. High-level abstractions for
interaction and steering provide the most general approach for enabling interaction in
applications. The DISCOVER control network extends this approach.

5. Collaboration groupware: These environments include DOVE [18], the Web Based
Collaborative Visualization [19] system, the Habanero [20] system, Tango [21], CCASE [22]
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and CEV [23]. These systems primarily focus on enabling collaboration; some of them do
however provide support for problem solving. The Tango system is based on centralized server,
and is browser enabled. Habanero uses a Java based centralized server architecture for web
collaboration (and collaborative visualization). The CCASEE provides a distributed workspace
using Java RMI. The CEV system provides collaborative visualization using a central server to
perform the computations necessary to generate new collaborative views. The DOVE and the
Web Based Collaborative Visualization systems also provide similar support for collaborative
visualization.

The DISCOVER computational collaboratory brings together key technologies in web portals,
web servers, collaboration and interaction and steering to provide (1) interaction mechanisms for
distributed dynamic interactive objects that can span multiple address spaces and can be dynamically
created and destroyed, (2) a scalable control network to connect distributed interaction objects, sensors
and actuators and (3) collaborative, web-based interaction and steering portals for remote access to
applications.

3. DISCOVER: An Interactive Computational Collaboratory

The DISCOVER computational collaboratory provides a virtual, interactive and collaborative PSE
that enables geographically distributed scientists and engineers to collaboratively monitor and control
high performance parallel/distributed applications. An architectural overview of the DISCOVER
collaboratory is presented in Figure 1. DISCOVER supports a 3-tier architecture. Its front-end is
composed of detachable client portals. Clients can connect to a DISCOVER server at any time
using a browser to receive information about active applications. Furthermore, they can form or join
collaboration groups and can (collaboratively) interact with one or more applications based on their
capabilities. A network of interaction and collaboration servers forms the middle tier. These servers
extend web-servers with interaction and collaboration capabilities. The back-end consists of control
network composed of sensors, actuators and interaction agents. The DISCOVER interaction model
is application initiated, i.e. the application registers with the server, exporting an interaction interface
composed of “views” and “commands” for different application objects. The interaction interfaces are
defined and exported using high-level abstractions. Views encapsulate sensors and provide information
about the application and the application objects, while commands encapsulate actuators and process
steering requests. Some or all of these views/commands may be collaboratively accessed by groups
of clients based on the clients’ capabilities. DISCOVER is currently operational and being used to
provide interaction capabilities to a number of scientific and engineering applications, including oil
reservoir simulations, computational fluid dynamics and numerical relativity. The three DISCOVER
components are described in the following sections.

4. DISCOVER Interaction & Collaboration Servers

The DISCOVER interaction/collaboration server builds on a traditional web server and extends its
functionality to handle real-time application information and client requests. Extension is achieved
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Figure 1. Architectural schematic of the DISCOVER computational collaboratory

using Java servlets [24] (server side Java programs). Each DISCOVER server is a web server with a
number of “handler” servlets that provide interaction and collaboration services. Clients connect to
the server using standard HTTP communication using a series of HTTP GET and POST requests. At
the other end, application-to-server communication is achieved either using standard distributed object
protocols such as CORBA [25] and Java RMI [26], or a more optimized, custom protocol using TCP
sockets. The core service handlers provided by each DISCOVER server include, the Master Handler,
Collaboration Handler, Command Handler, Security/Authentication Handler and a Daemon Servlet
that listens for application connections. In addition to the core handlers, there may be a number of
handlers providing auxiliary services such as session archival, database handling, visualization, request
redirection, and remote application proxy invocations (using CORBA). These services are optional and
need not be provided by every DISCOVER server. The different services are described below:
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4.1. Core DISCOVER Services

4.1.1. Master Handler

The master (accepter/controller) handler servlet is the client’s gateway to the server. It manages
client service requests, such as authentication, session archival, request redirection and view handling,
and delegates them to the corresponding handler servlet. For each of these requests it invokes the
corresponding handler either on the local server, or on a remote server using CORBA if the request
service handler is not available locally. Within a local server, the master servlet relies on reflection
to dynamically invoke handlers, thus providing an extensible set of services. The master servlet
creates a session object for each connecting client and uses it to maintain information about client-
server-application sessions. It provides each client with a unique client-id. The client-id along with
an application-id (corresponding to the application to which the client is connected) is used to identify
each session. Finally, the master is responsible for generating the dynamic HTML to present application
information requested by the clients.

