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ABSTRACT
Many concurrent garbage collection (GC) algorithms have been
devised, but few have been implemented and evaluated, partic-
ularly for the Java programming language. Sapphire is an al-
gorithm we have devised for concurrent copying GC. Sapphire
stresses minimizing the amount of time any given application
thread may need to block to support the collector. In particu-
lar, Sapphire is intended to work well in the presence of a large
number of application threads, on small- to medium-scale shared
memory multiprocessors. A specific problem that Sapphire ad-
dresses is not stopping all threads while thread stacks are ad-
justed to account for copied objects (in GC parlance, the “flip” to
the new copies).

Sapphire extends previous algorithms, and is most closely re-
lated to replicating copying collection, a GC technique in which
application threads observe and update primarily the old copies
of objects [13]. The key innovations of Sapphire are: (1) the
ability to “flip” one thread at a time (changing the thread’s view
from the old copies of objects to the new copies), as opposed to
needing to stop all threads and flip them at the same time; and
(2) avoiding a read barrier.

1. OVERVIEW
Sapphire is a new concurrent copying GC algorithm, designed
for type-safe heap-allocating languages. It aims to minimize
the time an application thread is blocked during collection. A
specific advance Sapphire makes over prior algorithms is incre-
mental “flipping” of threads. Previous algorithms include a step
during which all application threads are stopped, their stacks tra-
versed, and pointers in the stacks redirected from old copies of
objects to new copies. In systems that might have many threads,
we anticipate that this pause will be unacceptable. Sapphire also
avoids using a read barrier.

The applications to which Sapphire is targeted are multipro-
cessor server programs. These might have a large number of
threads, each handling a network session, and a considerable
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amount of shared state in main memory. We are interested in
avoiding significant pauses introduced by GC that might be per-
ceptible in variably poor response time. We aimed for an al-
gorithm that will scale to the number of processors for which
shared memory is feasible. Sapphire introduces no multiproces-
sor memory consistency issues, such as the need for additional
memory-fence instructions, etc. (see Appendix E).

We organize this paper as follows. This overview section con-
cludes with some useful definitions. Section 2 is the heart of
the presentation, discussing the phases of collection and cover-
ing the innovations in detail. Section 3 considers how we can
combine various of the phases, separated in Section 2 for clarity
of exposition. Section 4 relates Sapphire to prior work. Section
5 describes our prototype implementation and measurement re-
sults, and concludes. Several appendices consider more specific
issues not essential to the primary presentation.

Memory Regions: We define several distinct memory regions.
A region may contain slots (memory locations that may contain
pointers) as well as non-slot data.1 We assume that all slots in a
region can be found without ambiguity.

� U - A region of the heap (i.e., potentially shared among
all threads) whose objects are not subject to reclamation
in a particular invocation of the collector. U stands for
uncollected. For convenience we also include in U all non-
thread-specific slots not contained in objects.

� C - A region of the heap (potentially shared among all
threads) whose objects are subject to reclamation in a par-
ticular invocation of the collector. C stands for collected.
C is further divided into:

– O - Old space: Copies of C objects existing when the
collector invocation started.

– N - New space: New copies of objects surviving the
collection.

C consists only of objects, i.e., it has no “bare” slots, un-
like U, which may contain slots not in objects.

� S - Stack: Each thread has a separate stack, private to that
thread. The S regions contain slots, but no objects, i.e.,
there may be no pointers from heap objects into stacks.2

For convenience we include in S other thread-local slots,
such as those corresponding to machine registers holding
references.

1Our terminology should be familiar to most readers, but we pro-
vide a glossary in an appendix.
2This still allows purely local objects to be allocated into stacks,
so long as references to them cannot “escape” into the heap.



Which objects are collected and not (U and C above) is an arbi-
trary choice for Sapphire. One might use generational or ma-
ture object space (Train) [9] schemes, for example. Sapphire
can “piggy-back” some of its needs on a generational collector’s
write barrier; i.e., Sapphire will need to find pointers from U to C,
and a data structure such as a remembered set will save scanning
U.

