
Interceptors for Java Remote Method Invocation�

Nitya Narasimhan, L. E. Moser and P. M. Melliar-Smith

Department of Electrical and Computer Engineering

University of California, Santa Barbara, CA 93106

Abstract

An interceptor is a software mechanism that provides the hooks that are needed to introduce
additional code dynamically into the execution path of an application. By exploiting interceptors,
developers can enhance and potentially modify the behavior of an application at runtime without
having to revise or recompile the application code. We have identi�ed three distinct interception
points for the Java Remote Method Invocation model, at the proxy level, the transport level and
the shared library level of the JavaRMI model, respectively. The interceptors implemented at these
interception points employ the DynamicProxy API, the RMISocketFactory API, and a library
mediation approach, respectively. Our interceptor implementations are novel in that they are
transparent to the application, add nominal latency overheads, and are easy to deploy, requiring
only minimal modi�cations to the application. We describe how the interceptors can be exploited to
introduce additional services (such as logging and pro�ling mechanisms) to the JavaRMI runtime.
In particular, we describe the use of interceptors in the Aroma System to enhance the existing
JavaRMI model with support for fault-tolerance through the consistent replication of JavaRMI
objects.

1 Introduction

The Java Remote Method Invocation (JavaRMI) model [11, 12] simpli�es the design and development
of distributed Java applications by making the complexities of network programming transparent
to the application programmer. JavaRMI supports access transparency (clients invoke methods on
remote servers exactly as though the servers were local) and location transparency (clients obtain
access to remote servers without having prior knowledge of the server address); however, it does not
provide mechanisms for system monitoring, pro�ling, message logging, security or reliability. If such
services are desired, they must be developed independently, and integrated into every application that
requires them.

Interceptors provide an alternative mechanism for adding new services to an application at runtime,
in a transparent manner. An interceptor is a software component that provides a hook into the
execution path of an application at select \interception points". Programmers can exploit these hooks
to add custom code that is executed at runtime, at that interception point, in a transparent manner.
For instance, a socket-level interception point could be used to introduce code that monitors the
frequency and destination of invocations generated by a local JavaRMI client.

Through its support for \portable interceptors" for CORBA [9, 10], the Object Management Group
has recognized the need for interception as a means for adding new services to CORBA applications in

�This research has been supported by AFOSR MURI under Contract F49620-00-1-0330.

1

Proxy Layer
(Skeleton)

Proxy Layer
(Stub)

Client Server

JVM

TCP Connection

JVM

Remote Reference
Layer

Remote Reference
Layer

Transport
Layer

Invocation

InvocationResponse

Response

Physical Network

Transport
Layer

Operating
System

Operating
System

Figure 1: The Java Remote Method Invocation Model.

a transparent, exible and portable manner. However, the JavaRMI model does not currently provide
any comparable mechanism. We address this de�ciency by identifying three distinct interception points
within the JavaRMI infrastructure { at the proxy level, the transport level and the shared library level
respectively { and by deploying interceptors at these points.

The interceptors are novel in that they are transparent to the application, easy to deploy, and add a
nominal overhead to the latency associated with JavaRMI operations. Depending on the location of the
interception point, the interceptors can be exploited to provide services that include message logging,
message routing, system pro�ling and monitoring. In this paper we describe the use of interceptors
in enhancing the reliability and availability of a distributed Java application. In particular we exploit
interception in the Aroma System that we have developed, to enhance the existing JavaRMI model
with support for fault-tolerance through the consistent replication of JavaRMI objects.

2 The JavaRMI Architecture

Because our interceptors are targeted at the Java Remote Method Invocation model, it is necessary
to understand the JavaRMI architecture to identify potential interception points. Figure 1 shows the
JavaRMI protocol stack consisting of the transport layer (to setup and manage TCP/IP connections),
the reference layer (to validate the semantics of the JavaRMI operation) and the proxy layer that
provides the application interface to the JavaRMI infrastructure.

A JavaRMI server object must implement at least one java.rmi.Remote interface to identify its
ability to service remote method invocations. The set of Remote interfaces implemented by the server
de�nes the list of methods that can be invoked on it by a remote client. The server reference {
consisting of a TCP/IP endpoint, and an object identi�er unique to that host { helps to identify the
server uniquely within the distributed system. Every JavaRMI server is also associated with a stub
that implements the same set of Remote interfaces, and contains a copy of the server reference.

2

A client wishing to invoke methods on a JavaRMI server must �rst obtain a stub for that server.
This bootstrapping process is facilitated by the rmiregistry, a nameserver that maintains a transient
database of server stubs mapped against the stringi�ed names of the corresponding servers. Active
JavaRMI servers bind their stubs against well-known names in the rmiregistry; a client equipped
with a server's name can lookup the registry to retrieve that server's stub. Once bootstrapping is
completed, the registry plays no further role in the client-server communication.

A JavaRMI operation is initiated by the client making an invocation on the locally installed server
stub. The stub uses the server reference to establish a TCP/IP connection to the server, and forwards
the request parameters. The request is delivered to the server-side skeleton, which acts as a client
proxy, invoking the request locally on the server, retrieving the response, and returning this response
to the stub. Subsequently, the stub uploads the result to the client. Thus, the interaction between
stub and skeleton masks all remote communication from the application.