4.1.2. Security/Authentication Handler

Security, client authentication and application access control is managed by a dedicated security and
authentication handler servlet. The current implementation supports two-level client authentication at
startup; the first level is to authorize access to the server and the second level to permit access to
a particular application. On successful validation of the first level authorization, users are presented
with a list of the applications to which they have access privileges. A second level authentication is
then performed for the application they choose. Once authenticated, the authentication handler servlet
builds a customized interaction interface for the client to match their access capabilities. This ensures
that the client can only access, interact with and steer an application in authorized ways. To enable this
access control, applications are required to be registered with the server and to provide list of users and
their access privileges (e.g. read, modify). The application can also provide access privileges (typically
read-only) to the “world”. This information is used to create access control lists (ACL) for each user-
application pair. Each interaction request is then validated against the ACL before it is processed. On
the client side, digital certificates are used to validate the server identity before the client downloads
views. A Secure Socket Layer provides encryption for all communication between the client and the
server.

4.1.3. Command Handler

The command handler servlet manages all client view/command requests. On receiving these requests
from the master handler, this handler looks up the appropriate application proxy, and redirects them
to this proxy. The collaboration handler described below handles the responses to these requests. All
requests and responses are Java objects and take advantage of Java’s object serialization capability.
Session management and concurrency control is based on capabilities granted by the server. A
simple locking mechanism is used to ensure that the application remains in a consistent state
during collaborative interactions. This ensures that only one client “drives” (issues commands to) the
application at any time. Locks are typically requested and released explicitly by a user. Preemption
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occurs only when the driver fails to respond to the server for an extended period of time. Commands
issued by the driver are broadcast to all clients logged on to the application.

4.1.4. Collaboration Handler

DISCOVER enables multiple clients to collaboratively interact with and steer applications. On the
server side the collaboration handler servlet manages all collaboration, while on the client side a
dedicated thread is used. All clients connected to a particular application form a collaboration group
by default. Global updates (e.g. current application status) are automatically broadcast to this group.
Additionally clients can form or join (or leave) collaboration sub-groups within the application group.
Once part of a collaboration group, the client can selectively broadcast application information to
the group. A client can also select the type of information it should receive. This allows clients to
enable only those views that it can handle, e.g. a client with limited graphics capability may disable
all graphical views. Finally, clients can disable all collaboration so that their requests/responses are not
broadcast to the entire collaboration group. Individual views can still be explicitly shared in this mode.
In addition to view/command collaboration, each application on the client portal is provided with chat
and whiteboard tools to further assist collaboration.

4.1.5. Daemon Servlet and Application Proxies

The daemon servlet forms the bridge between the server and the applications. This servlet opens 3
communication channels with each application that connects to it: (1) A MainChannel for application
registration and regular updates; (2) A CommandChannel for forwarding client interaction requests
to the application; and (3) A ResponseChannel for receiving application responses to the interaction
requests. Each application is authenticated at the server using a pre-assigned unique identifier. The
daemon servlet creates an Application Proxy for each new application that connects to it, and maintains
a handle to the proxy object. It also assigns the application with a unique session identifier. The
Application Proxy object encapsulates the entire context for an application. It spawns two threads -
one for the initial application registration and subsequent updates, and a second for receiving responses
to view/command queries. All updates and responses from the application are logged on a per-client
as well as a per-session basis. This log is used to prevent multiple requests for the same information
from being sent to the application. The CommandChannel buffers all requests and sends them to the
application when the application is in the “interaction” phase. This ensures that requests are not lost
while the application is busy computing.