One difference between Sapphire and replicating collection is
that we assume that new objects are allocated in U, not C. Note
that this helps guarantee termination of marking and copying,
since C is not growing. This decision does impose write barrier
costs on newly created objects, since Sapphire needs to process
their slots that point to C objects.

Sapphire is a purely copying collector, and thus is exact (also
called accurate), as opposed to conservative or using ambiguous
roots. Perhaps this is obvious, but in Sapphire the collector runs
concurrently with all the mutator threads.

2. THE SAPPHIRE ALGORITHM
Sapphire splits into two major groups of phases. The first phases,
which we call Mark-and-Copy, (a) determine which O objects are
reachable from root slots in the U and S regions and (b) construct
copies of the reachable O objects in N. During the Mark-and-
Copy phases mutators read and update only the O copies of ob-
jects. The O and N copies of any given reachable object are kept
loosely synchronized: any changes made by a mutator thread to
O copies between two synchronization points will be propagated
to the N copies before passing the second synchronization point.
This takes advantage of the Java Virtual Machine specification’s
memory synchronization rules [12].3 The point is that updates
to both copies need not be made atomically and simultaneously.
If all mutator threads are at synchronization points, then the O
and N copies will be consistent with one another once we are
in collection phases in which mutators can observe both O and
N copies. We call this property dynamic consistency between O
and N space.

The second group of phases, called Flip, is concerned with
flipping pointers in S and U so that they point to N space and not
O space. In Sapphire this group of phases uses a write barrier
only (i.e., no read barrier). Sapphire allows unflipped threads to
access both O and N copies of objects, even of the same object.
Previous concurrent copying collectors either redirect accesses
of O objects to their N copies (using a read barrier), or insure
that all accesses are to O objects (and flip all at once). Incre-
mental flipping plus having no read barrier admits the possibility
of access to both O and N copies at the same time. This possi-
bility requires slightly tighter synchronization of updates to both
copies.

It also affects pointer equality comparisons (== in Java), since
one must be able to respond that pointers to the O and N copies
of the same object are equal from the viewpoint of the Java pro-
grammer; the equality comparison needed is similar to the im-
plementation of eq by Brooks [5]. It is important to note that
(a) comparisons with the constant null need not do any extra
work, and (b) neither do comparisons of two variables that are
bit-wise equal or where either variable is null. Here is pseudo-
code for == (which would obviously be inlined, and optimized
for the case where one of the arguments is statically 0 (null)); it
calls flip-pointer-equal for the more complicated case:

3We assume programs without data races. We describe how to
handle Java volatile variables in an appendix.

// Pointer Comparison
pointer-equal(p, q) {
if (p == q) return true;
if (q == 0) return false;
if (p == 0) return false;
return flip-pointer-equal(p, q);
}

The flip-pointer-equal call does involve what is effec-
tively a read barrier; however, we claim this is a rare operation.

2.1 The Mark-and-Copy Phases:
Achieving Dynamic Consistency

The specific phases are: Mark, Allocate, and Copy. Note that
in practice a number of these phases can be combined and per-
formed together, as sketched later. However, the algorithmic ex-
planations are clearer if we separate the phases.

A useful way to understand these phases is in terms of the
traditional tri-color marking rules (see, e.g., [11]). Under these
rules, each slot and object is considered to be black, meaning
marked and scanned, gray, meaning marked but not necessarily
scanned, or white, meaning not marked. Slots contained within
an object have the same color as the object. A single rule restricts
colors: a black slot may not point to a white object. Sapphire
treats S slots as gray, so they may contain pointers to objects of
any color. This implies that storing a reference in a stack slot
does not require any work to enforce the color rule. Updates of
shared memory (globals and heap objects) do require work, in
the form of a write barrier.

Initially we consider all existing objects and slots to be white.
As collection proceeds, objects progress in color from white, to
gray, to black. In Sapphire, black objects are never turned back
to gray and rescanned. The goal of the Mark phases of the col-
lector is to color every reachable C object black. Further, any
object unreachable when marking begins will remain white, and
the collector will reclaim it eventually. Newly allocated objects
are considered to be black.