The Java2 Standard Edition (J2SE) supports two implementations of the JavaRMI architecture,
namely, RMI-JRMP and RMI-IIOP. The RMI-JRMP implementation uses the Java Remote Method
Protocol (JRMP) [11], an indigenous TCP/IP-based protocol with simple semantics. JRMP exploits
Java-speci�c mechanisms and, thus, can be used only for pure Java client-server applications. The
RMI-IIOP model adopts the Internet Inter-ORB Protocol (IIOP), native to the CORBA [9] standard,
as its underlying transport protocol. By exploiting IIOP, RMI-IIOP facilitates communication between
modi�ed RMI-JRMP objects and CORBA objects implemented in languages such as C++. In this
paper, all interception mechanisms are designed for the RMI-JRMP model, unless speci�ed otherwise.

3 Interception

An interceptor is typically a non-application software component that provides hooks to introduce
custom code at select points in the execution path of the application, at runtime. Our primary
objective is to develop interceptors that can be exploited to introduce replication mechanisms to the
JavaRMI model to improve the reliability and availability of distributed Java applications.

Replication involves the distribution of multiple copies of an object across di�erent processors in
the system. Consequently, we require mechanisms to provide one-to-many communication, and to
ensure that the replicas maintain a consistent state. For instance, with an actively replicated server,
every client invocation must be transmitted to all replicas of the server; although multiple responses
may be generated as a result, only a single response should be returned to the client.

To facilitate replication in a manner that is transparent to the application, we require interceptors
that can capture the unicast JavaRMI messages (invocations and requests) before they reach the
physical network, and can divert these messages to the mechanisms required for replication. These
mechanisms typically provide services that adapt the TCP/IP message for multicast to all replicas
of the destination server object, maintain replica consistency, perform message logging and fault
detection, and supervise the recovery of a failed replica. While the interceptor in this scenario is
primarily responsible for message capture and re-routing, it can also embed code to analyze, modify
or enhance the contents of the intercepted messages. Therefore, we de�ne three modes of operation
for the interceptor:

� Read-only mode where the message contents are left unchanged.

� Enhancement mode where the message contents are augmented.

� Transformation mode where the message contents are modi�ed.

3

JVM JVM

Network Network

Standard Java API
java.net.*
packages

sun.net.*
packages

libnet.soJava Native Interface
Libraries

OS-dependent
JVM Libraries

OS-independent
JVM Libraries

Host
Programming

Interface

Application Application

TCP/IP message
path from

application to
physical socket

The Java
Programming Stack

The Java Network
Programming Stack

Operating System Solaris 2.6

Java Implementation

JVM Socket
Libraries

Figure 2: The java.net support infrastructure.

Depending on the mode of operation, the interceptor can provide di�erent levels of service. For
instance, a read-only interceptor can be extended to provide a message logging service, while an
enhancement interceptor can be used to append contextual information to messages, and a trans-
formation interceptor can be used to encrypt the messages for secure communication. Because the
enhancement and transformation interceptors have the potential to introduce behavior that is visible
to the application (an undesirable consequence), we enforce the following rule when deploying inter-
ceptors. For every enhancement and/or transformation interceptor in the communication path, there
must exist a complementary interceptor further along the message path that removes the enhancement
and/or reverses the modi�cation, before the message is delivered to the application.

3.1 Interception Points in the JavaRMI model

An interception point identi�es locations along the JavaRMI communication path at which an in-
terceptor can be successfully deployed; the position of the interception point determines the content
and signi�cance of the intercepted data. Typically, the interception point is placed at one of the
three layers of the JavaRMI protocol stack, namely, the proxy layer, the remote reference layer or
the transport layer. Because all JavaRMI objects communicate over TCP/IP, additional interception
points can also be identi�ed within the Java networking infrastructure, allowing JavaRMI messages
to be intercepted at a much lower level in the communication path.

Figure 2 shows the implementation hierarchy for a standard Java API, and identi�es the speci�c
implementation levels that correspond to the standard Java networking API. An interceptor at the
networking layer could be located at one of the following levels:

� The java.net level. This level contains networking classes implemented in Java, that use stan-
dard APIs. Interceptors at this level are born portable.

� The sun.net level. This level contains networking classes implemented in Java, and uses hidden,

4

non-standard APIs. Interception points that exploit features at this level cannot be guaranteed
the same support in subsequent releases of the JDK.

� The libnet level. This level contains the Java Native Interface (JNI) code that provides the
glue between the Java classes and the underlying native libraries. Interceptors at this level will
have standard interfaces to exploit, but will be required to handle some portability issues.

� The Java Virtual Machine Socket Libraries level. This level hosts the native libraries for
the Java Virtual Machine (JVM); the libraries contain code that is either independent of the
operating system, or that maps onto operating system-speci�c functionality. Thus, interception
at (or below) this level will involve serious portability problems.

The decision to de�ne an interception point at any of these levels is based on three factors. First,
there must exist at the level, some function or property (i.e. a \hook") that we can exploit to deploy
the interceptor at runtime. Second, the performance penalty incurred at runtime (due to the execution
of additional code at that level) must be acceptable. Third, the portability of both the interceptor
code and any custom code introduced at that level must be taken into account.

Based on the �rst of the above factors, we have identi�ed three interception points for the Java
Remote Method Invocation model. The �rst option places the interception point at the proxy layer of
the JavaRMI protocol stack, and exploits the functionality provided by the Dynamic Proxy API. The
second option employs interception at the java.net level of the networking stack by exploiting the
RMISocketFactory API. The �nal option places the interception point at the Java Native Interface
(JNI) level of the networking stack by exploiting a mechanism (described in Section 6) that we refer
to as library mediation. When choosing an interceptor mechanism to provide a speci�c service, we
can use performance and portability as the criteria to evaluate the relative merits of each of the above
options.

