
An OpenMP-like Interface for Parallel Programming in Java

M. E. Kambites
Department of Mathematics,

University of York,
Heslington, York YO10 5DD,

England, U.K.

mek100@york.ac.uk

J. Obdržálek
Faculty of Informatics,
Masaryk University,

Botanická 68a, 602 00 Brno,
Czech Republic.

xobdrzal@fi.muni.cz

J. M. Bull
Edinburgh Parallel Computing

Centre,
University of Edinburgh,

Mayfield Road, Edinburgh
EH9 3JZ, Scotland, U.K.

m.bull@epcc.ed.ac.uk

ABSTRACT
This paper describes the de�nition and implementation of an
OpenMP-like set of directives and library routines for shared

memory parallel programming in Java. A speci�cation of
the directives and routines is proposed and discussed. A
prototype implementation, consisting of a compiler and a
runtime library, both written entirely in Java, is presented,
which implements most of the proposed speci�cation. Some
preliminary performance results are reported.

1. INTRODUCTION
OpenMP is a relatively new industry standard for shared

memory parallel programming, which is enjoying increas-
ing levels of support from both users and vendors in the
high performance computing �eld. The standard de�nes a
set of directives and library routines for both Fortran [13]
and C/C++ [12], and provides a higher level of abstraction
to the programmer than, for example, programming with

POSIX threads [6]. On the other hand, OpenMP programs
can be less scalable and less portable than message-passing
programs.

It is, of course, possible to write shared memory parallel pro-

grams using Java's native threads model [7, 9]. However, a
directive system has a number of advantages over the native
threads approach. Firstly, the resulting code is much closer
to a sequential version of the same program. Indeed, with a
little care, it is possible to write an OpenMP program which
compiles and runs correctly when the directives are ignored.

This makes subsequent development and maintenance of the
code signi�cantly easier. It is also to be hoped that, with
the increasing familiarity of programmers with OpenMP, a
directive system will make parallel programming in Java a
more attractive proposition.

Another problem with using Java native threads is that
for maximum e�ciency on shared memory parallel architec-

tures, it is necessary both to use exactly one thread per pro-
cessor and to keep these threads running during the whole
lifetime of the parallel program. To achieve this, it is nec-
essary to have a runtime library which despatches tasks

to threads, and provides e�cient synchronisation between
threads. In particular, a fast barrier is crucial to the e�-
ciency of many shared memory parallel programs. Such bar-
riers are not trivial to implement and are not supplied by the
java.lang.Thread class, but may be two or three orders of
magnitude cheaper than thread fork/joins. Similarly, loop

self-scheduling algorithms require careful implementation|
in a directive system this functionality is also supplied by
the runtime library. These concerns could be met without
recourse to directives, simply by supplying the appropriate
class library. Another possible approach, therefore, would

be to modify the run-time library described here for direct
use by the programmer.

Other approaches to providing parallel extensions to Java in-
clude JavaParty [15], HPJava [3], Titanium [19] and SPAR
Java [18]. However, these are designed principally for dis-

tributed systems, and unlike our proposal, involve genuine
language extensions. The current implementations of Tita-
nium and SPAR are via compilation to C, and not Java.

The remainder of this paper is organised as follows: Sec-
tion 2 discusses the design of the Application Program-

mer Interface (API), which is heavily based on the exist-
ing OpenMP C/C++ speci�cation. Section 3 describes the
JOMP runtime library|a class library which provides the
necessary utility routines on top of the java.lang.Thread

class. Section 4 describes the JOMP compiler, which trans-
lates Java with JOMP directives to pure Java with calls to

the JOMP runtime library. In Section 5, we present some
preliminary performance results, with comparisons to hand
coded Java threads and a commercial Fortran OpenMP im-
plementation. Section 6 raises some outstanding issues,
which would bene�t from further research, while Section 7

concludes, evaluating progress so far.

2. A DRAFT API
In this section, an informal speci�cation is suggested for
an OpenMP-like interface for Java. This draft is heavily
based on the existing OpenMP standard for C/C++ [12],
and hence only brief details are presented here. A more

comprehensive speci�cation is given in [11].

2.1 Format of Directives
Since the Java language has no standard form for compiler-
speci�c directives, we adopt the approach used by the
OpenMP Fortran speci�cation [13] and embed the directives
as comments. This has the bene�t of allowing the code to
function correctly as normal Java: in this sense it is not
an extension to the language. Another approach would be
to use as directives method calls which could be linked to a
dummy library. However, this places unpleasant restrictions
on the syntactic form of the directives.

A JOMP directive takes the form:

//omp <directive> <clauses>

[//omp <clauses>]

.....

Directives are case sensitive. Some directives stand alone, as
statements, while others act upon the immediately following

Java code block. A directive should be terminated with a
line break. Directives may only appear within a method
body. Note that directives may be orphaned|work-sharing
and synchronisation directives may appear in the dynamic
extent of a parallel region of code, not just in its lexical
extent.

2.2 Theonly directive
The only construct allows conditional compilation. It takes
the form:

//omp only <statement>

The relevant statement will be executed only when the pro-
gram has been compiled with an JOMP-aware compiler.

2.3 Theparallel construct
The parallel directive takes the form:

//omp parallel [if(<cond>)]

//omp [default (shared|none)]

//omp [shared(<vars>)]

//omp [private(<vars>)]

//omp [firstprivate(<vars>)]

//omp [reduction(<operation>:<vars>)]

<code block>

When a thread encounters such a directive, it creates a new
thread team if the boolean expression in the if clause eval-
uates to true. If no if clause is present, the thread team
is unconditionally created. Each thread in the new team
executes the immediately following code block in parallel.