4.2. Auxiliary DISCOVER Services

4.2.1. Session Archival Handler

The session archival handler servlet maintains two logs. The first logs all interactions between client(s)
and the application and enables clients to replay their interactions with the application. It also enables
latecomers to a collaboration group to get up to speed. The second log maintains all global updates
and status messages from each application. This log allows clients to have direct access the entire
history of the application. Logging uses standard JDBC interfaces, and local and/or remote databases.
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All requests, commands, responses, and global updates are stored in memory at the server and
synchronized to the database at regular intervals. At the client end, a customizable “log-viewer”
provides access to the logged information sorted by interaction epochs. Interaction epochs correspond
to each time the application is in its interaction phase.

4.2.2. View Handlers (Plug-Ins)

Application information is presented to the client in the form of application “views”. Typical views
include text strings, plots, contours and iso-surfaces. Associated with each of these views is a view
plug-in that is used to present the requested view to the user. The server supports an extendible plug-in
repository and allows users to extend, customize or create new views by registering custom mime types
and the associated plug-ins with the DISCOVER server. Plug-ins are registered as executable jar files,
and can be selectively downloaded from the discover server. For example, in the current implementation
plotting views are based on the Java 3D API and use the Ptolemy [27] software package. These plots
are of two kinds: incremental or one-time. The former shows the incremental change in an application
parameter with successive iterations while the latter shows the history of the application parameter
from startup or checkpoint to the current time.

5. Application Control Network for Interaction and Steering

The DISCOVER back-end is composed of two components provided by the Distributed Interactive
Object Substrate (DIOS): (1) interaction objects that are co-located with computational objects and
encapsulate sensors and actuators, and (2) a hierarchical control network that connects these objects
with interaction agents, interaction base stations and the interaction gateway.

5.1. Sensors/Actuators & Interaction Objects

Interaction objects extend application computational objects with interaction and steering capabilities,
by providing them with co-located sensors and actuators. Computational objects are the data-
structures/objects used by the application. Sensors enables the object to be queried whiles actuators
allow it to be steered. Efficient abstractions are essential for converting computational objects
to interaction objects, especially when these computational objects are distributed and dynamic.
In DISCOVER, this conversion is achieved by deriving the computational objects from a virtual
interaction base class provided by DIOS. The derived objects define an interaction interface as a set of
views that they can provide and a set of commands that they can accept and process. Views represent
sensors and define the type for information that the object can provide. For example, a Grid object
might export views for its structure and distribution. Commands represent actuators and define the type
of controls that can be applied to the object. Commands for the Grid object may include refine, coarsen,
and redistribute. Interaction agents (Discover agents) then export this interface to the interaction server
using a simple Interaction IDL (Interface Definition Language), which is compatible with standard
distributed object interfaces like CORBA and RMI. DISCOVER interaction objects can be created or
deleted during application execution and can migrate between computational nodes. Furthermore, a
distributed interaction object can modify its distribution at any time.
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5.2. Local, Global and Distributed Interaction Objects

Interaction objects can be classified based on the address space(s) they can span during the course
of computation as local, global, and distributed objects. Local interaction objects are created in a
processor’s local memory. These objects may however migrate to another processor during the lifetime
of the application, but always exist in a single processor’s address space at any time. Multiple instances
of a local object could exist on different processors at the same time. Global interaction objects are
similar to local objects, except that there can be exactly one instance of the object that is replicated
on all processors at any time. A distributed interaction object spans multiple processors’ address
spaces. An example is a distributed array partitioned across available computational nodes. These
objects contain an additional distribution attribute that maintains its current distribution type (blocked,
staggered, inverse space filling curve-based, or custom) and layout. This attribute can change during
the lifetime of the object if the object is redistributed. Like local and global interaction objects,
distributed objects can be dynamically created, deleted, or redistributed. In order to enable interaction
with distributed objects, each distributed type is associated with gather and scatter operations.
Gather aggregates distributed components of the objects while scatter performs the reverse operation.
Application can select from a library of gather/scatter methods for popular distribution types provided
by DIOS, or can register customized gather/scatter methods for other distribution types.