4 The Dynamic Proxy Approach

The Dynamic Proxy API is a recent addition to the Java2 Standard Edition. It exploits the reection
capabilities of the Java platform to create, at runtime, a proxy for any object that implements a
speci�ed list of interfaces. A method invocation on any one of the supported interfaces is encoded
and dispatched by the proxy, through a uniform interface, to an object that implements that method.
Because the proxy always deals with this uniform \handler" interface, the details of the implementation
are completely transparent to it. Consequently, a single proxy could potentially represent one or more
backend objects that collectively implement the interfaces supported by the proxy. Thus, the dynamic
proxy e�ectively isolates the invocation interface from the implementation of that interface, using a
handler object to mediate all interactions between them.

Figure 3 shows the implementation details of the Dynamic Proxy API. The key entities are
the java.lang.reflect.Proxy class and the java.lang.reflect.InvocationHandler, as shown in
Figure 3. When a method invocation occurs on an instance of the Dynamic Proxy class, the param-
eters of the invocation are encoded, using reection, into a java.lang.reflect.Method object and
a java.lang.Object[] array containing the values of the arguments. The Dynamic Proxy instance
dispatches these encoded parameters of the invocation to the InvocationHandler; the value returned
by the InvocationHandler is subsequently returned as the result of the invocation.

The InvocationHandler is an interface de�ning a single invokemethod that takes, as parameters,
a proxy instance, a Method object and an array of arguments. This interface must be implemented

5

Interfaces[]
list of interfaces supported by the proxy

and implemented by the server

CLIENT

INVOCATION HANDLER

DYNAMIC
PROXY

SERVER
OBJECTHandler

Ref

Impl
Ref

1.

Client makes method

invocation on one of

the supported interfaces

2.

Proxy encodes invocation

producing Method and

Object[]

m

args

3.

Proxy dispatches and

to InvocationHandler

m

args

4.

InvocationHandler makes

the invocation on the object

that implements that interface

.invoke(implref,)m args

Figure 3: The Dynamic Proxy mechanism.

by any \delegate" class that wishes to register itself as the invocation handler for a Dynamic Proxy
instance. This delegate class can either provide a concrete implementation of the list of interfaces
de�ned for the Dynamic Proxy, or can maintain references to one or more objects that collectively
implement those interfaces. In the former case, the delegate processes the invocation directly, while
in the latter case, the delegate in turn invokes the method on the appropriate implementation.

4.1 Design

The InvocationHandler allows it to separate the invocation interface from the implementation of
the method that executes the invocation; this is the \hook" that we exploit for interception. Any
custom code inserted at the InvocationHandler level can be used to analyze or modify the invocation
parameters, or to reroute the invocation to one of many distinct objects that provide a concrete
implementation of the invoked method. Therefore, by generating a Dynamic Proxy for a JavaRMI
server, and creating a custom InvocationHandler, we can intercept all invocations destined for that
server.

To achieve this, the set of interfaces implemented by the Dynamic Proxy must correspond to
the set of Remote interfaces implemented by the JavaRMI server. Further, the InvocationHandler

implementation must contain a reference to the server object, to facilitate the invocation of methods on
that object. Because we are dealing with remote objects, the server reference in this case corresponds
to the JavaRMI server reference, and consists of a TCP/IP endpoint and an object identi�er. With
the existing JavaRMI APIs, there is no direct method to obtain the actual server reference; however,
we can obtain a copy of the server stub (which holds a copy of this reference), and make invocations
on the stub rather than directly on the server. However, every invocation now has additional levels
of indirection i.e., the invocation travels from client to proxy, from proxy to invocation handler, from
invocation handler to stub, and from stub to server before the result can be returned.

6

SMART
REGISTRY

(INVOCATION HANDLER)

JRMI
SERVER
OBJECT

InterceptorStub

JRMI
CLIENT
OBJECT

Name Server Stub

Ibind (MyName,
MyStub)

Ilookup (serverName)

Dynamic
Proxy

returned

MyName

MyStub

DYNAMIC
PROXY

MyStub

Iinvoke(Method m,
Object[] args,
Proxy p)

M.invoke(MyStub, args)

Custom
code

Figure 4: The Dynamic Proxy approach to interception.

4.2 Implementation

Our simple interceptor mechanism consists of a Dynamic Proxy generated for the JavaRMI server stub
as illustrated in Figure 4. If, in a future release of the Java2 Standard Edition, standard API methods
can be exploited to retrieve a copy of the server reference directly, then, the interceptor mechanism
will consist of a dynamic proxy generated directly for the JavaRMI server object

The InterceptorStub implements the InvocationHandler interface, and maintains a handle to the
stub for the server object. The dynamic proxy is created for the java.rmi.Remote interfaces supported
by the stub, and, as a result, by the server. An invocation made on the Dynamic Proxy is encoded
into the corresponding Method and arguments format, and dispatched to the InterceptorStub. Custom
code can be inserted at this point to process the invocation parameters before actually invoking the
method on the server stub. In the example shown in Figure 4, the custom code logs the invocation
parameters before delegating the invocation. In Section 7.1, we describe a simple failover example
where we maintain multiple references (corresponding to the replicas of a server) at the invocation
handler, and insert custom code to detect the crash of a server replica. The intent is to failover to an
alternative replica and retry the invocation thus providing fault transparency to the client.

To deploy this interceptor, we need to ensure that the client uses the Dynamic Proxy in place of
the standard server stub. Further, to maintain transparency to the application, we need to achieve this
without modifying the application. Our solution is to use a custom SmartRegistry. The SmartRegistry
subclasses the default registry implementation and provides a drop-in replacement for the standard
rmiregistry, as illustrated in Figure 4. Thus, it can be invoked in exactly the same manner as the
standard rmiregistry, with no modi�cation to the client or server.

