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SUMMARY

Object-oriented programming languages have always distinguished between “primitive” and “user-
defined” data types, and in the case of languages like C++ and Java, the primitives are not even treated
as objects, further fragmenting the programming model. The distinction is especially problematic when a
particular programming community requires primitive-level support for a new data type, as for complex,
intervals, fixed-point numbers, and so on.

We present Kava, a design for a backward-compatible version of Java that solves the problem of
programmable lightweight objects in a much more aggressive and uniform manner than previous proposals.
In Kava, there are no primitive types; instead, object-oriented programming is provided down to the level
of single bits, and types such as int can be explicitly programmed within the language. While the language
maintains a uniform object reference semantics, efficiency is obtained by making heavy use of unboxing and
semantic expansion.

We describe Kava as a dialect of the Java language, show how it can be used to define various primitive
types, describe how it can be translated into Java, and compare it to other approaches to lightweight objects.
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1. INTRODUCTION

The capability for programmers to add their own data types is a fundamental advantage of object-
oriented programming. However, it has also created a gulf between the highly efficient primitive
types like integers and the more flexible programmer-defined object types. The gulf has widened
considerably in Java, where objects are inherently dynamically allocated and require substantial per-
object space overhead.

While in some realms the lack of orthogonality between primitive types and objects is merely
pedagogically unsatisfying or requires inconvenient extra programming, in other realms, notably
numerical computing, it is of the very first importance. The inability of Java to provide high-
performance complex numbers has led to substantial pressure to extend the language definition.
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2 D. F. BACON

However, there are other types that would benefit from primitive-like efficiency as well: in
the numerical community, interval arithmetic types, fixed-pointed numbers, and extended precision
arithmetic; in networking, IP or ethernet addresses; in graphics, point classes; in computational biology,
nucleic acids and codons.

In this paper, we show how an object-oriented language can be defined without any primitive types
at all, and yet achieve the same efficiency as languages that make use of primitive types. Furthermore,
we show how this can be done in the context of Kava, a backward-compatible extension to Java that
compiles into standard Java class files.

We do this by adding value and enum types to Java, and by making extensive use of semantic
expansion [28], in which object types are replaced by primitive types at the intermediate-language level
by the JIT compiler. Essentially, semantic expansion is the old compiler trick of recognizing certain
library functions and treating them as built-in primitives. Therefore, translation of value and enum data
types from source code to bytecode does not actually optimize for speed; instead, it optimizes for ease
of semantic expansion because this will lead to order-of-magnitude speedups in the back-end.

In Kava, int is part of the package kava.lang.primitive, and is defined as a value object containing an
array of 32 enumerations objects of type bit, which can have the value zero or one. There is nothing
the programmer can do to observe that int is not a fully general object. And yet it can be implemented
as a 32-bit register value.

By making the lightweight class facility fully general, Kava provides a number of advantages:

1. Programmers can add new lightweight types and achieve performance comparable with that of
primitive data types;

2. The programming model is simplified because the distinction between primitives and objects has
been removed; and

3. The language design is simplified and more easily verifiable because a larger amount of the
language is in libraries, and there is no need for large numbers of rules for primitive types that
must be included in the language specification and verified on an ad-hoc basis.

We have used Jikes [6] to implement most of the source-to-bytecode conversions required by Kava.
We are beginning to implement the virtual machine transformations in the Jalapeño Java Virtual
Machine [4]. We are presenting this work in an early form in the hopes of both getting useful feedback
from the Java Grande community and of influencing the Java Grande proposals for lightweight classes.

The paper is organized as follows: Section 2 describes the Kava language by example, and shows
how some of the predefined types of Java can be defined. Section 3 describes how Kava is translated
into standard Java bytecodes and implemented efficiently in the run-time system. Section 4 discusses
how well Kava meets the requirements of the Java Grande community. Section 5 discusses related
work, and is followed by our conclusions and plans for future work.

2. THE KAVA LANGUAGE

In this section we will describe Kava as an extension to the Java [11] programming language. We will
describe the additional facilities, and show how they can be used together to define more complex
types. Various subtleties must necessarily be omitted due to space constraints.
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2.1. Enumerations

In order to build up the other “primitive” data types like integers, it is necessary to be able both to
provide access to bit-level programming and to provide a way of iterating over collections of bits
without requiring the existence of an integer type in the language. Enumerations fulfill both of these
requirements.

Enumerations are of course familiar from many other programming languages. As will slowly
become apparent, what is different in our approach is our ability to treat them like any other objects.

An enumeration is a special kind of class which enumerates its possible values. For instance, the
declaration

enum color
�

red, green, blue �

defines an enumeration class with three values, named red, green, and blue.

It is always possible to name an enumeration value by its qualified name:

color d = color.blue;

If the enumeration values are used sufficiently often, the import static construct can be used to make
them globally visible (see Section 2.3).

Enumerations are ordered. They have no programmer-defined constructors, but the default
constructor initializes an enumeration reference to the first value of the enumeration.

2.1.1. Abstraction Over Enumerations

Enumerations are classes like any other, and may include methods, static variables, and so on. These
are defined after the enumeration values, as for example

enum day
�

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday;

public boolean weekend()
�

return this == Saturday � � this == Sunday; �
�

The only restrictions on enumerations are that they may not have instance variables, and they may
not be subclassed (they are final).