Except for the dynamic consistency aspects, the Mark-and-
Copy phases are essentially a concurrent marking algorithm fol-
lowed by copying of the marked objects. For this reason, one can
easily extend the algorithm to treat such features as weak refer-
ences and finalization. Since they are orthogonal to the focus of
this paper, we do not discuss them further.

Mark Phase: This has three steps: Pre-Mark, to install the
Mark Phase write barrier, Root-Mark, to handle non-stack roots,
and Heap/Stack-Mark, to complete marking. Pre-Mark installs
the write barrier, written here in C-like pseudo-code:4

// Mark Phase Write Barrier
// this is only for pointer stores
// the update is *p = q
// the p slot may be in U or O
// the q object may be in U or O
mark-phase-write(p, q) {
*p = q;
mark-write-barrier(q);

}
mark-write-barrier(q) {
if (old(q) && !marked(q)) {

4Note that different phases of the collector employ different write
barriers, so we need some way to change the mutator’s write bar-
rier as we go, probably either by changing a single global vari-
able read by all the threads, or by changing individual per-thread
variables within each thread.



// old && !marked means "white"
enqueue-object(q);
// enqueue object for collector
// to mark later

} }

Notice that mutators do not perform any marking directly, but
rather enqueue objects for the collector to mark. It is useful
to consider enqueued objects as being implicitly gray; then this
write barrier enforces the no-black-points-to-white rule.

Why enqueue rather than having mutators mark directly? Ul-
timately, we will combine marking with copying, and the mark
step will then involve allocating space for a new copy of the ob-
ject. Having mutators do this allocation leads to a synchroniza-
tion bottleneck. We avoid this bottleneck by having the collector
do the allocation and copying. Further, each mutator has its own
queue, so enqueuing has no synchronization overhead. When the
collector scans a mutator’s stack, it also empties that mutator’s
queue, by threading it onto a single collector input queue.

The Root-Mark step iterates through U slots and “grays” any
white C objects referred to by those slots, usingmark-write-barrier.
We consider this to be “blackening” the U slots. Note that as of
this step, stores into newly allocated objects, including initializ-
ing stores, invoke the mark-write-barrier, and thus new
objects are treated as black. Since the collector is invoking the
write barrier, the relevant objects appear immediately on the col-
lector’s input queue.

While one could scan the U region to find the relevant slots,
more likely one uses the remembered set data structure built by
a generational write barrier, to locate the relevant slots more effi-
ciently [11].

In the Heap/Stack Mark step, the collector works from its
input queue, a set of explicitly gray (marked) objects, and the
thread stacks. For each enqueued object, the collector checks if
the object is already marked. If it is, the collector discards the
queue entry; otherwise, it marks the object and enters it in the
explicit gray set for scanning. For each explicitly gray object,
its slots are blackened (using mark-write-barrier on the
slots’ referents), and then the object itself is considered black.
This is represented by the fact that the object is marked but not in
the explicit gray set. The collector will repeatedly proceed until
the input queue and the explicit gray set are both empty.

Note that an object may be enqueued for marking more than
once, by the same or different mutator threads; however, even-
tually, the collector will mark the object and it will no longer be
enqueued by mutators.

Heap/Stack Mark also involves finding S pointers to O ob-
jects. To scan a mutator thread’s stack, the collector briefly stops
the mutator thread at a safe point (about which more later), and
scans the thread’s stack (and registers) for references to white
O objects, invoking the Mark Phase write barrier on each ref-
erence. (One might use stack barriers to bound stack scanning
pauses [6].) While the thread is stopped, the collector moves the
thread’s enqueued objects to the collector’s queue (using just a
few pointer updates to grab the queue all at once). The collector
resumes the thread and then processes its input queue and gray
set until they are empty again.

While it is easy to scan an individual thread’s stack for pointers
to white objects, it is harder to see how to reach the situation of
having no pointers to white objects in any thread stack. The key
problem is that even after a thread’s stack has been scanned, the
thread can enter more white pointers into its stack, since there
is no read barrier preventing that from happening. The key fact

needed to understand the solution is that threads cannot write
white references into heap objects, because the write barrier will
(implicitly) gray the white referent first.