The SmartRegistry maintains a transient database that maps a server name onto a Dynamic
Proxy for that server, rather than onto the server stub. When a server invokes the bind method on
the SmartRegistry, it passes its standard stub and a stringi�ed server name as parameters to the bind
method. The SmartRegistry subsequently creates an InterceptorStub instance using the standard
stub, and creates a Dynamic Proxy instance with this InterceptorStub as the invocation handler. This
Dynamic Proxy is bound against the stringi�ed server name in the SmartRegistry, in place of the

7

(a)

(c) (d)

(b)

Default
SocketFactory

Default
SocketFactory

MSF A

A

A

A

MSF

ISF

MasterSocketFactory (MSF) installed as default The java.net.Socket model

The InterceptorSocket modelInterceptorSocketFactory (ISF) installed as default

[1]

[1]

[2]

[3]

[4]

[2]

[2] java.net.Socket returned

[2] createSocket delegated

[1] createSocket() invoked

[1] createSocket() invoked

[4] InterceptorSocket returned
[3] java.net.Socket returned

The Physical
Socket

NETWORK

The Physical
Socket

NETWORK

read()

read()

read()

write()

write()

write()

java.io.
InputStream

java.io.
InputStream

Interceptor
InputStream

Interceptor
OutputStream

java.io.
OutputStream

java.io.
OutputStream

S
read() write()

IS OS

InSIS OS

SIS OS

Figure 5: The RMISocketFactory approach.

standard server stub. A client that looks up the registry by server name will retrieve, and install, a
copy of this Dynamic Proxy by default. Subsequently, all invocations made by the client are dispatched
through the proxy, and can thus be intercepted by our mechanisms.

5 The RMISocketFactory Approach

An alternative approach to interception exploits the RMISocketFactory mechanism, and places the
the interception point within the transport layer of the JavaRMI protocol stack. The abstract
java.rmi.server.RMISocketFactory class de�nes methods to create TCP/IP client and server sock-
ets for the RMI-JRMP runtime. A standard implementation of this interface, which we refer to as the
master socket factory, is installed as the default socket factory at runtime.

The master socket factory creates instances of java.net.Socket and java.net.ServerSocket, in
response to createSocket() and createServerSocket() requests, respectively, from the RMI-JRMP
runtime. The default set-up is illustrated in Figure 5(a). The java.net.Socket object implements the
Java interface to the physical socket; it has an associated InputStream object and an OutputStream

object that facilitate read and write operations, respectively, on the socket, as shown in Figure 5(b).
An application can provide an alternative implementation of the RMISocketFactory interface and

install this version as the JVM-wide socket factory for the RMI-JRMP model, supplanting the default
master socket factory.

8

We exploit this functionality to implement the interceptor. Our interceptor package contains the
following classes:

� An InterceptorSocketFactory that implements java.rmi.server.RMISocketFactory

� An InterceptorSocket that extends java.net.Socket

� An InterceptorServerSocket that extends java.net.ServerSocket

� An InterceptorOutputStream that extends java.io.InputStream

� An InterceptorInputStream that extends java.io.OutputStream

At runtime, the InterceptorSocketFactory instance caches a handle to the default master socket
factory, and installs itself as the new default socket factory. The InterceptorSocketFactory returns in-
stances of InterceptorSocket and InterceptorServerSocket, in response to createSocket() and
createServerSocket() requests, respectively. The latter classes constitute adapters [3] that inter-
nally invoke the appropriate create() method on the cached socket factory to obtain a standard Socket

object to which they delegate calls at runtime. Figure 5(c) illustrates the interceptor con�guration
and behavior. The Interceptor socket classes contain InterceptorInputStream and InterceptorOutput-
Stream objects to facilitate read and write operations, respectively, on Interceptor sockets. These
interceptor stream objects are built over the corresponding streams associated with the underlying
Socket instance, as shown in Figure 5(d).

The InterceptorInputStream and InterceptorOutputStream objects are conduits between the appli-
cation and the streams associated with the underlying physical socket. Because all TCP/IP messages
generated by the application necessarily pass through these objects, we can place custom code within
them to implement our Interceptor. The socket factory interceptor is inherently portable, being imple-
mented completely in Java. While the interception mechanisms are transparent to the application, the
deployment of the interceptor requires the addition of a single setSocketFactory() call within the
application's main() method, at the point where the Java Virtual Machine is being initialized. Thus,
although this approach involves some modi�cation to the application code, the changes are minor.

In RMI-JRMP, a custom RMISocketFactory once deployed becomes an integral part of the server
reference; this ensures that both client-side and server-side sockets use compatible socket factories
to communicate. However, because RMI-IIOP objects are intended for interaction with CORBA-
compliant objects, we could potentially have a remote non-Java object that is incapable of exploiting
the RMISocketFactory for socket creation. Thus, the RMISocketFactory mechanism is not supported
for RMI-IIOP objects.

6 The Library Mediation Approach

The socket factory approach described in Section 5 introduced the interceptor at the Java API level
using standard Java mechanisms. The Library Mediation approach introduces the interceptor at a
lower level in the implementation hierarchy, and ensures that the interceptor is activated in a manner
that is transparent to the application.