Enumerations also have a number of operators defined: the static operators first and last return the
first and last values, respectively, in the enumeration.

The prefix “+++” and “– – –” operators return the next and previous enumeration value, respectively.
The prefix and suffix “++” and “– –” operators advance the operand to the next or previous value,
respectively, like the analogous integer operators in Java. All of these successor and predecessor
operators wrap around, so that if day d is Sunday, +++d is equal to Monday.

The toString() method returns the name of the enumeration value as a string and the hashCode()
method returns an int that is dependent solely on the value of the enumeration instance.
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2.1.2. Iterating Over Enumerations

For each enumeration, Kava automatically defines an iterator class which is used to iterate over the
values of the enumeration. By way of example, to iterate over all of the days of the week and print
them out, one could use the following Kava code fragment:

for (day.iterator d; ?d; d++)
System.out.println("The day is " + *d);

The iterator class is a static inner class of the enumeration class day. The unary prefix expression
“?d” returns true if there are more values to inspect, and false otherwise. The unary prefix expression
“*d” returns the enumeration value that is the current value in the iteration. Finally, the unary postfix
expression “d++” advances to the iterator to the next value.

These operators can be defined by programmers for any Kava data type, as is described in
Section 2.10.2.

2.1.3. Enumeration-Based Arrays

In Kava, Arrays can be indexed by either enumerations or integers. An array that is indexed by an
enumeration is declared with the type of the enumeration that will be used as a subscript, as in:

int rating[color];

which defines rating as an array of three elements indexed by a value of the enumeration type color.
The elements are initialized by applying the default (zero-argument) constructor for integers, so the
array will be initialized to zeros.

Enumeration-indexed arrays never require dynamic checking of subscript bounds, since the only
possible subscripts are guaranteed to be members of the enumeration type.

The elements of the array are accessed or modified by using the subscripting operator, as in

int x = rating[red];
rating[blue]++;

Like integer-based arrays, enumeration-based arrays may have any number of dimensions. Initial
values may also be specified using curly braces. For instance, the array composite tells whether a
combination of colors is a composite color or not:

boolean composite[color][color] =� �
false, true, true � ,

�
true, false, true � ,

�
true, true, false � � ;

2.2. Operator Overloading

In Kava, there are no “primitive” types. Therefore, a general operator overloading facility is necessary
so that the conventional prefix, postfix, and infix operators can be defined. Kava’s operator overloading
facility follows the same type rules as other method overloading.
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Operators are defined using a syntax that mimics their use, with the keyword this standing in for the
argument that represents the this operand in the use of the operator. The operator definition syntax is
shown in the following operator for the day class shown above:

public day this + int that
�

return (day) ((((int) this) + that) % 7); �
This code fragment defines a binary “+” operator which takes a day of the week and adds an integer
number of days to it, returning the resulting day of the week.

Operator precedence is fixed, following the existing precedence conventions of Java.

2.3. Import Static

Kava includes the import static construct suggested by Steele [24]. The import static construct is like
the standard import construct, except that it can only be applied to a class. It causes all of the members
of that class to become visible in the outermost scope (provided that there are no name space conflicts).

When import static is applied to enumeration types, it causes their enumeration values to become
globally visible.

2.4. Putting it Together: Boolean

The three new Kava language facilities we have described so far, namely enumerations, operator
overloading, and enumeration-based arrays, are enough to define the “primitive” type boolean as shown
in Figure 1.

Since a boolean has only two possible values and can not be subclassed, it can be represented without
a class pointer or any other run-time information, unless it is passed as or assigned to a more general
type. Therefore, boolean data types can be represented by a single bit.

Part of the details of how this works are due to the fact that enumerations are part of a more general
facility in Kava for defining value types, which will be discussed below.

We have shown the definitions for only two operations on boolean values: logical negation and
boolean conjunction. The negation operator, which is a unary prefix operator, returns not[this]. The
one-dimensional, enumeration-indexed array not is a truth-table for the boolean negation operator.

Similarly, the boolean conjunction operator “&” is defined using a two-dimensional boolean-indexed
array, indexed by this and the parameter that.

The other operators are defined in a similar manner — and that’s all there is to it!
The only refinement is that to avoid having to write boolean.true and boolean.false, all Kava

programs implicitly perform import static kava.lang.boolean.

2.5. Values

Values are first-class immutable objects.
When they are small, values can be stored in a register; when they are large, they can be copied

by reference. This makes operations on values extremely efficient, and programmers should strive to
maximize their use of values.

All instance variables of values must themselves be values or arrays of values. The instance variables
of a value are all implicitly final.
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enum boolean
�

false, true;

public boolean ! this
�

return not[this]; �
public boolean this & boolean that

�
return and[this][that]; �

public boolean this � boolean that
�

return or [this][that]; �
public static final boolean not[boolean] =

�
true, false � ;

public static final boolean and[boolean][boolean] =
� �

false, false � ,
�

false, true � � ;
public static final boolean or [boolean][boolean] =

� �
false, true � ,

�
true , true � � ;

// Similarly for other operators....
�

Figure 1. Use of enumerations, operator overloading, and arrays of enumerations to define the boolean type.

Values may only be distinguished by their contents, not by their identity. The == operator, when
applied to values, returns true if and only if the contained values are equal. The hashCode() method
returns an integer that depends solely upon the contained variables.