Suppose that between a certain time t1 and a later time t2 we
have scanned each thread’s stack, none of the thread stacks had
any white pointers, none of the threads had any enqueued objects,
and the collector’s input queue and gray set have been empty the
whole time. We claim that there are now no white pointers in
S or in marked O objects, and thus that marking is complete.
We observe that a thread can obtain a white pointer only from a
(reachable) gray or white object. There were no objects that were
gray between t1 and t2, so a thread could obtain a white pointer
only from a white object, and the thread must have had a pointer
to that object already. But if the thread had any white pointers, it
discarded them by the time its stack was scanned, and thus cannot
have obtained any white pointers since then. This applies to all
threads, so the thread stacks cannot contain any white pointers.

The argument concerning reachable O objects is straightfor-
ward. The O objects initially referred to by U slots were all added
to the gray set and have been processed, and no additional ones
have been added by the write barrier since t1. A chain of reacha-
bility from a black slot to a white object must pass through a gray
object (because of the tri-color invariant), and since there are no
gray objects, all reachable O objects have been marked.

Here are two potentially useful improvements for stack scan-
ning. First, threads that have been suspended continuously since
their last scan in this mark phase need not be rescanned.5 Sec-
ond, if we use stack barriers [6], we can avoid rescanning old
frames that have not been re-entered by a thread since we last
scanned its stack.

Because of the possible and necessary separation of pointer
stores from their associated write barriers, stack scanning re-
quires that a thread be in a GC-consistent state, i.e., where every
heap store’s write barrier has been executed.

2.2 Allocation and Copying
The mark phases establish which O objects are reachable. Once
we determine the reachable O objects, we allocate an N copy
for each of them (Allocation Phase) and then copy the O copy’s
contents to the allocated N copy (Copy Phase).

Allocation Phase: Once all reachable O objects have been
marked, the collector allocates space for an N copy for each one
of them and sets the O copy’s forwarding pointer to refer to the
space reserved for the N copy. We then say the O copy is for-
warded to the N copy. Clearly the format of objects must be such
as to support a forwarding pointer while still allowing all normal
operations on the objects.6

If the collector saves a list of the object scanned in the mark
phase, then it can use that list to find the O copies. The forward-
ing pointer slot might serve for the list; if we combine phases

5This optimization may be important in the presence of large
numbers of threads, most of which are suspended for the short
term.
6This is different from a stop-the-world collector, which can
“clobber” part of the O object as long as the data is preserved in
the N copy. In Sapphire we can still clobber a header word, but
the mutator will have to follow the forwarding pointer whenever
it needs the moved information. Also, installing the forward-
ing information must be done carefully, so that mutator opera-
tions can proceed at any time. This is fairly easy if the collector
uses compare-and-swap, retrying as necessary, to install the for-
warding address. We “overload” our forwarding on a “thin lock”
scheme [2].



(discussed later), then we do not need an explicit list.
Our algorithm also requires us to be able to find the O copy of

an object from its N copy. We do this using a hash table, which
we discard after collection. If we had instead used back pointers
from N copies to O copies, we would have needed to remove
them, involving an extra pass over the N copies.

Copy Phase: The Copy Phase needs a new write barrier, to
maintain (dynamic) consistency between the O and N copies of
objects; the Pre-Copy step establishes that write barrier, shown
in this pseudo-code:

// Copy Phase Write Barrier:
// handle ptrs, non-ptrs differently
// p->f = q is the desired update
// objects p, q may be in U or O
copy-write (p, f, q) {
p->f = q; copy-write-barrier(p, f, q);}

copy-write-barrier(p, f, q) {
if (forwarded(p)) {

pp = forward(p);
qq = forward(q); // qq==q for non-ptrs
pp->f = qq; // wrote O first, then N

} }
forward(p) {
return (forwarded(p) ?

forwarding-address(p) : p); }

Unlike most copying collector write barriers, this write barrier
applies to heap writes of non-pointer values as well as of point-
ers. It does the same work as replicating copying collection, but
with tighter synchronization. It requires work regardless of the
generational relationship of the objects when storing a pointer.
Finally, note that a pointer in an N copy always points to U or
N space, not to O space; we maintain the invariant that N copies
never refer to O copies.