In the library mediation approach, we take advantage of the fact that the Java Virtual Machine
(JVM) uses the services of a Java \library loader" to load all native libraries requested at runtime.
The loader searches for libraries in locations speci�ed by the sun.boot.library.path property; the
�rst library encountered that matches the request is loaded into the Java runtime. By implementing
a custom version of any native library, and pre-pending its location to sun.boot.library.path, we
can \trick" the loader into loading our custom library in place of the standard native library. Further,

9

java.net.*A

JVM Library Loader

Operating
System

LoadLibrary

(” ”)libnet Sun.boot.library.path =

“my_libnet_path:std_libnet_path”

Custom library

libnet
Custom library
wraps routines
provided by the
standard version

JVM Libraries
libjvm, libjava, etc.

Java Native
Interface

libnet

Standard

P
la

in
S
o
cketIm

p
l

ro
u
tin

es

SocketInputStream
routines

SocketOutputStream
routines

Figure 6: The Library Mediation Approach.

if we cache a handle to the standard library within the custom library, we can e�ectively preprocess
calls in the custom library before delegating them to their standard implementations. We refer to this
approach as library mediation.

The Java networking model employs two sets of native libraries, one at the Java Native Interface
(JNI) level, and the other at the JVM level. Mediation on one of these libraries gives us the hook
that we need to introduce our interceptor code transparently; this approach requires no modi�cation
to the application code. We elected to mediate the JNI libnet library, rather than the JVM socket
libraries, for two reasons:

� The JVM socket libraries contain operating system-speci�c code. Implementing a portable
interceptor would require maintaining versions of the interceptor for every operating system
that supports the JVM. The JNI library interfaces are more consistent across JVMs; the method
signatures in libnet.so are easily derived from the native method declarations provided in the
standard java.net package. Because the java.net code is unchanged across JVMs, the libnet
method signatures remain the same; porting the interceptor requires recompilation of the same
code for di�erent operating systems.

� The term \JVM socket libraries" represents a logical collection of routines implemented within
larger native libraries at this level. Substitution of a larger library merely to intercept calls to a
subset of its routines is impractical, and impossible to achieve without access to the source code.
The libnet library, on the other hand, contains all of the routines used by java.net classes,
and implements no other functionality. Because the libnet library is essentially a JNI wrapper,
implementing a custom version is considerably easier.

The �rst step in building the interceptor is to deduce the de�nition of the libnet library interface.
The Java distribution provides a javah utility that extracts from a Java class, a native header �le
containing the signatures of all native (JNI) methods declared in that class. Because JNI routines use
fully-quali�ed names, an analysis of the symbol table of libnet provides an accurate assessment of

10

the classes that declared the JNI routines; running the javah utility on those classes enables us to
discover the JNI signatures that we need to de�ne within our libnet library. In this paper, we use
myLibnet to refer to our custom implementation of the libnet library.

The myLibnet library provides the ideal location to embed our interceptor code. We develop
myLibnet as a collection of wrappers around the routines of the standard libnet implementation; by
default, all calls on the myLibnet wrapper are delegated to the corresponding implementation of those
calls in the libnet version. Because we are interested in intercepting only TCP/IP communication, we
introduce code within the TCP/IP-related routines in myLibnet to perform pre-delegation and post-
execution processing for those routines. This code can enhance or modify the messages handled by the
libnet routines, and provides the foundation for our interceptor implementation. This interceptor
approach does not provide the inherent portability of the Java-based interceptor described in Section 5
due to its use of native JNI code. However, the portability of our interceptor is not as issue because
the interceptor lies within the framework of the JVM; the portability o�ered by the JVM is implicitly
extended to the interceptor.

7 Exploiting Interception for Reliability

Our primary objective in investigating interceptors for Java Remote Method Invocation is to use an
interceptor, in the Aroma System, to introduce services to ensure reliable, highly available system
operation. Object replication is a well-known approach to achieving the latter objectives, requiring
mechanisms to distribute replicas across the system and to ensure that they maintain a consistent state.
Depending on the type of object being replicated (stateless vs. stateful) and the desired functionality
(fault-tolerance vs. high availability), we can employ di�erent replication schemes. In the following
sections, we look at two di�erent applications of interceptors in this context. First, we use the Dynamic
Proxy interceptor to implement a simple failover mechanism for stateless servers Next, we exploit the
Library Mediation interceptor in the Aroma System to transparently enhance the existing JavaRMI
model with support for fault-tolerance through the consistent replication of JavaRMI objects.

7.1 Simple Failover using the Dynamic Proxy Approach

Stateless JavaRMI server objects can be replicated either for fault-tolerance or for high availability.
Because the state of the server object is not modi�ed as the result of an invocation, maintaining a
consistent state across replicas is relatively simple. If the objects are replicated for availability, we need
mechanisms that can route distinct client requests to di�erent server replicas based on the current
load at each replica. If the objects are replicated for fault-tolerance, application transparency to faults
can be achieved by using a simple failover mechanism. An invocation is forwarded to any one of
the available replicas; in the event that the replica fails, the mechanisms detect the fault, select an
alternative server replica and retry the invocation, thus masking the fault from the client. Because
the replicas are stateless, we do not require complicated mechanisms to ensure that the state of all
replicas is maintained consistent.

Replication of stateless servers, for high availability or for failover, can be achieved by exploiting
the Dynamic Proxy interceptor. In this case, the SmartRegistry implementation is modi�ed to allow
multiple servers to bind themselves to the same name. An InterceptorStub (which implements the
InvocationHandler interface) is created for the �rst such bind request, and a Dynamic Proxy registered
for that stringi�ed name. The InterceptorStub is equipped to hold an array of server stubs, each corre-
sponding to a replica of the same server object. When a second replica invokes the bind method with
the same stringi�ed name, the SmartRegistry determines that a Dynamic Proxy is currently registered

11

for that name; the stub is subsequently added to the array maintained by the InvocationHandler for
that proxy.