Since values have no storage identity or mutability, they may not be synchronized and may not have
finalizer methods. The synchronization methods wait(), notify(), and notifyAll() do not apply to values,
and the synchronized keyword may not be applied to value methods.

All values are instances of the abstract class Value.
Enumerations are considered a special kind of value, and are instances of an abstract class Enum

which is a subclass of Value. The relationship between enumerations, values, and objects is explained
in detail in Section 2.7.

Values may be subclassed, but will generally not be optimized as highly if they are not final.
A good example of a value class is the complex class as shown in Figure 2. Note this is only by way

of example; a real complex class requires extra checks to handle proper rounding, over- and under-flow,
etc.

Values may never be observed in a partially initialized state. To this end, the this pointer and the
instance variables of a value may not be stored or passed as a parameter from a value constructor (if it
is necessary to register the newly created value with a directory, an initializer block may used, but the
value may not be changed within the initializer block).

On multiprocessors that are not sequentially consistent, the implementation may need to add
synchronization at the end of the constructor to ensure that values are never observed in a partially
initialized state [22].

Since there is no way to distinguish two references to equal values from two references to the
identical value in storage, the implementation has a great deal of flexibility in optimization. For large

Copyright c
�

2002 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2002; 14:1–22



KAVA 7

final value complex
�

public double re;
public double im;

public complex(double r, double i)
�

re = r; im = i; �
public complex this + complex that

�
return new complex(re+that.re, im+that.im); �

public complex this * complex that
�

double r = re*that.re - im*that.im;
double i = re*that.im + im*that.re;
return new complex(r,i);

�
// Similarly for other operators....

�

Figure 2. Partial definition of value class complex in Kava

value classes, interning techniques can be used automatically by the compiler to ensure that there is
never more than one instance of a given value in the system.

Small final value classes that fit in registers can be passed in an “unboxed” format, since they do not
need to carry their class pointer. The complex class defined above can be passed in two 64-bit floating
point registers.

Use of unboxed final value classes is a fundamental optimization. It allows the removal of memory
indirection in accessing the fields of a value, and means that composite values can be stored inline in
objects.

A value that is declared as a final class can be implemented without a class pointer, provided that the
value is “boxed” when it is assigned to a superclass.

Integers and other scalar types are defined as final value classes. Since they require no
synchronization information or class pointer, they can be stored in a single word which contains only
the 32 bits of the integer type.

2.5.1. Named Constructors

Operators on values typically return a new value as a result. But since the fields of a value can only be
modified in a constructor, this means that there may be many constructors with the same type signature.
Therefore, Kava allows for explicitly named constructors.

For example, we might want two different complex constructors that each take only one double
value, in which case we could add these two constructors to the class defined above:
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public complex(double r)
�

re = r; im = 0.0;
�
public complex..imaginary(double i)

�
re = 0.0; im = i;

�
The second form is a named constructor, and operates exactly like other constructors. It is invoked

as follows:

complex c = new complex..imaginary(1.0);

The double-dot notation serves to distinguish named constructors from inner class constructors.

2.6. Putting it Together: Unsigned Byte

Figure 3 shows how enumerations, values, and constructor functions can be combined to define an
8-bit unsigned integer data type, ubyte.

We assume that a bit data type has already been defined; like boolean it is a two-valued enumeration,
but in addition to logic operators it also supports relational and arithmetic operators.

We begin by defining byteindex, an enumeration type with eight values that is used to index the bits
of the byte.

The ubyte type is a final value, indicating that it will not change after initialization and that the type
will not be subclassed.

The data field of ubyte is an enumeration-indexed, fixed-size array. This allows the data field to
by stored inline in the object, and since it is a final value, there is no need for a class pointer or any
synchronization information. Therefore, the object can be represented inline as an eight-bit object
(unless it is cast to Value or Instance, in which case it is boxed).

The less-than operator shows how a boolean operator is defined: it iterates over the bits of the byte,
from highest to lowest, applying the bit-wise less-than operator.

The complement operator returns a new value which is the complement of the unary argument; since
values may not be modified once they have been created, it uses the named constructor complement to
build the new value and return it.

The binary addition operator performs unsigned addition using the sum() and carry() functions of
the bit class. In hardware terms, this is a description of a ripple-carry adder, and could be synthesized
as such with a design compiler capable of recognizing the idiom.

Note that the entire ubyte data type has been defined without any reference to int. It only uses
previously defined enumeration types, and arrays of enumeration types, and the ability to iterate over
those arrays.

2.7. The Class Hierarchy

As we have seen, in Kava there are three kinds of classes: objects, values, and enumerations. Objects
are essentially the same as objects in Java. Values are read-only class instances whose fields must
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enum byteindex
�

b0,b1,b2,b3,b4,b5,b6,b7 � ;

final value ubyte
�

private bit data[byteindex];

public boolean this < ubyte b
�

for (byteindex.iterator x = byteindex.last; ?x; x– –)
if (data[*x] != b.data[*x])

return data[*x] < b.data[*x];
return false;

�
public ubyte ˜ this

�
return new ubyte..complement(this); �

private ubyte..complement(ubyte b)
�

for (byteindex.iterator x; ?x; x++)
data[*x] = ˜ b.data[*x];

�
public ubyte this + ubyte that

�
return new ubyte..sum(this,that); �

private ubyte..sum(ubyte a, ubyte b)�
bit c;

for (byteindex.iterator x; ?x; x++)
�

data[*x] = c.sum(a.data[*x], b.data[*x]);
c = c.carry(a.data[*x], b.data[*x]);

�
�
public ubyte this >> byteindex s

�
return new ubyte..shiftr(this, s); �

private ubyte..shiftr(ubyte a, byteindex s)
�

for (byteindex.iterator xd, xs = s; ?xs; xs++)
data[* xd++] = a.data[*xs];

�
// Similarly for other operators....