5.3. Definition and Deployment of Interaction Objects

In DISCOVER, interaction objects are generated using a library of interaction virtual classes provides
by DIOS. Transforming an existing computational object into an interaction object is performed
in two steps. (1) The computational object is derived from an appropriate virtual interaction class,
depending on whether they are local, global or distributed. (2) Views and commands relevant to
the computational object are defined and registered. This involves defining callback methods that
implement the desired functionality (generate a view or execute a command), if they do not already
exist. Registering a view/command consists of providing a name for the view/command and the
callback that is invoked to process an associated request. For example, computing the desired one-
dimensional slice corresponding to a 1-D Plot view; or setting the value of a variable in response to
a SetValue command. This step is accomplished by overriding specific virtual functions defined by
the underlying interaction base class. Non-object-oriented (C/Fortran) data-structures can be converted
into interaction objects by first defining C++ wrappers for the objects. The resulting computational
objects are then converted into interaction objects as described above. Although this requires some
application modification, the wrappers are only required for those data-structures that have to be made
interactive, and the effort is far less than rewriting the entire application to be interactive. We have
successfully applied this technique to enable interactivity within the Fortran-based IPARS parallel
oil-reservoir simulator [28] developed at the Center for Subsurface Modeling, University of Texas at
Austin y.

ysee: http://www.ticam.utexas.edu/ ut/webipars/
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Figure 2. Control Network for Interaction and Steering

5.4. Control Network for Interaction and Steering

The control network has a hierarchical “cellular” structure with three components as shown in Figure
2. Computational nodes are partitioned into interaction cells, each cell consisting of a set of Discover
Agents and a Base Station. The number of nodes per interaction cell is programmable. Discover Agents
are present on each computational node and manage run-time references to the interaction objects on
the node. The Base Station maintains information about interaction objects for the entire interaction
cell. The highest level of the hierarchy is the Interaction Gateway that provides a Java-enabled proxy
to the entire application. The cellular control network is automatically configured at run-time using an
underlying messaging environment (e.g. MPI [29]) and the available number of processors.

5.4.1. Discover Agents, Base Stations and Interaction Gateway

Every computation node in the control network houses a Discover Agent (DA). Each DA maintains
a local interaction object registry containing references to all interaction objects currently active and
registered by that node, and exports the interaction interfaces for the objects in its local registry (using
the interaction IDL). The Base Stations (BS) form the next level of control network hierarchy. They
maintain interaction object registries, containing interaction interfaces only, for the entire interaction
cell and export these to the Interaction Gateway. The Interaction Gateway (IG) represents an interaction
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Figure 3. Sequence of interactions during the control network initialization

proxy for the entire application. It manages a registry of the interaction interfaces for all the interaction
objects in the application, and is responsible for interfacing with external interaction servers or brokers.
The IG delegates incoming interaction requests to the appropriate BSs and DAs, and combines and
collates responses. Object migrations and re-distributions are handled by the respective DAs (and
BSs if the migration/re-distribution is across interaction cells) by updating corresponding registries.
Interactions between an interaction server and the IG are achieved using two approaches. In the first
approach, the IG explicitly serializes the interaction interfaces to the server. A set of Java classes at
the server parse the serialized interaction IDL stream to generate the corresponding interaction object
proxies. In the second approach, the Interaction Gateway uses the Java Native Interface [3] to create
Java mirrors of registered interaction objects. These mirrors are registered with a RMI (Remote Method
Invocation) [26] registry service also executing at the IG. This enables the Server to gain access to and
control the interaction objects using the Java RMI API. We are currently evaluating the performance
overheads of using Java RMI and JNI.

5.5. Control Network Initialization and Interaction Sequences

During DIOS control network initialization (see Figure 3), the application uses the DIOS API to creates
and register its interaction objects with the local DAs. The interaction cells are then set up and the BSs
establish communication with their respective DAs to initialize their cell object registries. At the IG,
the central interaction object registry is created. The DAs now export local object registries to their
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Figure 4. Sequence of events that occur during an interaction phase

respective BSs, who then forwarded them to the IG. The IG now communicates with the DISCOVER
server, registering the application and exporting the central object registry. At the server, the incoming
interaction IDL streams are parsed and interaction object proxies are recreated. Once the initial object
registration process is complete, the application begins its computations.