A client that looks up the SmartRegistry will retrieve a Dynamic Proxy and its associated Invoca-
tionHandler. The failover mechanisms is implemented by custom code within the InvocationHandler.
An invocation dispatched to the handler is invoked on the �rst stub in the array maintained by the
handler. A server fault, detected by a java.io.IOException, can be caught at the InvocationHandler
using a simple try-catch block around the implementation of the invoke method. At this point, the
handler invalidates the �rst stub, retrieves a second stub from its local array, retries the invocation,
and returns the result thereby masking the fault from the client. The mechanism can tolerate up to
n-1 faults, where n is the initial number of \live" stubs cached at the InterceptorStub. The mecha-
nism can also be extended to support recovered servers. A recovered server that binds itself in the
SmartRegistry will overwrite its old reference (stub) with the new live reference. When the Intercep-
torStub has exhausted all its cached stubs, it can be programmed to contact the registry and replenish
its cache with stubs to new/recovered replicas, thereby continuing to provide failover capability to the
application.

7.2 Consistent Replication Using the Aroma System

The dynamic proxy provides a simple, portable mechanism for implementing failover for stateless
JavaRMI servers. The more diÆcult case involves replicating stateful objects, and supporting addi-
tional replication schemes such as active and passive replication. In this context, every invocation is
typically forwarded to all replicas of the intended server, and every generated response is returned to
all replicas of the client that made the invocation. More complex mechanisms are required to guaran-
tee that all replicas of a given Java RMI object are maintained consistent at all times. Some of these
issues are discussed in [7].

The Aroma System that we have developed is middleware that exploits interception to enhance
the JavaRMI model with support for replication, in a transparent manner. Both client and server
objects are replicated, with little or no modi�cation of the application code. This section provides a
high-level overview of the design of the Aroma System; more detailed information can be found in
[6, 7].

The Aroma System adopts the object group paradigm [4] for transparent replication of JavaRMI
objects. All replicas of an object form an object group, and are represented by the Remote interface
associated with the object. To achieve replica consistency, all replicas (members) of a replicated object
(object group) must \see" the same sequence of messages in the same order; thus, they will perform the
same operations, resulting in the same state being maintained across all of the replicas. The Aroma
system exploits the services of a reliable totally-ordered multicast group communication system, such
as Totem [5], for communication within and between object groups. The reliable total ordering of
messages is crucial to achieving replica consistency in an eÆcient manner.

Figure 7 gives an overview of the Aroma System, and highlights three main components: the
Aroma Interceptor, the Aroma Parser and the Aroma Message Handler.

� The Aroma Interceptor is based on the library mediation approach, and resides at the transport
layer of the Java distributed object model. It captures networking calls made by the applica-
tion, including read and write calls required to receive and send TCP/IP messages, respectively.
By handling the reads, the Interceptor can manipulate inbound messages to the application;
similarly, by handling the writes, it can control the format and content of outbound messages
generated by the application. Because Aroma intercepts every TCP/IP call made by the ap-

12

Transport Transport Transport Transport

Stub

C S1
S2

S3

Remote Ref

Aroma

Operating
System

Invocation

Reliable Totally Ordered Multicast

Server Group

Response

Skeleton Skeleton Skeleton

Remote Ref

Aroma

Operating
System

Remote Ref

Aroma

Operating
System

Remote Ref

Aroma

Operating
System

Transport
Layer

Operating System

Aroma
Message
Handler

Aroma Parser

Aroma Multiplexer

Totem Group
Communication System

Aroma
Interceptor

TCP

TCP/IP
message

UDP

Physical Network

Figure 7: The Aroma System Architecture.

plication, the Aroma Parser is needed to �lter those TCP/IP messages that conform to known
JavaRMI formats. All valid JavaRMI messages are forwarded to the Aroma Message Handler;
all other TCP/IP messages are released and allowed to continue their progress along the default
TCP/IP path.

� TheAroma Message Handler achieves two important functions; it adapts the intercepted TCP/IP
messages for multicast over the group communication system, and it performs the mapping be-
tween group-speci�c identi�ers and the corresponding local replica's identi�ers. In this context,
the Message Handler constitutes the boundary that separates group-level communication from
object-level communication.

� The Aroma Multiplexer provides the interface to the underlying multicast protocol. It encap-
sulates the adapted JavaRMI message, along with an Aroma-speci�c header, into a message
suitable for multicast over the reliable totally-ordered multicast protocol.

By exploiting the Interceptor, the Aroma System introduces these mechanisms transparently
to JavaRMI, thereby enhancing it with the basic support required for replication. By exploiting
an eÆcient multicast protocol for communication between replicated objects, the Aroma Interceptor
provides higher performance for fault-tolerant Java applications than could be obtained using multiple
TCP/IP connections.