�

Figure 3. Definition of an unsigned byte type that uses only enumerations.
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Figure 4. The top of the class hierarchy in Kava.

themselves be values or arrays of values and may not be modified outside of the class constructor.
Enumerations are a special kind of value whose domain is explicitly enumerated by the programmer.

These three kinds of objects are related in an inheritance hierarchy as shown in Figure 4. Instance,
Value, and Enum are all abstract classes. Object is a concrete class for compatibility with Java.
Enumerations implicitly extend Enum, values implicitly extend Value, classes implicitly extend Object.

Interfaces by default extend Instance. However, interfaces may extend any of these four abstract
classes, in which case the interface is restricted to classes that implement the specified class type. This
is in contrast to Java, where interfaces only extend interfaces.

A class or interface may not implement both Object and Value.

2.8. Bound and Optional References

In Java, an object variable can either be a reference to an object or null. With Kava, since we wish to
have a uniform object semantics, and since we wish to be able to implement small objects like boolean
efficiently, we can not admit the possibility of a null value for every object, since it would require at
least an additional bit.

Therefore, we borrow from C++ the notion of two different types of references, one of which is
always known to refer to an object, and one of which may refer to an object or be null. The former are
called bound references, while the latter are called optional references.

For example, the statement

foo x;
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defines x to be a bound reference to an object of type foo. Any attempt to assign null to x is either a
compile- or run-time error.

For variables other than local variables (that require definite assignment), the above declaration is
equivalent to initialization with the zero-argument constructor, as in:

foo x = new foo();

An optional reference denotes either an instance of a class or null. An optional reference is declared
with the @ modifier, as in:

@foo x = null;
x = new foo();

The default value for an optional reference is null. Assignment-compatible references, bound and
optional, may be assigned to each other. If an optional reference is assigned to a bound reference, a
check is inserted to ensure that it is not null, and if it is, a NullPointerException is thrown.

Unlike C++, in Kava objects are always heap-allocated by default, unless the compiler can determine
that this is not necessary. Of course, the most important instance where heap allocation is not necessary
is when the object is a final value or enumeration type, which can be stored inline in the object.

Because of the semantics of references, the declaration

int x;

declares x as a bound reference to an instance of type int. The null constructor is implicitly invoked,
which returns the integer that represents 0. So the above declaration is equivalent to both of the
following statements:

int x = new int();
int x = 0;

Therefore, integers have a semantics that is consistent with the object model of the language, but can
be represented in a space efficient manner. If the compiler implements the operations on integers like
“+” using the native instructions of the underlying machine, the same run-time efficiency is obtained
as well.

Java makes it possible to examine objects before they have been initialized, particularly in the case
of static class initializers (which may be mutually inter-dependent). Therefore, every Kava class has a
default constructor for bound values which initializes the fields to their defaults (either null for optional
references or the value of the default bound constructor for bound references). Bound values are
implicitly initialized to this value as soon as they are created, even if there is a user-supplied initial
value which will immediately overwrite it. In the event that the compiler can prove that the default
initial value is never visible, the invocation of the default bound constructor can be eliminated.

2.8.1. Arrays of Bound and Optional References

Since there are different types of references, there are different types of arrays depending on the type
of reference that they contain.

Arrays of bound and optional references can not be assigned to each other. Consider the following
example:
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foo x[ ] = new foo[10]; // x is a bound array
foo @y[ ] = x; // y is an optional array
y[0] = null; // Now x[0] is not bound

Therefore, the assignment of x to y is illegal in Kava, and the functions toBound() and toOptional() must
be applied to arrays to convert them between their bound and optional types. Note that these operations
copy the arrays to prevent harmful aliasing.

2.8.2. Compatibility Issues

Ideally in Kava, all variables would be bound references by default. However, this is incompatible with
Java, in which primitives always behave like bound references and user-defined classes are always
optional references. For compatibility, we adopt a non-uniform approach in which values are bound
references by default but can be explicitly specified to be optional, and vice-versa for all other types.

The modifier bound is provided in order to specify that a non-value variable is a bound reference
rather than an optional reference. In the long term, this modifier can be deprecated and eventually
removed, and programmers can migrate to a uniform syntax.

2.9. Details of Operator Overloading

So far we have only described operator overloading in its basic form. However, additional features are
required to allow the creation of types with the richness of Java’s primitive types. These features are
described here.

2.9.1. Assignment Operators

Normally, operators return a result and optionally update their operands. But when operators are
applied to values, the values themselves can not be modified. For instance if x=1, then ++x does not
change the value of 1, but changes x so that its new value is 2.

By contrast, assignment operators allow the reference of the operand to be replaced by the result
of the operator. In Kava, the definition of an overloaded operator like “+” automatically allows the
corresponding assignment operator “+=” to be used as long as the left-hand side of the expression is an
object reference.