The Copy step copies the contents of each black O object into
its corresponding allocated N copy. If a datum copied is a pointer
to an O object, it is first adjusted to point to the N copy of the
object.

A tricky thing about this phase is that, as the collector copies
object contents, mutators may concurrently be updating the ob-
jects. While copy-write-barrier will cause the mutators
to propagate their updates of O copies to the N copies, the mu-
tators can get into a race with the collector. Since we prefer that
the mutator write barrier not be any slower or more complex than
it already is, we place the burden of overcoming this race upon
the collector, as shown in this pseudo-code:

// Collector word copying algorithm
// Goal: copy *p to *q
// p points to an O object field
// q points to the corresponding N field
copy-word(p, q) {
i = max-cycles; // number of times to
do { // try non-atomic copy loop

wo = *p;
wn = forward(wo);
// wn==wo for non-ptrs

*q = wn;
if (*p == wo) return;
// done if no change

} while (--i > 0);
wn = *q; // do these reads in order!
wo = *p;
wn2 = forward(wo);

// wn2==wo for non-ptrs
compare-and-swap (q, wn, wn2);

// address, old-value, new-value
// if the compare-and-swap fails, it’s
// ok, because it means the mutator
// copied the new value

}

See the related appendix for discussion of the correctness of
this algorithm. Note that it assumes that mutators do not attempt
updates concurrently with each other (i.e., they use proper lock-
ing to avoid data races). We treat Java volatile fields in a
separate appendix.

2.3 Flip Phases
The later Sapphire phases are: Pre-Flip, Heap-Flip, Thread-Flip,
and Post-Flip. The goal of these phases is systematically to elim-
inate O pointers that may be seen and used by a thread, as fol-
lows. First, we install a write barrier that helps keep track of
places possibly containing pointers to O objects. We next insure
that there are no heap (U region) pointers to O objects. We then
start flipping threads at will.

We start with an invariant that N copies do not point to O
copies, and then establish and maintain that neither U nor N slots
refer to O copies. The Heap-Flip phase does this, by eliminating
any U pointers to O copies. Unflipped threads may have pointers
to O and N copies, even to the same object, but flipped threads
never refer to O copies. The Post-Flip phase simply restores the
normal (i.e., not-during-collection) write barrier and reclaims the
O region.

As long as there are any unflipped threads, all threads must
update both the O and N copies of C objects. However, because
of the way in which we take advantage of Java mutual exclusion
semantics, the order (O first or N first) does not matter.7 The
main import is that we need a way to “unforward” from an N
object to its O copy.

Since unflipped threads may access both O and N copies of
the same object, pointer variable equality tests such as p == q
need to be a little more complex, as previously discussed. Since
comparisons with null are unaffected, and since most pointer
comparisons are probably tests for null pointers, it is unlikely
that the more complex pointer equality test will have significant
impact.

We contend that the logical aliasing of the two distinct copies
of objects is not a problem; see the related appendix.

The Pre-Flip phase installs the Flip Phase Write Barrier; here
is the pseudo-code:

// Flip Phase Write Barrier
// p->f = q is the update
// object p may be in U, O, or N
// q may be a ptr or non-ptr:
// omit forwarding for non-ptrs
// if q is a ptr, it may refer
// to U, O, or N
flip-write(p, f, q) {
p->f = q;
if (forwarded(p)) {
// true for BOTH O and N copies so
// that this follows O->N or N->O
pp = forward(p);
qq = q;
if (old(qq)) qq = forward(qq);

// omit step above for non-ptrs
pp->f = qq;

7The situation with volatile fields is more complex; see the ap-
pendix.