During the interaction phase (see Figure 4), the IG looks for any outstanding interaction requests
from the server. If requests exist, it parses the request headers to identify the compute node(s) where
the corresponding object resides and forwards the interaction request to the node(s). All other nodes
are sent a go-ahead message indicating that there is no interaction request for any of the objects they
registered by the nodes. The IG then waits until the corresponding response arrives from the DAs. If
the responding object is distributed, the IG performs a gather operation on the individual responses.
The response is then shipped to the server.

5.5.1. Interacting with Local and Distributed Objects

The processing of interaction requests is slightly different for local and distributed objects. In the case
of a local object residing on a single computational node, processing is straightforward. On receiving
the request from the server, the IG parses the message header to identify the computational node where
the object resides. The steering request is then forwarded to the appropriate node. The corresponding
DA on the node uses its reference to the associated interaction object to process the request. The
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response generated is then sent back to the IG, which in turn, exports it to the server. The process is
illustrated in Figure 5.

Processing interaction requests in the case of a distributed object is shown in Figure 6. The IG once
again parses the message header to identify the nodes across which the object is distributed. The IG
then forwards the request to these nodes. The corresponding DAs receive the steering request, look up
the associated interaction objects and locally process the message. Each DA sends its portion of the
response back to the IG. The IG then performs a gather operation to collate the responses and forwards
them to the server.

5.6. Experimental Evaluation

This section summarizes an experimental evaluation of the DIOS library using a Sun Starfire
E10000 cluster. The E10000 configuration used consists of 64, 400 MHz SPARC processors and an
12.8 Gbytes/sec interconnect. The E10000 provides hardware supported distributed shared memory.
Applications used includes the IPARS reservoir simulator and the RM3d compressible turbulence
kernel. A detailed discussion of the experimental evaluation is presented in [30]. The evaluation
consisted of 4 experiments.

1. Object Registration Overhead: One of the key sources of overheads in DIOS is the object
registration process during initialization. This includes generating and exporting (to the Base
Station) the interaction IDL for each interaction object at the Discover Agents, and processing
and the exporting the IDL at the Base Station and Gateway. The different overheads measured
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Figure 6. Processing interaction requests for distributed objects

were (1) 500 �s per object at each Discover Agent, (2) 10 ms per Discover Agent in the
interaction cell at the Base Station and (3) 10 ms per Base Station in the control network at the
Gateway. We are current working on optimizing the registration process to reduce this overhead.
Note that this is a one-time cost required only at startup.

2. Minimum Steering Overhead: In the minimum steering overhead experiment, the application
automatically updated the external interactivity system (web server and collaborating clients)
with changes in a set of objects. In this experiment the explicit command/view requests (other
than those automatically provided by the application) were disabled. The percentage overhead
for generating and exporting the views with respect to the time spent on actual computation was
measured. This overhead is plotted in Figure 7 for IPARS. This overhead was typically found to
be less than 0.1% for most real applications.

3. View/Command Processing Overhead: The query processing and steering overheads largely
depends on the nature of interaction/steering requested, and the processing required at the
application to satisfy the request and generate a response. In this experiment we measured the
view/commands processing (and exporting) overhead at a node. The view processing overheads
for data sizes ranging from a few bytes to a KByte was between 1 and 2 ms. Similarly command
processing overheads depended on the nature of the command. Commands such as stop, pause
and continue required only about 250 �s to process while checkpoint and rollback commands
requiring file I/O required more time. In this experiment, all distributed collaborating clients
generated the same view and command requests. A sampling of this overhead for different view
generations and command command executions is presented in Table I.
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Figure 7. Minimum steering overhead (IPARS Reservoir Simulator)

Table I. View/command processing overheads

View Overheads Command Overheads

View Type Data Size Time Taken Command Time Taken
Text 65 1.4 ms Stop, Pause or Resume ap-

plication
250 �sec

Text 120 0.7 ms Refine GridHierarchy 32 ms
Text 760 0.7 ms Checkpoint to file 1.2 sec
XSlice Generation 1024 1.7 ms Rollback to a previous