Two new prefix operators “+++” and “– – –” are added to Kava. They are used to define prefix
expression operators that return the “next” and “previous” values of a type, respectively. If these
operators are defined by the programmer, then the prefix and postfix increment and decrement
assignment operators (“++” and “– –”) are automatically defined.

For non-value types, the default assignment operator definitions can be overridden. For instance, the
programmer can define a method “+” and another method “+=”, which can be useful, for example,
when defining array operators where it is desirable to perform an update in place instead of generating
an entirely new array.
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2.9.2. Overloading of Assignment

In Kava, the assignment operator “=” can be overloaded. However, since the assignment operator is
used to initialize variables, it can not simply be a method of its first argument, since this first argument
would often be uninitialized. Instead, assignment operators must be declared as static methods. For
example

public static Foo this = int that
�

return new Foo(that); �

which can then be used as follows:

Foo x = 666;

The nullary assignment operator can also be overloaded, as in:

public static Foo this =
�

return new Foo(0); �

The nullary assignment operator is invoked when a bound reference is declared but not explicitly
initialized:

bound Foo y;

2.9.3. Cast Operators

Kava includes both implicit and explicit user-defined cast operators, as shown in these definitions from
the class ubyte:

public (bit) this
�

return data[b0]; �
public implicit (uint) this

�
bit ival[wordindex];
wordindex w;
for (byteindex.iterator b; ?b; b++)

ival[w++] = data[*b];
return new int(ival);

�

In this example, conversion from ubyte to bit is a narrowing conversion, so it has been defined as an
explicit cast (the default), while the conversion from ubyte to uint is a widening conversion in which
no information is lost, so it is declared as an implicit cast.

Implicit casts are restricted as follows: the compiler will only invoke a single implicit cast for a given
expression; and both programmer-defined implicit casts and the implicit casts made possible by casting
up the class hierarchy must impose a DAG structure on the class hierarchy.

The rules for method invocation resolution are unchanged, except that method invocation conversion
is defined to be either widening reference conversion or implicit casting, instead of widening reference
conversion or widening primitive conversion.
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2.10. Additional Operators

Kava includes a number of new operators that have no defined meaning in Java, but are included to
support the creation of various types of data abstractions. These include the next “+++” and previous
“– – –” operators described in Section 2.9.1, as well as those described below.

2.10.1. Boolean Operators

Since Kava provides for abstraction all the way down to the bit level, and since nand and nor gates are
fundamental logic operations that are used in building up computing devices out of bit signals, binary
operators “!&” (nand) and “!|” (nor) are provided and should be used to define these logical functions
for objects that support bit-level abstractions.

2.10.2. Iterators and Ranges

The binary and ternary infix operator “::” is provided and should be used to construct ranges, such as
“1::100”, meaning elements 1 to 100 inclusive, and “1::100::2”, meaning every second element from
1 to 100. An inner value type named range is defined for every enumeration type, along with a binary
“::” operator that constructs a range.

Iterators are used to iterate over a domain, which can be specified by a range. If it makes sense to
do so, include a constructor for the iterator type which is initialized with a range value. In addition,
the unary prefix operator “?” is provided and should be used to enquire if there are more instances to
process, and the unary prefix operator “*” is provided and should be used to obtain the current value of
the iterator.

When combined in a thoughtful manner, these operators can provide an elegant way to iterate over
the objects of any type, as with the predefined iterator and range types of the enumeration classes:

for (day.iterator d = Monday::Friday; ?d; d++)
System.out.println(*d + " is a weekday.");

2.10.3. Container Classes

We have already shown the use of the suffix “[ ]” operator, which takes an arbitrary number of comma-
separated arguments (including zero) and is intended for defining element accessor functions for
collections. It can be used not only for array subscripts but for any kind of lookup structure, for instance
a hash table.

The unary prefix operator “#” is provided and should be used to obtain the size of a collection.
Because Java does not have generalized l-values, the operator [ ]= is provided so that writers of

array-like classes can provide modifier as well as accessor functions, as in the following methods from
a StringBuffer class:

char this [ int i ]
�

return array[i]; �
char this [ int i ] = char c

�
array[i] = c; return c; �
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This requires special support from the parser to resolve ambiguity between the use of the subscript
operator followed by the assignment operator, and the subscript/assignment operator.

We do not currently have a good solution to defining compound overloaded operators like “+=” for
array updates. This may simply be a limitation of a language without l-value expressions.

2.10.4. Tuple Formers

The infix operator “[ ]” takes one or more comma-separated arguments and is provided to support the
creation of new scalar types that are composites of existing types. For instance, the statements

complex c = [3.5, 2.5];
ipaddress loopback = [ClassA, 127, 0, 0, 1];

initialize a complex value consisting of two doubles, and an ipaddress value consisting of four bytes.

2.11. Value Arrays

So far, the arrays we have shown that are elements of values are both private and only accessed locally.
However, such arrays may be public, or may be passed to functions. In that event, since they are
components of a value, they may not be modified. Value arrays allow such arrays to be accessed and
operated upon in a limited (read-only) fashion.

A value array is declared with the modifier value, and can only be assigned from a static initializer
or from another value array of the same type, or from an array which is a constructed instance variable
of a value. Array members of Value classes are implicitly declared as value arrays.