8 Interceptor Performance

To determine the feasibility of exploiting interception for our replication mechanisms, we evaluated the
overheads associated with deploying the three di�erent interceptor implementations. The experiments
were conducted on a network of 200MHz Sun Ultra-SPARC single processor machines, running Solaris
2.7, and operating over a 100Mbps Ethernet. All measurements were taken using the Java2 Standard
Edition (build 1.3.0) with the Java HotSpot Client VM (build 1.3.0). The measured quantity was
the round-trip latency associated with a simple invocation-response, averaged over 1000 round trips.
The setup time { measured from the point when the client performs a lookup on the registry, to the
point when it makes the �rst invocation { was also noted for reference, and represents a one-time

13

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

R
ou

nd
 tr

ip
 in

vo
ca

tio
n−

re
sp

on
se

 la
te

nc
y

(m
s)

Primitive Types

Overheads associated with Interception, using primtive arguments

Standard RMI−JRMP
SocketFactory Interceptor
Mediation Interceptor
Proxy Interceptor

BYTE

SHORT

 INT LONG FLOAT DOUBLE

0 50 100 150 200 250 300
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

R
ou

nd
 tr

ip
 in

vo
ca

tio
n−

re
sp

on
se

 la
te

nc
y

(m
s)

Size of String Argument (bytes)

Overhead Associated with Interception

Standard JRMP
SocketFactory Interceptor
Mediation Interceptor
Proxy Interceptor

Figure 8. Latency measurements for RMI-
JRMP applications using the three intercep-
tor implementations, for primitive arguments.

Figure 9. Latency measurements for RMI-
JRMP applications using the three intercep-
tor implementations, for string arguments.

cost. The test application consisted of a simple echo server, with latency measurements determined
for parameters ranging from primitive data types to strings of varying length.

Figure 8 and Figure 9 show the overheads of the SocketFactory Interceptor, the Library Mediation
interceptor and the Dynamic Proxy interceptor with reference to the latency associated with the
unintercepted RMI-JRMP application. Figure 10 and Figure 11 show the overheads associated with
the Library Mediation interceptor, both for RMI-JRMP applications, and for RMI-IIOP applications.

8.1 The Dynamic Proxy Approach

This interceptor exploits the Dynamic Proxy mechanism introduced in Java2 release 1.3, and makes use
of the reection capabilities of the Java model. For the Dynamic Proxy measurement, the experiment
was conducted with the SmartRegistry instead of the standard rmiregistry. The overhead associated
with the interception mechanism varied between 74 �s and 161 �s. The average latency introduced by
this interceptor is 115 �s. This translates to an overhead of between 5% and 11%, the highest overhead
recorded among the three interceptors. The setup time for dynamic proxies is also the highest among
the interceptors, requiring an additional 200 �s.

This setup cost can be attributed to the fact that the \stub" downloaded at setup contains addi-
tional classes (i.e. the dynamic proxy and the invocation handler classes) that need to be deserialized.
The high latency was anticipated not only because of the high costs associated with reection, but
also because every invocation passes through at least three entities (proxy, handler and stub) before
it is delivered to the remote endpoint. Although this interceptor has relatively poor performance, it is
implemented in Java and is portable as a result. Deployment of the interceptor requires a SmartReg-
istry to be run in place of the rmiregistry ; however, no modi�cation of application code is required.
In this respect, the interception is transparent to the application.

8.2 The RMISocketFactory Approach

The RMISocketFactory-based interceptor is also implemented completely in Java. In comparison to
the other approaches, this interceptor registered the smallest overheads (between 0.1% and 3%), and

14

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
ou

nd
 tr

ip
 in

vo
ca

tio
n−

re
sp

on
se

 la
te

nc
y

(m
s)

Primitive Types

Overheads associated with Interception, using primtive arguments

Standard RMI−JRMP
Mediated RMI−JRMP
Standard RMI−IIOP
Mediated RMI−IIOP

BYTE SHORT

INT LONG FLOAT DOUBLE

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

R
ou

nd
 tr

ip
 in

vo
ca

tio
n−

re
sp

on
se

 la
te

nc
y

(m
s)

Size of String Argument (bytes)

Overhead Associated with Library Mediation

Standard JRMP Application
Mediated JRMP Application
Standard IIOP Application
Mediated IIOP Application

Figure 10. Latency introduced by the Li-
brary Mediation Interceptor for primitive ar-
guments, for RMI-JRMP and RMI-IIOP ap-
plications.

Figure 11. Latency introduced by the Li-
brary Mediation Interceptor for string argu-
ments of varying length, for RMI-JRMP and
RMI-IIOP applications.

required almost no additional setup time compared to the reference implementation. Figure 8 and
Figure 9 show the overheads associated with exploiting the RMISocketFactory-based interceptor.

The interceptor incurred a maximum overhead of 69 �s (for primitive byte arguments), and intro-
duced an average latency of 7 �s to normal JavaRMI operation. In addition to the low latency, this
approach has the advantage of being portable, and of being supported by the JavaRMI speci�cation.
However, analysis of invocation parameters requires the services of a parser component capable of
understanding both JRMP and serialization formats; deploying such mechanisms adds appreciable
overhead. Further, this interceptor cannot be deployed without modi�cation of the application code,
requiring the addition of a single line of code to install the InterceptorSocketFactory.

8.3 The Library Mediation Approach

This interceptor exploits the Library Mediation approach described in Section 6. The measurements
for this section were taken using the implementation of the interceptor used in the Aroma System.
However, the interceptor was modi�ed to eliminate the parsing component. Thus, the latency measured
reects the overhead associated with read-only interception. The Library Mediation approach is the
only interceptor that provides a single solution applicable equally to both RMI-JRMP and RMI-IIOP
applications. Our measurements were taken for four di�erent con�gurations:

� A standard RMI-JRMP client with a standard RMI-JRMP server

� An Interceptor-enhanced RMI-JRMP client with an Interceptor-enhanced RMI-JRMP server

� A standard RMI-IIOP client with a standard RMI-IIOP server

� An Interceptor-enhanced RMI-IIOP client with an Interceptor-enhanced RMI-IIOP server

In each case, we determined the latency of a round-trip invocation and response, for parameters
ranging from primitive types (int, long, float, etc.), to strings of varying length, as shown in Figure
10 and Figure 11.