At the end of the parallel block, the master thread waits
for all other threads to �nish executing the block, before
continuing with execution alone.

The default, shared, private, firstprivate and

reduction clauses function in the same way as in the

C/C++ standard. The variables may be basic types, or

references to arrays or objects, except in the case of the re-
duction clause, where the variables must be scalars or arrays
of basic types.

Note that declaring an object to be private causes a new
object to be allocated (and initialised with default values) on

each thread. Declaring an array to be private causes only
a new reference to be created on each thread. Declaring an
object or array to be firstprivate causes a new object or
array to be allocated on each thread, which is cloned from
the existing object or array.

Example: Computing the sum of a two-dimensional array
where each thread has one row.

//omp parallel shared(a,n) private(myid,i)

//omp reduction(+:b)

{

myid = OMP.getThreadNum();

for (i=0; i<n; i++) {

b += a[myid][i];

}

}

2.4 Thefor and ordered directives
The for directive speci�es that the iterations of a loop may
be divided between threads and executed concurrently. The
for directive takes the form:

//omp for [nowait]

//omp [private(<vars>)]

//omp [firstprivate(<vars>)]

//omp [lastprivate(<vars>)]

//omp [reduction(<operator>:<vars>)]

//omp [schedule(<mode>,[chunk-size])]

//omp [ordered]

<for loop>

As in C/C++, the form of the loop is restricted so that
the iteration count can be determined before the loop is
executed. The semantics of this directive and its clauses are
equivalent to their C/C++ counterparts. The scheduling
mode is one of static, dynamic, guided or runtime. The
ordered directive is used to specify that a block of code

within the loop body must be executed for each iteration in
the order that it would have been during serial execution.
It takes the form:

//omp ordered

<code block>

Example: Simple parallel loop.

//omp parallel shared(a,b)

{

//omp for

for (int i=1; i<n; i++){

b[i] = (a[i] + a[i-1]) * 0.5;

}

}

2.5 Thesections and section directives
The sections directive is used to specify a number of
sections of code which may be executed concurrently. A
sections directive takes the form:

//omp sections [nowait]

//omp [private(<vars>)]

//omp [firstprivate(<vars>)]

//omp [lastprivate(<vars>)]

//omp [reduction(<operator>:<vars>)]

{

//omp section

<code block>

[//omp section

<code block>]...

}

The sections are allocated to threads in the order speci�ed,

on a �rst-come-�rst-served basis. Thus, code in one section
may safely wait (but not necessarily busy-wait) for some
condition which is caused by a previous section without fear
of deadlock.

Example: Independent methods.

//omp parallel shared(a,b,c)

{

//omp sections

{

//omp section

a.init();

//omp section

b.init();

//omp section

c.init();

}

}

2.6 Thesingle directive
The single directive is used to denote a piece of code which
must be executed exactly once by some member of a thread
team. Other threads skip the block and wait at a barrier for
the execution of the block to complete. A single directive
takes the form:

//omp single [nowait]

//omp [private(<vars>)]

//omp [firstprivate(<vars>)]

<code block>

A single block within the dynamic extent of a parallel re-
gion will be executed only by the �rst thread of the team to
encounter the directive.

Example: First thread to �nish initialisation reads some

data in.

//omp parallel

{

x.init();

//omp single

{

y.readin();

}

doWork(x,y);

}

2.7 Themaster directive
The master directive is used to denote a piece of code which
is to be executed only by the master thread (thread number

0) of a team. A master directive takes the form:

//omp master

<code block>

Unlike the single directive, there is no implied barrier at
either the beginning or the end of a master construct.

Example: Simple I/O.

//omp parallel

{

doWork();

//omp master

{ System.out.println(" some output here "); }

doMoreWork();

}

2.8 Thecritical directive
The critical directive is used to denote a piece of code
which must not be executed by di�erent threads at the same
time. It takes the form:

//omp critical [(name)]

<block>

Only one thread may execute a critical region with a given
name at any one time. Critical regions with no name spec-

i�ed are treated as having the same (null) name. Upon en-
countering a critical directive, a thread waits until a lock is
available on the name, before executing the associated code
block. Finally, the lock is released.

2.9 Thebarrier directive
The barrier directive causes each thread to wait until all
threads in the current team have reached the barrier. It
takes the form:

//omp barrier

To prevent deadlock either all of the threads in a team or
none of them must reach the barrier.

2.10 Combined parallel and work-sharing di-
rectives

For brevity, two syntactic shorthands are provided for com-

monly used combinations of directives. The parallel for

directive de�nes a parallel region containing only a single

for construct. Similarly, the parallel sections directive
de�nes a parallel region containing only a single sections

construct.

2.11 Nesting of Directives
The work-sharing directives for, sections and single may
not be dynamically nested inside one another. Other nest-

ings are permitted, subject to other stated restrictions con-
cerning what combinations of threads may or may not en-
counter a construct.