} }

The Flip Phase write barrier must be installed before the Heap-
Flip phase. Otherwise, unflipped threads might write O pointers
in U slots. Likewise, the pointer equality test must be installed
now, since the Heap-Flip phase will start to expose N pointers to
unflipped threads.8

The Heap-Flip phase is straightforward: it scans every U slot
that might contain an O pointer, fixing O pointers to refer to their
N copies. Because of possible races with mutator updates, the
collector employs a compare-and-swap operator, ignoring fail-
ures (since the mutator thread can only have written an N pointer
in this phase). Here is pseudo-code:

// Heap-Flip: U space ptr forwarding
// p points to a U slot,
// that may point to an O object
flip-heap-pointer(p) {
q = *p;
if (old(q))

compare-and-swap(p, q, forward(q));
// avoid race with mutator

}

The Thread-Flip Phase is also straightforward, given the write
barrier set by the Pre-Flip phase. To flip a given thread, one
replaces all O pointers in the thread’s stack and registers with
their N versions. This can be done incrementally using stack
barriers, as discussed for marking. For flipping S slots, we use
flip-heap-pointer. Any new threads start flipped.

The Post-Flip Phase does “clean up” and freeing. Once all
threads have flipped, we can turn off the special write barriers and
revert to the normal write barrier used when GC is not running.
After guaranteeing that no thread is still executing a flip write
barrier (which might try to access on O copy), the collector may
then discard the hash table mapping N copies to O copies and
reclaim O space.

3. MERGING PHASES
Some Sapphire phases must be strictly ordered and cannot be
merged. However, we can merge these Mark-and-Copy phases
into a Replicate Phase: Root-Mark, Heap/Stack-Mark, Allocate,
and Copy. The Pre-Mark phase must precede Replicate; likewise,
the Flip phases must follow it and occur in order. The merging
is mostly straightforward; here is pseudo-code for the Replicate-
Phase write barrier:

// Replicate Phase Write Barrier
// p->f = q is the update
// object p may be in U or O
// object q may be in U or O
// This is for ptrs and non-ptrs
replicate-phase-write(p, q) {
*p = q;
replicate-write-barrier(p, f, q); }

replicate-write-barrier(p, f, q) {
copy-write-barrier(p, f, q);

// above for q ptr or non-ptr
mark-write-barrier(q);

// above only if q is a ptr
}

8The pointer equality test can be installed all the time, if that is
more convenient or efficient.

This simply combines the previous Mark and Copy Phase write
barriers.

As for the collector, we observe that “marked” is now repre-
sented by “forwarded”. There are a variety of ways to represent
the explicit gray set; we chose to “mark” (forward) recursively,
because it avoided multiple scans of the objects.

In the replicate phase, mutators do nothing “special”, except
use the Replicate Phase write barrier. The collector does the al-
location and copying as before, and the write barrier simply en-
queues references. The collector thus acts as follows:

1. It scans root slots, heap slots (slots in U that might re-
fer to O objects), and stack slots, and for each one calls
mark-write-barrier, possibly adding references to
its input queue. The order does not affect correctness.

2. For each reference in its input queue, if the referent is not
yet forwarded, it allocates a new copy and installs a for-
warding pointer. We call these stepsforward-object.

3. As part of forward-object, it recursively processes
each slot of the just-forwarded object, forwarding the ref-
erent if needed. It also updates the N copy’s slot to re-
fer to its referent’s N copy as needed. We call this work
scan-slot.

4. The phase terminates when (a) all roots and U heap slots
have been scanned, (b) all N copies have been scanned,
and (c) all thread stack slots have been scanned and found
to contain no white pointers, while the collector queue has
remained empty.

// Scan slot
// called for each field f of each
// object p needing scanning
// object p is in N
// We: copy the field from O space,
// forward the referent, and install
// the N address
scan-slot(p, f) {
pp = unforward(p);
copy-word(&(pp->f), &(p->f));
forward-object(p->f);
// above only if p->f is a pointer

if (forwarded(p->f)) {
// also only if p->f is a pointer
v = p->f;
vv = forward(v);
compare-and-swap (&(p->f), v, vv);