15

The results indicate that the Interceptor introduces an overhead of approximately 71 �s for RMI-
JRMP applications, and 285 �s for RMI-IIOP applications. The RMI-IIOP messages typically use
�xed-length headers that are larger than the standard RMI-JRMP message header. The RMI-IIOP
implementation also generates more calls to the networking library; for instance, a read requires one
call to read in the GIOP header to determine the message length, followed by a second call to read in
the actual message. Because each call to the library is intercepted, the RMI-IIOP application has a
relatively larger interception overhead compared to RMI-JRMP.

Latency overheads in the hundreds of microseconds are normally considered signi�cant; however,
for standard RMI-JRMP applications, the latency is usually in the order of a couple of milliseconds.
Thus, the Library Mediation interceptor adds an overhead of 4%-5% to RMI-JRMP applications.
Moreover, as shown in Figure 11, while the performance of RMI-JRMP applications deteriorates with
increasing parameter size, our interception mechanisms incur an almost constant overhead.

9 Related Work

While interceptors are an accepted mechanism for CORBA [10], little work has been done on in-
terception for the Java distributed object model. The Eternal System [8] exploits interceptors for
providing transparent fault tolerance to CORBA applications. Eternal's Interceptor exploits the op-
erating system's linker-loader facilities to interpose on networking libraries at the operating system
level.

The primary development platform for the Interceptor has been Solaris. However, both Solaris
and Linux provide additional facilities to support interception, such as the /proc interface [1] for
interception at the system call level. For the Windows NT operating system, the mediation connectors
approach [2] de�nes mechanisms to build wrappers around dynamically linked libraries (DLLs) that
can subsequently be used to mediate calls on those libraries; we can implement the Interceptor by
exploiting these connectors to mediate calls to the libnet library.

10 Conclusion

Interceptors are software mechanisms that, when deployed, provide hooks to introduce new services to
an application, at runtime, in a transparent manner, with minimal modi�cations to the application.
We have developed three di�erent interceptor mechanisms for applications that are based on the Java
Remote Method Invocation model. These interceptors facilitate the capture of JavaRMI messages,
and can be exploited to analyze, modify or reroute these messages at runtime. The interceptors have
been developed independent of the application, and are easy to deploy with minimal modi�cation to
the application. Preliminary measurements show that, depending on the approach used, the overhead
added by the interceptor is between 0.1% and 11% for RMI-JRMP applications.

The SocketFactory approach introduces the least overhead for interception, and is born portable.
However, because the interception occurs at such a high level in the protocol stack, it limits the
functionality accessible to, and modi�able by, the interceptor. In the context of replication, a primary
limitation of this interceptor is its tight coupling to the TCP/IP transport model; mapping intercepted
messages to alternative transport protocols at this level, is a complex and expensive undertaking. The
Dynamic Proxy approach is the most expensive of the interceptor approaches. While it displayed
relatively poor performance, it is easy to deploy, is born portable, and can be exploited to provide
transparent failover capability for stateless JavaRMI servers. The Library Mediation approach exhib-
ited a higher overhead than the SocketFactory interceptor; however, the overhead is an acceptable 4%

16

- 5%, and remained fairly constant with varying parameter types and lengths, for RMI-JRMP appli-
cations. It should be noted that the LibraryMediation interceptor provides access to a wider range
of functions (i.e., the entire networking library) at a much lower level. Thus, we exploit the Library-
Mediation approach in the Aroma System to adapt the JavaRMI model for multicast communication,
and to enhance the existing JavaRMI model with support for consistent replication of JavaRMI client
and objects.

References

[1] A. Alexandrov, M. Ibel, K. E. Schauser, and C. Scheiman. Ufo: A personal global �le system
based on user-level extensions to the operating system. ACM Transactions on Computer Systems,
16(3):207{233, August 1998.

[2] R. Balzer and N. Goldman. Mediating connectors. In Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems Workshop, pages 73{77, Austin, TX, June 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Publishing Company, July 1997.

[4] S. Ma�eis. The object group design pattern. In Proceedings of the 1996 USENIX Conference on
Object-Oriented Technologies, pages 155{163, Toronto, Canada, June 1996.

[5] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos.
Totem: A fault-tolerant multicast group communication system. Communications of the ACM,
39(4):54{63, April 1996.

[6] N. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Interception in the Aroma system. In
Proceedings of the ACM 2000 Java Grande Conference, pages 107{115, San Francisco, CA, June
2000.

[7] N. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Transparent consistent replication of Java
RMI objects. In Proceedings of the Distributed Objects and Applications Conference, pages 17{26,
Antwerp, Belgium, September 2000.

[8] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Using interceptors to enhance CORBA.
IEEE Computer, pages 62{68, July 1999.

[9] Object Management Group. The Common Object Request Broker Architecture and Speci�cation,
1998. Version 2.4 OMG Technical Committee Document (formal/2000-10-01).

[10] Object Management Group. Portable interceptors, Revised Joint Submission, December 1999.
OMG Technical Committee Document (ptc/2000-03-03).

[11] Sun Microsystems, Inc. Java Remote Method Invocation Speci�cation, revision 1.50 edition, Oc-
tober 1998. http://java.sun.com/products/jdk/rmi/index.html.

[12] A. Wollrath, R. Riggs, and J. Waldo. A distributed object model for the Java system. Computing
Systems, 9(4):265{290, Fall 1996. MIT Press.

17