2.12 Library Methods
JOMP provides direct equivalents of all except one of
the user-accessible library routines de�ned in the OpenMP

C/C++ standard, implemented as static members of the
class jomp.runtime.OMP. This includes both simple and
nested locks. The exceptional routine is the equivalent of
omp get num procs, because the number of processors is not
available through any standard Java library call. This infor-
mation could be obtained by making a Java Native Interface

call to a system routine, but this would prevent the library
from being pure Java. Since the routine is little used, this
does not appear to be worthwhile.

getNumThreads() returns the number of threads in the team

executing the current parallel region, or 1 if called from a
serial region of the program.

setNumThreads(n) sets to n the number of threads to be
used to execute parallel regions. It has e�ect only when
called from within a serial region of the program.

getMaxThreads() returns the maximum number of threads
which will in future be used to execute a parallel region,
assuming no intervening calls to setNumThreads().

getThreadNum() returns the number of the calling thread,

within its team. The master thread of the team is thread 0.
If called from a serial region, it always returns 0.

inParallel() returns true if called from within the dy-
namic extent of a parallel region, even if the current team
contains only one thread. It returns false if called from

within a serial region.

setDynamic() enables or disables automatic adjustment of
the number of threads. getDynamic() returns true if dy-
namic adjustment of the number of threads is supported by
the JOMP implementation and currently enabled. Other-

wise, it returns false.

setNested() enables or disables nested parallelism.

getNested() returns true if nested parallelism is supported

by the JOMP implementation and currently enabled. Oth-
erwise, it returns false.

2.12.1 TheLock andNestLock classes
Two types of locks are provided in the library. The class
jomp.runtime.Lock implements a simple mutual exclusion
lock, while the class jomp.runtime.NestLock implements a

nested lock. Each class implements the same three methods.

The set() method attempts to acquire exclusive ownership

of the lock. If the lock is held by another thread, then the
calling thread blocks until it is released.

The unset() method releases ownership of a lock. No check
is made that the releasing thread actually owns the lock.

The test() method tests if it is possible to acquire the lock
immediately, without blocking. If it is possible, then the
lock is acquired, and the value true returned. If it is not
possible, then the value false is returned, with the lock not
acquired.

The two lock classes di�er in their behaviour if an attempt
is made to acquire a lock by the thread which already owns
it. In this case, the simple Lock class will deadlock, but the
NestLock class will succeed in reacquiring the lock. Such a
lock will be available for acquisition by other threads only
when it has been released as many times as it was acquired.

2.13 Environment
Equivalents are provide for all four environment variables

de�ned in the C/C++ standard. They are implemented as
Java system properties, which can be set as command line
arguments when the Java Virtual Machine is invoked.

The jomp.schedule property speci�es the scheduling strat-
egy, and optional chunk size, to be used for loops with the

runtime scheduling option. The form of its value is the same
as that used for the parameter to a schedule clause.

The jomp.threads property speci�es the number of threads
to use for execution of parallel regions.

The jomp.dynamic property takes the value true or false
to enable or disable respectively dynamic adjustment of the
number of threads.

The jomp.nested property takes the value true or false to
enable or disable respectively nested parallelism.

2.14 Differences from C/C++ standard
The main di�erences from the C/C++ standard are as fol-

lows:

� The threadprivate directive, and hence the copyin

clause, are not supported. Java has no global variables,
as such. The only data to which such a concept might

be applied are static class members, but this is both
unattractive and di�cult to implement.

� The atomic directive is not supported. The kind of op-
timisations which the directive is designed to facilitate
(for example, atomic updates of array elements) re-
quire access to atomic test-and-set instructions which

are not readily available in Java. The atomic directive
would merely be a synonym for the critical directive.

� The flush directive is not supported, since it also re-
quires access to special instructions. Provided that
variables used for synchronisation are declared as

volatile, this should not be a problem. However,

it is not clear how the ambiguities in the Java memory

model speci�cation noted in [16] a�ect this issue.

� Array reductions are permitted. This feature has been
added to OpenMP Fortran standard in Version 2.0 [14]

and seems likely to be added to the C/C++ standard
in the future.

� There is no function to return the number of proces-
sors, as noted in Section 2.12.

3. THE JOMP RUNTIME LIBRARY
In this section we describe the JOMP runtime library, which
provides the necessary functionality to support parallelism

in terms of Java's native threads model. Further details of
the implementation are given in in [5] and [10].

3.1 Structure of the Library
As well as the user-accessible functions and locks speci�ed in
Section 2.12, the package jomp.runtime contains a library
of classes and routines used by compiler-generated code.

The core of the library is the OMP class. As well as the user-
accessible functions documented in Section 2.12, this class
contains the routines used by the compiler to implement
parallelism in terms of Java's native threads model.

The BusyThread and BusyTask classes are used for thread-
management purposes. The Barrier class implements a
barrier, and is used for internal thread-management pur-
poses, as well as for implementing the directives which re-
quire this construct. The Orderer class is used to facilitate

implementation of the ordered construct, while the Reducer
class implements reductions of variables. The Ticketer and
LoopData classes are used to facilitate scheduling. The Lock
and NestLock classes implement the user-accessible locks
described in Section 2.12.1.

3.2 A Question of Personal Identity
In order that threads can perform di�erent tasks, it is nec-
essary that the code they execute has some way of distin-
guishing between them. The need to support orphaned di-
rectives (see Section 2) means that it is not su�cient simply
to give each thread a private variable indicating its identity.
Upon encountering an orphaned directive, the variable may

no longer be in scope. The only variables which will cer-
tainly be in scope are static class �elds. Unfortunately, the
values taken by these are by nature common to all threads,
and so cannot be used to di�erentiate between them.

Nor can we simply pass an ID down the dynamic call chain,
as an extra parameter for each function. Apart from the
complexity involved in deciding which functions need such
parameters and which do not, there is no guarantee that the
call chain does not encompass functions for which the source
code is not available.

The only way to distinguish between threads is by use of the
static currentThread() method of the Thread class, which
returns a reference to the appropriate instance of the Thread
class. It would be nice to give our BusyThread class an
integer �eld in which to store its own ID. Unfortunately,

the master thread is not an instance of BusyThread. One

approach would be to perform a runtime type check on the

currentThread(), and assume that we are in the master
thread if we cannot cast to type BusyThread.