// avoid race with mutator
} }

4. RELATED WORK AND DISCUSSION
The most closely related work is that of Nettles and O’Toole [13].
They describe a concurrent copying algorithm called replicating
collection that differs from prior work in that (a) it has mutators
observe and update only the O copies before the flip, thus avoid-
ing a read barrier, and (b) tracks all writes so that the collector
brings the N copies into consistency with the O ones. Sapphire
improves replicating collection in at least these significant ways:
(a) it uses the mutator write barrier to propagate updates, so the
O and N copies are more closely synchronized, (b) it allows mu-
tators to see both O and N copies, and (c) it flips thread stacks
and the heap incrementally. As previously mentioned, the latter
is especially important when there are many threads. Sapphire
also makes better guarantees of termination than does replicating
collection, because new objects are not allocated in the region
being collected.



There are many previous concurrent and/or incremental copy-
ing collectors, most of which use a read barrier to insure that
mutators see only the N copies of copied objects. Examples in-
clude the algorithms of Baker [3], Brooks [5], and Appel, Ellis,
and Li [1], in addition to Nettles and O’Toole. Because of their
N-space-only invariant, these algorithms cannot flip incremen-
tally without adding a read barrier. There are some refinements
of replicating collection, such as special treatment of immutable
data [10] (important for ML, but not as helpful for Java) and of
thread-private data [8, 7], but none address incremental flipping
while copying the shared heap.

In sum, Sapphire is a new approach to concurrent copying col-
lection, using a different mutator invariant. The first concurrent
copying collectors used a read barrier to enforce an N-space in-
variant, replicating collection uses an O-space invariant but re-
quires atomic flipping, and Sapphire allows mutator references to
O and N space and supports incremental flipping. Sapphire does
rely on a property particular to Java, namely a memory model
and definition of proper synchronization (absence of data races).
We exploit that property to avoid making all heap updates atomic
during collection. Thus, Sapphire may be appropriate for lan-
guages with similar semantics.

Data Races: We say a Java program has a data race if two
threads can update the same non-volatile field concurrently. Pro-
grams with data races may exhibit new behaviors under Sap-
phire, but the effects are similar to those allowed when opti-
mizing ([12, p. 378]). Further, the values stored into any field
are ones stored by some thread, so Sapphire cannot violate Java
type-safety. In any case, for properly synchronized programs,
Sapphire produces results consistent with the Java Virtual Ma-
chine Specification.

5. PROTOTYPE IMPLEMENTATION
AND RESULTS

We did a proof-of-algorithm implementation of Sapphire in the
Intel Open Run-time Platform (ORP),9 a complete Java Virtual
Machine (JVM) and JIT (just-in-time) compiler for the IA-32.
The ORP includes tuned implementations of several GC algo-
rithms, including a stop-the-world copying collector, STW. We
emphasize that the primary purpose of this implementation is to
show that Sapphire works, not to evaluate its actual or potential
performance.

Implementing Sapphire in the ORP necessitated inserting write
barriers (a) for non-pointers as well as pointers, and (b) at places
where a stop-and-collect GC would not need them because it
would scan (specifically, the global roots area). We offer mea-
surements of GC pause times (length of time mutator threads are
blocked because of GC) to show that Sapphire is indeed effec-
tive in minimizing pauses. Since Sapphire has yet to be carefully
tuned, these pauses should be taken as upper bounds on what
one can achieve with the algorithm. Note that our goal here is
to validate the algorithm, not to evaluate performance, since our
implementation of Sapphire is not tuned.

Hardware platform: We used an Intel two-processor Pen-
tium II system running at 300 Mhz with 512 Kb of cache and
256 Mb of main memory (DK440LX motherboard). The operat-
ing system was Windows NT Workstation 4.0.

Benchmark programs: To stress test the algorithm, we de-

9The ORP, including source code, is available at
http://www.intel.com/research/mrl/orp.

signed a multi-threaded benchmark program that (a) continu-
ously builds objects and continuously discards them, and (b) can
do so using multiple threads. Our benchmark consists of: (1) a
GC thread that sleeps until a GC is requested and nursery alloca-
tion space is low; (2) a GC requesting thread that loops forever
requesting a GC and then sleeping 10 milliseconds; and (3) one
or more allocating threads. An allocating thread consists of an
outer loop iterated 1000 times, and an inner loop that builds 1000
linked lists of 1000 numbered nodes each. The inner loop also
traverses each list, and then discards the list; an exception is the
first list it builds, which it retains (to force additional collector
work). The total space allocated by an allocating thread is 3.2
Gb.