For the declaration of the value type pa:

value pa
�

int a[ ] =
�

0, 1 � ;
�

here are some examples of legal and illegal uses of value arrays:

pa pv = new pa();
value int[ ] x = pa.a;
int i = x[0];
x[0] = 1; // Illegal - modifies value
int[ ] y = x; // Illegal - y not a value

The array element pa.a can be assigned to the value array x, and can be accessed, but assigning to an
element of the value array or casting it to a non-value array is not allowed.

Note that array elements of values are not value arrays until the value has been constructed, because
during that time the array may change. The general restrictions on passing references to partially
constructed values (see Section 2.5) prevent the array from being passed as a parameter from within
the constructor.

Value arrays and standard arrays are mutually incompatible and must be explicitly converted. A
standard array may not be assigned to a value array because a value array includes a promise that its
component values are immutable; a value array may not be assigned to a standard array because this
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would allow the elements of the value array to be modified. For every array class there are conversion
functions:

int [ ] x =
�

0, 1 � ;
value int[ ] y = x.toValue();
int[ ] z = y.toMutable();

These conversion functions should be applied sparingly, because they copy the array to prevent illegal
aliasing.

For value arrays, the function toOptional() (described in Section 2.8.1) applied to a bound array
has no run-time cost, since the resulting array will still have the value property and therefore not be
modifiable. Similarly, applying toBound() to an optional value array need only check for null elements;
if there are none, then the conversion is implemented by aliasing, otherwise an exception is thrown.

Note that value arrays are more restricted than const arrays in C++, since C++ allows arrays to be
cast from type int[ ] to type const int[ ]. This merely restricts the operations that can be performed via
the const reference to the array; but the array could continue to change via operations performed on
the non-const reference to the array. Such a semantics is not acceptable in Kava, since it is not a pure
value semantics.

2.12. Literals

Once it is possible to define primitive types within the language, an obvious question is: why not add
user-defined literals, providing only character and string literals corresponding to the input character
set?

While one could certainly do so, it is problematic in a Java-like language. The primary reason is that
Java does not perform type inference, so literals type themselves. In particular, a literal of type float
in Java requires the suffix “f” in order to be properly typed by the compiler. It does not seem either
practical or elegant to add an arbitrary number of such suffixes to the language.

2.13. JNI and Reflection

Any change to the Java language must handle both JNI and reflection. For JNI, we can simply provide
the existing interfaces for types in kava.lang.primitive, and pass the rest of the types in boxed format.
The decision of whether an additional unboxed format for complex numbers should be introduced can
be made orthogonally.

For reflection, we face the same problems as other extension proposals [2]: on the one hand, it is
desirable for the reflection to return an accurate expression of the source classes. On the other hand, it
is desirable to minimize the disruption to the existing interfaces. We expect to follow the lead of other
Java language extensions in our approach to this problem. From the point of view of reflection, Kava
in and of itself is a simpler language change than adding generics.
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3. COMPILING KAVA PROGRAMS

Our approach to implementing Kava is that we translate Kava into standard Java class files and
concentrate on making it easy for the JIT compiler to recognize idiomatic uses of classes. We then
rely on semantic expansion [28] to convert the appropriate classes into register-level quantities.

We have implemented most of the source-to-bytecode translation in Jikes [6], a Java-to-bytecode
compiler developed at IBM. We have also implemented a number of types in Kava, including unsigned
integers and IEEE floating point values. In future work we will combine the front-end translation in
Jikes and back-end semantic expansion in the Jalapeño Java Virtual Machine [4].

At a minimum, semantic expansion will be performed for all enum types and for all types in
kava.lang.primitive, which includes definitions for all of the Java primitive types.

The advantage of our approach is that it does not require any changes to the virtual machine
definition; therefore, Kava programs can be used experimentally (albeit slowly) on standard JVMs, and
developers can continue to use the very rich set of development environments and tools that manipulate
Java bytecodes.

The disadvantages are that without any semantic expansion, performance will be unacceptably slow,
semantic expansion in the JIT may prove expensive, and removing primitive types may introduce
significant amounts of extra lookup overhead into the compilation process.

We believe that these issues can be addressed. In this section we will describe our approach.
Ultimately, the test will be in the implementation.

3.1. Source to Bytecode Compilation

The first step in implementing Kava is to modify a source-to-bytecode compiler (like javac) to
recognize the Kava syntax and perform the appropriate translations. The main tasks are (1) expansion
of enum and value types, (2) operator overloading, and (3) performing or inserting additional checks.

Enumerations are represented in a manner similar to Bloch’s type-safe enum pattern for Java [1]:
static instances are created for each of the named enumeration values, and the constructor is made
private.

Values are represented as classes whose instance variables are all final. The bytecode compiler
generates methods that implement a value-based semantics for “==”, “!=”, hashCode(), and clone().
It checks that all instance variables are values or arrays of values, that the synchronized attribute is
not applied to any of the methods, and that the this pointer and instance variables are not made visible
within the constructor.

Operator overloading is performed with a straightforward mapping from operator syntax at the
source level to method call expressions at the bytecode level. The major difference is in accommodating
implicit casts, which replace the hardwired primitive widening conversions of Java. However, because
the combined implicit reference conversions and implicit casts must still form a DAG relationship, the
same rules are used to resolve ambiguities.