We can circumvent this problem by storing an absolute
numerical ID for each process, in ASCII decimal format,
in the process name �eld. The library getAbsoluteID()

call simply parses the name �eld of the currentThread().
This is evidently not very e�cient, but we can reduce
performance impact by minimising the number of calls to
getAbsoluteID().

To facilitate this, many of the methods in the library have

two versions, one of which takes as an extra (�rst) parameter
the absolute process ID of the calling thread.

3.3 Initialisation
Initialisation is divided into two parts. The static initialisa-
tion for the class jomp.runtime.OMP reads the system prop-
erties documented in Section 2.13. These are used to set

up the numbers of threads to use, and to set up the static
subclass Options, which contains con�guration information.

The start() method is called on demand, when the �rst
parallel region is encountered. It initialises the critical re-
gion table (see Section 3.11) and all the thread-speci�c data.

It then creates a team of threads and sets them running,
whereupon they wait to be assigned a task.

3.4 Tasks and Threads
Tasks to be executed in parallel are instances of the class
BusyTask. They have a single method, go(), which takes as
a parameter the number (within its team) of the executing

thread.

All threads but the master are instances of the class
BusyThread, which extends Thread and has a BusyTask ref-
erence as a member. Each non-master thread executes a
loop, in which it reaches a global barrier, executes its task,

and reaches the barrier again. The loop may be terminated
(after the �rst barrier call) on the setting of a ag by the
master thread.

During execution of serial regions of the program, the
threads all pause at the �rst barrier in the loop, waiting

for the master thread to reach the barrier. When the mas-
ter thread calls the doParallel() method, it sets up the
tasks of each thread and reaches the global barrier, thus
causing the other threads to execute the task. The master
then executes the task in its own right, before reaching the

barrier again, causing it to wait for all other threads to �n-
ish parallel execution before continuing with serial execution
alone.

All but the master thread are daemon threads, so that they
die if the master thread terminates. The implicit barrier

at the end of every parallel region ensures that the master
thread cannot terminate while the others are doing useful
work.

The thread scheduling policy is largely the responsibility of
the operating system. In almost all circumstances, the num-

ber of threads used to execute a parallel program should not

exceed the number of available processors. In order to pre-

vent the possibility threads from tying up resources inde�-
nitely, threads waiting at a barrier will eventually yield|see
Section 3.6.

3.5 Nested Parallelism
Nested parallelism is not currently supported, as is generally

the case in current implementations of the OpenMP C/C++
and Fortran speci�cations. If the doParallel() method is
called by a thread in parallel mode, thread-speci�c data is
copied, the thread is recon�gured to be in its own team of
size one, and the task is executed. Finally, the original values
of the thread-speci�c data are restored. The setNested()

method does nothing, and the getNested() method always
returns false.

3.6 Barriers
The Barrier class implements a simple, static 4-way tour-
nament barrier [4] for an arbitrary number of threads. Its

constructor takes as a parameter the number of threads to
use.

The doBarrier() method takes as a parameter a thread
number, and causes the calling thread to block until it has
been called the same number of times for each possible

thread number.

To avoid the overhead of a system call, threads busy-wait.
Unfortunately, many Java systems implement co-operative
rather than pre-emptive multitasking. If the threads are

not each allocated their own processor, busy-waiting can
cause deadlock. To avoid this, a thread busy-waits by
going around an empty loop a set number of times, be-
fore Yielding to other threads. The number of itera-
tions performed before yielding can be set by calling the
setMaxBusyIter() method, and can be tuned for di�erent

systems.

The OMP class maintains, for each thread, a Barrier ref-
erence pointing to a single barrier for each team. The
OMP.doBarrier() method reaches the appropriate barrier
for the calling thread.

3.7 Reductions
The Reduction class is used to implement the reduction

clause. A call to a reduction method causes the calling
thread to wait until all other threads have called the routine
with their respective values. The method then returns the

result of the reduction. The Reducer is implemented using
a static 4-way tournament algorithm, in almost exactly the
same way as the Barrier.

The OMP class maintains a Reducer reference for each thread,

which points to a common Reducer for the team. Calls to the
di�erent OMP.do...Reduce() methods from within a parallel
region are passed to the relevant method in the appropriate
Reducer. During serial execution, the calls simply return
their argument.

3.8 Scheduling
3.8.1 TheLoopData class

A LoopData object is used to store information about a loop

or a chunk of a loop. It contains details of the start, step
and stop of a loop. The stop value is stored so as to make
the loop continuation expression a strict inequality. The
object also contains a �eld to indicate the chunk size to be
used when dividing up the loop. In addition, it contains
a secondary step value, which allows a LoopData object to

represent a set of chunks, evenly spaced throughout a loop.
Finally, there is a ag to indicate whether a chunk is the
last which could be executed by the calling thread.

3.8.2 TheTicketer class
The Ticketer class is used to facilitate dynamic allocation
of work to di�erent threads.

The synchronized issue() method is used to issue tickets:
successive calls return integer tickets, starting at zero. This
facility is used to implement the single and sections con-

structs. Calls to the issueDynamic() and issueGuided()

methods issue successive chunks of a loop, using simple �rst-
come-�rst-served, and guided self-scheduling, strategies re-
spectively.

The reset() method returns the next in a conceptually in�-

nite list of ticketers, to be used for the next operation. This
allows a thread with no work to begin executing the next
work-sharing construct without waiting for its peers.

3.9 Ordering Support
The Orderer class is used to implement the ordered con-
struct. It stores, as its state, the next iteration of a loop
to be executed. The reset() method takes a loop counter
value indicating the �rst iteration of the following loop, and
returns the next in a conceptually in�nite list of Orderers.