Checkpoint
43 ms

4. End-to-end Steering Latency: This experiment measures the time to complete a round-trip
steering operation starting with a request from a remote client and ending with the response
delivered to that client. These measurements of course depend on the specification and state of
the client, the server and the interconnect. The DISCOVER system exhibits end-to-end latencies
between 10 - 45 ms for data sizes ranging from a few bytes to 10 KBytes. This is comparable to
steering systems like the MOSS and Autopilot systems, as reported in [17] (see Figure 8) - these
systems however do not support interactions with distributed or dynamic objects.
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Figure 8. End-to-end steering latencies

6. The Collaborative Interaction and Steering Portal

Web portals, that seamlessly bring multiple services to the user using conventional web-browsers,
are becoming increasingly common in the Internet development environment. The DISCOVER
collaborative computational portal can be seen as a working environment for scientists, empowering
them with an anytime/anywhere capability of collaboratively (and securely) monitoring and controlling
applications, independent of platform architecture or geographic location. Figure 9 present a screen
dump of the current DISCOVER portal.

6.1. Portal Elements and Architecture

The DISCOVER portal integrates access to DISCOVER services. The base portal, presented to user
after authentication and application selection, is a control panel. The control panel is designed to be
lightweight as all clients irrespective of their capabilities must be able to download it. Once clients
download the control panel they can launch any desired service such as application interrogation,
interaction, collaboration, or application/session archival access. The application control panel consists
of: (1) a list of interaction objects and their exported interaction interfaces (views and/or commands),
(2) an information pane that displays global updates (current timestep of a simulation) from the
application, and (3) a status bar that displays the current mode of the application (computing,
interacting) and the status of issued command/view requests. The list of interaction objects is
customized to match the client’s access privileges. Chat and whiteboard tools can be launched from the
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Figure 9. The DISCOVER Collaborative Interaction/Steering Portal

control panel to enable collaboration. View requests generate separate panes using the corresponding
view plug-in. A separate application registration page is provided to allow super-users to register
application, add application users and modify user capabilities.

The portal is implemented using a combination of PHP[31], Java and Java servlet technologies. It
uses mySQL [32] as its back-end database. All communication between the server and the portal use
Java object serialization. The main portal applet is multithreaded - one thread polls for global updates
from the application while another polls for responses from the server to requests issued by either the
client (no collaboration mode) or by other clients (collaboration mode). A separate thread handles chat
and whiteboard events. The main thread manages the interaction object list and sends command/view
requests to the server.

7. Conclusions, Current Status And Future Work

This paper presented the design and implementation of the DISCOVER computation collaboratory, a
collaborative PSE for interaction and steering parallel/distributed applications. DISCOVER supports
a 3-tier architecture composed of detachable thin-clients at the front-end, a network of interaction
and collaboration servers in the middle, and a control network consisting of sensors, actuators, and
interaction agents at the back-end. The DIOS interactive object framework enables high-level definition
and deployment of sensors and actuators into existing application objects. DIOS can handle both
distributed and dynamic objects. The control network interconnecting these sensors and actuators is
hierarchical to ensure scalability to large parallel and distributed systems. The interaction gateway
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provides an java-enabled interaction “proxy” to the application and provides web-based access to the
application. An experimental evaluation of the DIOS framework was presented. To further reduce
the end-to-end application response latency, a model for multithreaded interactive steering is being
developed. DISCOVER is currently operational and is being used to provide these capabilities to
a number of application specific PSEs including (1) the IPARS oil-reservoir simulator system at
the Center for Subsurface Modeling, University of Texas at Austin, (2) The virtual test facility
at the ASCI/ASAP Center, California Institute of Technology, and (3) Astrophysical Simulation
Collaboratory at Washington University.

We are currently working on extending the local network interaction/collaboration servers to a
widely distributed network. This will enable applications connected to local servers to be globally
accessible. Clients connected to a server can access applications connected locally as well as remotely.
As the servers are typically interconnected through a more reliable and higher bandwidth link, clients
can connect to the closest server and have access to remote applications. Server-server interactions
are designed to use CORBA, and application proxies can now refer to an application executing on a
remote server. Since we assume high bandwidth links between the servers, and caching mechanisms are
used for client requests and application response objects, the overheads of using CORBA are greatly
reduced. Finally, we exploring integration of the DISCOVER portals with other portal efforts such as
the Globus CoG [9] and the Grid Portal Collaboration [34].
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