A variety of static safety checks are performed, including: that enumeration-based arrays are
subscripted only by variables of the appropriate enumeration type; that null is not assigned
to references; that assignment operators are not applied to elements of value arrays; and that
synchronization and address examination operations are not applied to value types.
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Safety checks that can not be performed at compile-time are also added, including: that
synchronization and address examination operations are not performed on interfaces or Instance
variables, and that pointers assigned to bound references are not null.

Some safety information must be encoded into class files. In particular: the index type of
enumeration-indexed arrays, and the value and bound attributes of declarations. All other safety checks
should be handled implicitly by the Java type system.

3.2. Front-End Semantic Expansion

Since Kava defines the integer plus operation as an iteration of bit-wise sums over two arrays of integer
bit objects, it would be extremely slow on virtual machines that do not perform the appropriate semantic
expansion. There is a tradeoff between a uniform approach which is secure because it relies on Java’s
type system for enforcement, and a less secure approach that performs more semantic expansion at the
class file level, removing work from the JIT compiler.

Our plan is to translate classes from kava.lang.primitive into their Java primitive type
equivalents during bytecode compilation, but to leave the rest of the semantic expansion process to
the JIT compiler. This will allow legacy Java code to run efficiently, but will still provide strong typing.

3.3. Back-End Semantic Expansion

The rest of the semantic expansion is performed by the back-end of the Java compiler, usually the JIT,
at the level of bytecode to intermediate-instruction translation.

The JIT compiler performs the semantic expansion that makes enumerations and small, final value
classes efficient. When a value class is loaded into the virtual machine, the JIT makes a decision as to
whether to represent it as an unboxed value (all enumerations are represented unboxed).

For unboxed values, the class methods are converted to static methods that take unboxed parameters,
and boxing and unboxing operations are added. Calls to the boxing and unboxing operations are
introduced at any up- or down-casts from or to the value class.

For values it is often necessary to perform multiple levels of unboxing. For instance, to fully unbox
the ubyte type from Figure 3, the JIT must examine the instance variable, which is an array of (unboxed)
enumerations. The enumerations can be represented using one bit each, so the array can be represented
using a byte variable in the JIT intermediate language. Since this is the only instance variable, the
unboxed ubyte object also occupies one byte.

The JIT compiler must also convert the operations on the multi-level unboxed objects. In the
case of ubyte, this means converting array element access and update into the appropriate shift-and-
mask operations, and performing a boxing operation if the entire array is returned as the value of an
expression.

Multi-level unboxing must also be performed when a value has multiple instance variables, in which
case the JIT tries to pack the instance variables into as few bytes, shorts, words, or double-words as
possible, while obeying the natural alignment of the component objects.
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4. JAVA GRANDE REQUIREMENTS

The Java Grande Numerics Working Group report [19] lists five major areas that require attention in
order for Java to become the language of choice for numerical computing. In this section, we examine
how Kava meets these various requirements.

The five areas are (1) complex arithmetic, (2) lightweight classes, (3) operator overloading, (4) use
of floating point hardware, and (5) multi-dimensional arrays.

Kava addresses the second and third requirements directly by adding lightweight classes and
operator overloading to the language. Complex arithmetic can then be added as a lightweight class with
overloaded operators, and can be compiled efficiently using the same semantic expansion techniques
for complex numbers used by Wu et al [28]. However, greater optimization is possible in Kava because
we can represent the target of a complex assignment in its semantically expanded form, rather than as
an object.

Dense multi-dimensional arrays are not directly addressed by Kava, although the operator
overloading facility does make it possible to implement them with one-dimensional Java arrays and
explicit subscript computation.

4.1. Lightweight Classes

The main contribution of Kava is its unique and fully general way of providing lightweight classes
(enumerations and values). We now compare the Kava approach to lightweight classes to the
corresponding requirements of the Java Grande NWG report.

As recommended by the report, we adopt an approach in which Kava is translated into standard Java
class files; no changes are required in the definition of the Java Virtual Machine [11].

However, Kava’s values are much more flexible than the NWG lightweight classes: in particular,
Kava value classes can

� be either final or non-final,
� have user-supplied default constructors,
� invoke super from their constructors,
� implement interfaces,
� be null (if declared with the “@” modifier),
� be cast to interfaces or to Instance or Value,
� have the instanceof operator applied to them.

With the exception of the first three items, these properties apply to Kava enum types as well.
Kava is defined so that the program can never tell the difference between a deep and a shallow copy

of a value; therefore, the implementation can choose whichever implementation of “=” is best suited.
For small objects, the implementation should use deep copy; for large objects, a pointer copy.

4.2. Storage Issues

For enum and final value classes, there is no need to store a class pointer in the object unless they are
upcast, in which case the runtime system must apply boxing transformations.

Copyright c
�

2002 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2002; 14:1–22



20 D. F. BACON

Once again, because Kava defines a pure semantics for values, they can always be stack-allocated.
For values whose assignment operator is implemented by deep copy, escape analysis is not required
when they are passed as parameters or returned as results. For values whose assignment operator is
implemented by pointer copy, if they are stack-allocated then they must be deep-copied when they are
assigned to non-local variables. Escape analysis can then be used to reduce or eliminate these deep
copies.

4.3. Operator Overloading

Since there are no primitive types in Kava, operator overloading is a requirement rather than a desirable
feature. Kava includes more overloading features (assignment operators, implicit and explicit casts)
than would otherwise be the case because it has to be able to fully support the functionality of primitive
types.