The startOrdered() method blocks until the given loop it-
eration is the next to be executed, and then returns. The
stopOrdered() method sets the next iteration indicator to
the given value. The OMP class maintains for each thread a
reference into a conceptually in�nite list of Orderers. The

startOrdered() and stopOrdered() methods pass their pa-
rameters on to the appropriate methods of the relevant
Orderer.

The resetOrderer() method advances the thread's refer-
ence to point to the next Orderer, setting up the value of

the �rst iteration if it is not already set. When all threads
have advanced past an Orderer, no reference to the object
remains, and so it will be available for garbage collection.

3.10 Locks
The Lock and NestLock classes described in Section 2.12.1
are implemented in a straightforward manner, using the
Java synchronized method modi�er to provide mutual ex-
clusion.

3.11 Critical Regions
The requirement that names of critical regions be global
in scope presents a problem. JOMP directives are to be
replaced by Java code, so we need some construct in Java
which allows us to access the same lock regardless of the

current scope.

One approach would be to create a public class for each

critical region name, in a predetermined place in the class
hierarchy|say jomp.runtime.critical. Such a class would
have static members to facilitate locking. However, the re-
quirement imposed by Java compilers that such classes oc-
cupy a predetermined place in the directory structure may
cause problems. Quite apart from the obvious messiness,

there is no guarantee that the user will have permission to
write to the appropriate location!

Instead, we choose a neater, if less e�cient, solution. The
OMP class maintains, as a static member, a hash table, in-
dexed by name and containing, for each name, an instance

of class Lock. The structured block associated with the
directive is enclosed in a synchronized statement. Locks
passed as a parameter are held in a static hash table and
the getLockByName method is used to get a reference to the
lock associated with a given name, creating it if necessary.

4. THE JOMP COMPILER
In this section, we describe a simple compiler which imple-
ments a large subset of the speci�cation suggested above.
Additional implementation details may be found in [5] and
[10]. Currently, a few parts of the speci�cation have yet to
be implemented, such as nested parallelism and array reduc-

tions.

4.1 Basic Structure
The JOMP Compiler is built around a Java 1.1 parser pro-
vided as an example with the JavaCC [8] utility. JavaCC
comes supplied with a grammar to parse a Java 1.1 pro-
gram into a tree, and an UnparseVisitor class, which un-

parses the tree to produce code. The bulk of the com-
piler is implemented in the OMPVisitor class, which extends
the UnparseVisitor class, overriding various methods which
unparse particular nonterminals. Because JavaCC is itself
written in Java, and outputs Java source, the JOMP system

is fully portable, and requires only a JVM installation in
order to run it.

These overriding methods output modi�ed code, which in-
cludes calls to the runtime library to implement appropriate
parallelism.

4.2 Personal Identity Revisited
As discussed in Section 3.2, there is no cheap way for a
thread to identify itself. To alleviate this problem, the com-
piler creates code which attempts to keep track of its own
ID, in the variable omp me.

Where omp me is not in scope, and library calls are inserted
which might entail in multiple calls to getAbsoluteID(),
code is inserted to declare omp me and initialise it to
the value returned by a call to getAbsoluteID(). The
isMeDefined ag is set in the compiler, to provide infor-

mation for visitors within the static scope of the new dec-
laration. Where a library call would entail a single call to
getAbsoluteID(), the value of omp me is used if available.

For simplicity, these technicalities are largely ignored in the
sections that follow, and all library calls are shown without

their thread number parameters.

In the current JOMP implementation, the compiler neither

performs a full semantic analysis, nor keeps a track of pack-
age, classes, variables and its names, with a single exception
of local variables. It does not even keep a track of the cur-
rent class's �elds. It simply works with one compilation unit
at a time, and relies on the programmer to provide type in-
formation in data attribute clauses.

4.3 Theparallel directive
Upon encountering a parallel directive within a method,
the compiler creates a new class. If the default(shared)

clause is speci�ed, an inner class (within the class contain-
ing the current method) is created. If the method containing
the parallel directive is static then the new inner class is

also static. If default(none) is used, then a separate class
within the same compilation unit is created. For each vari-
able declared to be shared, the class contains a �eld of the
same type signature and name. For each variable declared
to be firstprivate or reduction, the class contains a �eld
of the same type signature and a local name.

The new class has a single method, go(), which takes a
parameter indicating an absolute thread identi�er. For
each variable declared to be private, firstprivate or
reduction, the go() method declares a local variable with
the same name and type signature. The local firstprivate

variables are initialised from the corresponding �eld in the
containing class, while the local private variables have de-
fault initialisation. The local reduction variables are ini-
tialised with the appropriate default value for the reduction
operator. Private objects are allocated using the default
constructor. The main body of the go() method contains

the code to be executed in parallel.

In place of the parallel construct itself, code is inserted to
declare a new instance of the compiler-created class, and
to initialise the �elds within it from the appropriate vari-

ables. The OMP.doParallel() method is used to execute
the go() method of the inner class in parallel. Finally, any
values necessary are copied from class �elds back into local
variables.

A very simple \Hello World" example illustrating this pro-

cess is shown in Figures 1 and 2.

4.4 Work-sharing directives
Upon encountering the for, sections, or single directive,
a new block is created. For each variable declared to be
firstprivate, a local variable fp <varname> is declared
and initialised by the value of the original variable. For

each variable declared to be lastprivate, a local variable
lp <varname> is declared. For each variable declared to
be reduction, a local variable rd <varname> is declared.
These newly created variables are used to communicate the
values of variables to the enclosing block. In the case of
the for and sections directives, the omp amLast boolean

variable is declared to hold information about whether the
current thread is the one performing the sequentially last
iteration of the loop, or the sequentially last section.

Inside the newly allocated block, a second block is created.
For each variable declared to be firstprivate, private,

lastprivate, or reduction, a new variable with the same

public class Hello {

public static void main (String argv[]) {

int myid;

//omp parallel private(myid)

{

myid = OMP.getThreadNum();

System.out.println("Hello from " + myid);

}

}

}

Figure 1: \Hello World" JOMP program

public class Hello {

public static void main (String argv[]) {

int myid;

// OMP PARALLEL BLOCK BEGINS

{

__omp_Class0 __omp_Object0 = new __omp_Class0();

__omp_Object0.argv = argv;

try {

jomp.runtime.OMP.doParallel(__omp_Object0);

} catch(Throwable __omp_exception) {

System.err.println("OMP Warning: Illegal thread exception ignored!");

System.err.println(__omp_exception);

}

argv = __omp_Object0.argv;

}

// OMP PARALLEL BLOCK ENDS

}

// OMP PARALLEL REGION INNER CLASS DEFINITION BEGINS

private static class __omp_Class0 extends jomp.runtime.BusyTask {

String [] argv;

public void go(int __omp_me) throws Throwable {

int myid;

// OMP USER CODE BEGINS

{

myid = OMP.getThreadNum();

System.out.println("Hello from " + myid);

}

// OMP USER CODE ENDS

}

}

// OMP PARALLEL REGION INNER CLASS DEFINITION ENDS

}

Figure 2: Resulting \Hello World" Java program

name is declared. Variables declared to be reduction

are initialised with the appropriate value. private and
lastprivate variables are initialised by calling the default
constructor in the case of class type variables, and unini-
tialised in the case of primitive or array type variables.
firstprivate variables are initialised by the appropriate
value from the fp copy of the original variable. A clone()

method is called to initialise class or array type variables.

Next, the code to actually handle the appropriate work-
sharing directive is inserted (see below). At the end of
the inner block appropriate local variable (lp <varname>

or rd <varname>) is updated for every lastprivate and

reduction variable.

After the end of the inner block, a code to update the global
copies of lastprivate and reduction variables is inserted.
lastprivate variables are updated only by the thread with
the variable omp amLast set to true. Reduction variables

are updated by the master thread of the team. Finally, the
outer block is closed.

Figures 3 and 4 illustrate this process for a simple parallel
loop.

4.4.1 Thefor directive
Upon encountering a for directive, the compiler inserts code

to create two LoopData structures. One of these is initialised
to contain the details of the whole loop, while the other is
used to hold details of particular chunks. The generated
code then repeatedly calls the appropriate getLoop...()

function for the selected schedule, executing the blocks it is
given, until there are no more blocks. If a dynamic schedul-

ing strategy was used, the ticketer is then reset. Any re-
ductions are carried out, and if the nowait clause is not
speci�ed, the doBarrier() method is called.

4.4.2 Theordered clause and directive
If the ordered clause is speci�ed on a for directive, then a
call to resetOrderer() is inserted immediately prior to the
loop, at which point the value of the �rst iteration number

is de�nitely known.

Upon encountering an ordered directive, the compiler in-
serts a call to startOrdered() before the relevant block with
the parameter being the current value of the loop counter.

After the block is inserted a call to stopOrdered(), with the
parameter being the next value the loop counter would take
after its current value, during sequential execution:

jomp.runtime.OMP.startOrdered(i);

<block>

jomp.runtime.OMP.stopOrdered(i+step);

4.4.3 Themaster directive
Upon encountering a master directive, the compiler in-
serts code to execute the relevant block if and only if the
OMP.getThreadNum() method returns 0.

if(jomp.runtime.OMP.getThreadNum()==0) {

<block>

}

4.4.4 Thesingle directive
Upon encountering a single directive, the compiler inserts
code to get a ticket, execute the relevant block if and only if
the ticket is zero, and then reset the ticketer. If the nowait
clause is not speci�ed, the doBarrier() method is called.

if(jomp.runtime.OMP.getTicket()==0) {

<block>

}

jomp.runtime.OMP.resetTicket();

[jomp.runtime.OMP.doBarrier();]

4.4.5 Thesections directive
Upon encountering a sections directive, the compiler in-
serts code which repeatedly requests a ticket from the tick-

eter, and executes a di�erent section depending on the ticket
number. When there are no sections left, the ticketer is re-
set. If the nowait clause is not speci�ed, the doBarrier()

method is called.

some_label : for(;;) {

switch(jomp.runtime.OMP.getTicket()) {

case 0 : <section 0>; break;

case 1 : <section 1>; break;

case 2 : <section 2>; break;

default : break some_label;

}

}

jomp.runtime.OMP.resetTicket();

[jomp.runtime.OMP.doBarrier();]

4.5 Synchronisation directives
4.5.1 Thecritical directive
Upon encountering a critical directive, the compiler cre-
ates a synchronized block, with a call to getLockByName.

synchronized

(jomp.runtime.OMP.getLockByName("name"))

{

<block>

}

4.5.2 Thebarrier directive.
Upon encountering a barrier directive, the compiler inserts
a call to the doBarrier() method.

5. PERFORMANCE ANALYSIS
To examine the performance of the JOMP system, a sim-
ple simulation of two dimensional uid ow in a box was
used. The 2-D steady-state viscous Navier-Stokes equations
in the usual streamfunction/vorticity formulation are solved

on a regular grid using a red-black Gauss-Seidel relaxation
method on the classical 5-point stencil. As well as a JOMP
version, a hand-coded Java threads version and version us-
ing mpiJava [1] (a Java interface to a native MPI library)
have been written. The JOMP version di�ers from the se-
quential version only by the addition of two parallel for

directives.