Kava’s overloading syntax is novel. It is designed so that the definition syntax matches the invocation
syntax, and avoids problems associated with multiple uses of a single operator (notably “++” and “- -”).
However, this is merely a syntactic choice and can easily be changed if it is unpalatable to the wider
user community.

Because the primitive types of Java are simply value types in Kava, it is possible to define a “+”
operator that applies to a double and a complex and returns a complex by making it an operator method
of double. While this does not solve the problem of how to dynamically add symmetric operators to
previously existing types, it is consistent with the way Java’s type rules are currently defined.

A more general solution, like multi-methods (or reverse operators as suggested by Gosling [10])
could be added, but we have attempted to minimize language changes.

5. RELATED WORK

We have already compared Kava to related proposals for adding lightweight objects to Java in Section 4,
and described how our work builds upon the work of Wu et al [28] for semantic expansion of complex
types added as standard classes to Java.

Titanium [29] includes immutable classes share many of the positive attributes of Kava value classes.
However, they are limited in a number of important respects: they are implicitly final, are not part of
the class hierarchy, and in pathological cases non-value semantics can be observed.

Darcy’s proposal for Borneo [8] share’s many of Kava’s features for defining value types and
operator overloading. Borneo is much more specifically and comprehensively oriented to the needs
of the numerical computing community, while Kava is much more general in its approach. The main
difference between Kava and both Titanium and Borneo is that Kava provides the facilities to define
primitive types from the bit level on up.

A number of other approaches to adding complex numbers to Java exist [3, 21] but they are much
narrower in scope than Kava.

Leroy [13] describes how unboxing can be applied to ML for floating point numbers and small
tuples and records. His work is more general in that he applies unboxing to polymorphic code, while
we require that data types be non-polymorphic in order to unbox them. His work is less general in
that he only addresses the unboxing optimization. In more recent work, Leroy [14] suggests that local
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unboxing based on dataflow analysis and the creation of inlined function preludes and postludes to
perform non-local unboxing can be as efficient as the type-based unboxing described in his previous
work.

Other work on unboxing also explores various tradeoffs in the design and implementation space
[18, 20, 23, 26].

With object-oriented programming languages, there has always been a distinction between
“primitive” or “built-in” and user-defined object types. Although every data type in Smalltalk, SELF,
and Cecil [9, 27, 5] is an object, there are special representations (like tagged integers) and it is not
possible to define new object types with the same efficiency.

Eiffel [15] provided an EXPANDED declaration modifier which allowed the programmer to specify
that a contained object should be stored directly in the object or stack frame, rather than included by
reference. In this manner, variants of class INTEGER could be defined with their own operations, which
only required one word of storage. However, Eiffel still is defined in terms of the familiar primitive
types and does not have the facilities for building up arbitrary primitive-scale types as in Kava.

This project began as an outgrowth of our work with the JavaTime group at U.C. Berkeley [30]. The
goals of that project were to enable the use of Java as a hardware design language using successive
refinement and (at lower levels) automatic synthesis. We began with a desire to provide the same bit-
level manipulation capabilities of hardware design languages like VHDL [12] and Verilog [17], while
providing object-oriented facilities of abstraction and inheritance.

These goals are the same ones that have motivated the design and implementation of System C [25]
by an industry consortium. System C is designed as a set of libraries for C++, and makes heavy use
of operator overloading. The advantage of this approach is that language compatibility with C++ is
retained; the disadvantage is that the features are neither as elegant nor as efficient as they are in Kava.

6. CONCLUSIONS

We have described the design of Kava, a backward-compatible dialect of Java that provides fully
general lightweight classes. The Kava object model is completely uniform; from the programmers
point of view, all types are objects. Primitive types can be defined within Kava, allowing far more of
the language semantics to be mechanically encoded in a verifiable form.

Kava can be executed efficiently because the compiler or JIT can treat the objects in a non-uniform
manner that is invisible to the programmer. The bytecode compiler translates Kava programs in a
manner that makes this transformation simple for the JIT to perform.

Kava makes it easy to add new highly efficient data types to the language at the library level.
We have shown that Kava meets many of the requirements of the Java Grande Numerics Working
Group requirements in a much more general way than previous proposals. We are working on an
implementation and hope to have code available for evaluation soon.

We have also shown how existing primitive types, like boolean and int can be defined in Kava. Does
this mean we are suggesting that Kava programs should be interpreting integer addition by operating on
enumerations down to the bit level? Of course not. Kava-aware JVMs will replace an integer addition
method call with an invocation of a machine-level 32-bit register addition.

So why define the primitive types in Kava? In the short term, it allows us to move more of the
language specification into an architecture-neutral executable format. If there is any doubt as to whether
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some operation is implemented correctly, the results using the semantically expanded code that calls
native instructions can be compared with the results of bit-level interpretation.

In the longer term, the creation of executable specifications for primitive operations opens up new
research areas. Can they be coupled with a description of the operations of the available hardware
instruction set, for which a compiler-compiler then generates the translation to machine instructions
automatically? Even more exciting, could the executable specifications of primitives be synthesized
directly into hardware or firmware, allowing dynamic modification of the hardware instruction set? As
more and more computation takes place on embedded CPUs and co-processors, we believe attacking
such problems will become increasingly important.
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