//omp for firstprivate(i) private(j) lastprivate (k) reduction(+:l)

for(int m=0; m<100;m++)

...

Figure 3: Fragment of JOMP program

{ // OMP FOR BLOCK BEGINS

// copy of firstprivate variables, initialised

int _fp_i = i;

// copy of lastprivate variables

int _lp_k;

// variables to hold result of reduction

int _rp_l;

boolean __omp_amLast=false;

{

// firstprivate variables + init

int i = (int) _fp_i;

// [last]private variables

int j;

int k;

// reduction variables + init to default

int l = 0;

... code to execute the parallel loop, perform

reduction into _rp_l and set __omp_amLast ...

// copy lastprivate variables out

if (__omp_amLast) {

_lp_k = k;

}

}

// set global from lastprivate variables

if (__omp_amLast) {

k = _lp_k;

}

// set global from reduction variables

if (jomp.runtime.OMP.getThreadNum(__omp_me) == 0) {

l+= _rp_l;

}

} // OMP FOR BLOCK ENDS

Figure 4: Resulting Java code

The three parallel Java versions of this code were run on

a Sun HPC 6500 system with 18 400MHz processors, each
having 8Mb of Level 2 cache. The JVM used was Sun's
Solaris production JDK, Version 1.2.1 04, and the mpiJava
version used MPICH Version 1.1.2. For comparison, a For-
tran version of the code using OpenMP directives was also
tested. (This was compiled with the KAI guidef90 compiler,

Version 3.7 and then the Sun WorkShop 5.0 f90 compiler,
with ags -fast -xarch=v8plusa.) In all cases, 100 red-
black iterations were executed on a 1000�1000 grid.

Figure 5 shows the performance of the versions of the codes
compared to ideal speedup calculated from the performance

of sequential Fortran and Java versions.

The results show that the hand coded Java threads version
gives the best performance of the three Java versions, show-
ing some slight superlinear speedup. The JOMP version
gives only slightly lower performance, and also scales well.

The mpiJava version shows some stronger superlinearity up
to eight processors, but scales poorly on larger numbers of
processors. The Java versions attain approximately half the
performance of the Fortran OpenMP version.

We have also compared the overheads of the synchronisation

constructs in the JOMP runtime library to those of guidef90.
The methodology consists of comparing the time taken to
execute the same code with and without each directive, and
is described fully in [2]. However, these results should be
interpreted with care, as microbenchmarks can exhibit odd

behaviour with just-in-time compliers. Table 1 shows the
overhead of the various constructs on 16 processors on the
Sun HPC 6500.

Directive guidef90 JOMP

PARALLEL 78.4 34.3
PARALLEL + REDUCTION 166.5 58.4
DO/FOR 42.3 24.6

PARALLEL DO/FOR 87.2 42.9
BARRIER 41.7 11.0
SINGLE 83.0 1293
CRITICAL 11.2 19.1
LOCK/UNLOCK 12.0 20.9

ORDERED 12.4 47.0

Table 1: Synchronisation overheads (in microsec-
onds) on Sun HPC 6500

With the exception of the single directive, all the directives
JOMP directives requiring barrier synchronisation outper-
form those their Fortran equivalents under guidef90, as the
basic barrier routine is approximately four times faster. The
reason for the very high overhead of the single directive is
not clear: in the microbenchmark, synchronised accesses to

a Ticketer object are made immediately following a barrier,
which may result in heavy contention.

The overheads of the locking type synchronisation are some-
what higher in JOMP than in guidef90. In JOMP, the over-
head of these directives are determined by the cost of Java

synchronized blocks, and there is little scope for optimising

the performance of these directives any further.

Further performance studies, which show that JOMP code
generally gives performance comparable to hand coded Java
threads, can be found in [10].

6. OUTSTANDING ISSUES
In this section, we briey outline some of the outstanding
issues which have yet to be resolved, and which require more

work.

6.1 Theatomic directive
As noted in Section 2.14, this directive cannot readily be
implemented if it has comparable semantics to the C/C++
equivalent. Alternative semantics for this directive, for ex-
ample atomic updates at the object level, are worth consid-
ering. They would be more object-oriented in nature and
easier to implement in practice.

6.2 Semantic analysis
A compiler performing full semantic analysis (or at least full
analysis of names) is required. Having information about all
the package/class/method names, and about binding identi-
�ers to particular variables, would made the JOMP compiler
more straightforward to implement. The treatment of data
scope attribute clauses, in particular, would be simpli�ed.

6.3 Error handling
The JOMP compiler has minimal error checking capability.
In practice, it is necessary to ensure that a program compiles
correctly with the sequential compiler before attempting to
run the JOMP compiler on it. Some error checking for the
directive syntax should be added.

6.4 Exception Handling
Exceptions are an important feature of the Java language,

and it is worth considering how they will be handled by
an OpenMP-like implementation. Exceptions are present
in C++, but they are less widely used than in Java and
the OpenMP C/C++ speci�cation ignores the issue, thus
providing no guidance.

The case of interest is that where an exception is thrown
by some thread within a parallel construct, but not caught
inside it. The most natural behaviour would be for parallel
execution to terminate immediately, and the exception to
be thrown on in the enclosing serial region by the master

thread. In practice, though, the desired behaviour proves
very di�cult to implement. It is necessary that the thread
throwing the exception has some way of interrupting the
master thread. Unfortunately, no mechanism is provided in
the Java language for interrupting a running thread. The
Thread.interrupt() method only actually interrupts if the

target thread is waiting. If it is running, it merely sets a
ag.

Even more complex issues arise when an exception is thrown
by one thread within a synchronisation or work-sharing con-
struct, and caught outside this construct but inside the dy-
namically enclosing parallel region.

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

0 2 4 6 8 10 12 14 16

Pe
rf

or
m

an
ce

 (
fl

op
/s

)

No. of processors

Fortran OpenMP
Java MPI

Java threads
JOMP

Fortran ideal
Java ideal

Figure 5: Performance of CFD application on Sun HPC 6500

6.5 Task based parallelism
OpenMP does not provide much support for task based par-

allelism: this shortcoming was noted in [17], and a solu-
tion proposed in the form of task and taskq directives.
These provide a compact but powerful extension to OpenMP
(though some implementation di�culties are noted), allow-
ing parallelism over while loops, in recursive methods, and
over complex data structures such as trees and lists, to be

readily exploited. Since such parallelism is likely to be com-
mon in Java programs, a similar extension should be con-
sidered for JOMP.

7. CONCLUSIONS AND FUTURE WORK
We have de�ned an OpenMP-like interface for Java which
enables a high level approach to shared memory parallel pro-
gramming. A prototype compiler and runtime library which
implement most of the interface have been described, show-
ing that the approach is feasible. Only minor changes from

the OpenMP C/C++ speci�cation are required, and the im-
plementation of both the runtime library and the compiler
are shown to be relatively straightforward. Initial analysis
shows that the resulting code scales well, with little overhead
compared to a hand-coded Java threads version. Low-level
synchronisation overheads have been measured and are for

the most part, tolerable.

Further work includes producing a complete speci�cation,
taking particular care with scoping issues and restrictions.
While portability of functionality should not be an issue,
portability of performance is of more concern, and should

be examined across di�erent platforms and di�erent virtual
machines. A small amount of the speci�cation (predomi-
nantly support for nested parallelism, and array reductions)
remains to be implemented.

8. REFERENCES

[1] M. Baker, B. Carpenter, G. Fox, S.-H. Ko, and S Lim.
mpiJava: An Object-Oriented Java interface to MPI.
In Proc. International Workshop on Java for Parallel
and Distributed Computing, IPPS/SPDP 1999, April
1999.

[2] J. M. Bull. Measuring Synchronisation and Scheduling
Overheads in OpenMP. In Proceedings of First
European Workshop on OpenMP, Lund, Sweden, Sept.
1999, pp. 99{105.

[3] B. Carpenter, G. Zhang, G. Fox, X. Li and Y. Wen.

HPJava: Data Parallel Extensions to Java.
Concurrency: Practice and Experience,
10(11-13):873-877, 1998.

[4] D. Grunwald and S. Vajracharya. E�cient Barriers for
Distributed Shared Memory Computers. In
Proceedings of 8th International Parallel Processing
Symposium, April 1994.

[5] M. E. Kambites. Java OpenMP: Demonstration
implementation of a compiler for a subset of OpenMP
for Java, EPCC Technical Report EPCC-SS99-05,
September 1999, available from
www.epcc.ed.ac.uk/ssp/1999/ProjectSummary/

kambites.html.

[6] International Organization for Standardization (ISO).
Portable operating system interface (POSIX)|Part 1:
system application program interface. ISO/IEC
Standard 9945-1, 1996.

[7] D. Lea. Concurrent Programming in Java: Design
Principles and Patterns. Addison-Wesley, 1996.

[8] Metamata Inc. JavaCC|The Java Parser Generator.

www.metamata.com/JavaCC.

[9] S. Oaks and H. Wong. Java Threads. O'Reilly, 1997.

[10] J. Obdr�z�alek. OpenMP for Java, EPCC Technical

Report EPCC-SS-2000-08, September 2000, available
from www.epcc.ed.ac.uk/ssp/2000/ProjectSummary/

obdrzalek.html.

[11] J. Obdr�z�alek and J. M. Bull. JOMP Application
Program Interface. Available from
www.epcc.ed.ac.uk/research/jomp/pubs.html,
August 2000.

[12] OpenMP Architecture Review Board. OpenMP C and
C++ Application Program Interface, Version 1.0.

Available from www.openmp.org, October 1998.

[13] OpenMP Architecture Review Board. OpenMP
Fortran Application Program Interface, Version 1.1.
Available from www.openmp.org, November 1999.

[14] OpenMP Architecture Review Board. OpenMP
Fortran Application Program Interface, Version 2.0.
Available from www.openmp.org, November 2000.

[15] M. Philippsen and M. Zenger.
JavaParty|Transparent Remote Objects in Java.

Concurrency: Practice and Experience,
9(11):1225{1242, 1997.

[16] W. Pugh. Fixing the Java Memory Model. In
Proceedings of ACM 1999 Java Grande Conference,
pages 89{98. ACM Press, June 1999.

[17] S. Shah, G. Haab, P. Petersen, and J. Throop. Flexible
Control Structures for Parallelism in OpenMP. In
Proceedings of First European Workshop on OpenMP,
Lund, Sweden, pages 99{105, Spetember 1999.

[18] K. van Reeuwijk, A. J. C. van Gemund, and H. J.

Sips. SPAR: A Programming Language for
Semi-automatic Compilat ion of Parallel Programs.
Concurrency: Practice and Experience,
9(11):1193{1205, 1997.

[19] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto,
B. Liblit, A. Krishnamurthy, P. N. Hil�nger, S. L.
Graham, D. Gay, P. Colella, and A. Aiken. Titanium:

A High-Performance Java Dialect. Concurrency:
Practice and Experience, 10(11-13):825-836, 1998.