We ran benchmarks with 1 allocating thread and with 5 allo-
cating threads (16 Gb total allocation). We also ran a variant with
one allocating thread, but a deep stack (an extra 1000 frames) be-
tween the outer and inner loop, to see if the time needed for stack
scanning or flipping would change significantly. We call these
benchmarks One, Five, and Deep. The heap size was approxi-
mately 128 Mb for all benchmarks, so they require a number of
collections in order to complete. We ran each benchmark five
times and aggregate the results.

We developed our own benchmark programs primarily because
our purpose was to stress test Sapphire. Also, many existing
benchmarks do not have very interesting allocation and garbage
collection behavior.

Pause times: Since the primary goal of Sapphire is minimiz-
ing mutator thread pause times, that is the primary result we in-
clude here. First we give tables showing for each benchmark the
minimum, maximum, mean, 50%ile (median), 90%ile, 95%ile,
and 99%ile pause times, in microseconds, across all 5 runs of the
program. Second, we show pause time histograms as graphs for
each program, again aggregating the data of the 5 runs. Note that
the vertical scale is logarithmic, emphasizing outlying points.
We find that Sapphire meets our goal of very short pauses for
One and Deep. It does less well on Five, where it is strongly af-
fected by OS scheduling concerns since we have only 2 CPUs.
We believe that similar effects caused the outliers in One and
Deep as well. We believe this effect can be controlled; it does
not appear to be a fundamental problem.

Pause times (microseconds)
Prog Min Max Mean 50% 90% 95% 99%
One 66 4710 165 89 525 641 705
Deep 71 2321 169 89 529 643 713
Five 53 122 129 1865 118 567 3464 46 982
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Additional statistics: The table below shows the total time
(in seconds) to run each benchmark program 5 times, with the
stop-the-world collector (STW) and with Sapphire (Sapph). It
also indicates the total number of GCs over 5 runs for each col-
lector, and the total number of pauses in Sapphire runs, to scan
a thread’s stack. We note that our VM does not allow scanning
at any point in mutator code; we simply restart a thread and try
again later if it is at an “unsafe” point. The table also indicates
the number of pauses that found threads at unsafe points. Our
Sapphire write barrier is currently untuned, so our 1-2% slow-
down compared with STW can likely be improved. We observe
that our STW pauses were generally 17–25 milliseconds, much
larger than typical Sapphire pauses.

Additional Statistics
Prog STW GCs Sapph GCs Pauses #Unsafe
Name secs secs
One 504 2255 507 2060 23 064 17 593
Deep 504 2240 508 2071 21 749 16 214
Five 505 673 515 540 18 849 11 627

In conclusion, Sapphire offers a new approach to concurrent
copying collection, that minimizes thread blocking (pause) times
while avoiding a read barrier. We introduced and explained Sap-
phire, and in addition we have implemented and offer some mea-
surements of the algorithm, strengthening our argument that it is
correct and demonstrating that its pause times are indeed small.

APPENDIX

A. TERMINOLOGY
There are some terms, common to the GC literature and/or the
Java language or virtual machine, whose definition we repeat
here for clarity.

collector, collector thread: One or more loci of control (not
necessarily Java threads, but possibly OS threads) that perform
garbage collection work (as opposed to executing application
code)

flip: Changing slots referring to O objects to refer to the cor-
responding N copies. This is most usually applied to the flipping
of slots in S (thread stacks), but also applies to slots in U.

JNI, Java Native Interface: An interface defined by Sun Mi-
crosystems with the intent of allowing native code (e.g., written
in C) to access Java objects, but in a controlled fashion allowing
copying collectors and such to work in the presence of uncoop-
erative and unknown code. JNI operates by imposing a level of
indirection on object accesses. The JNI’s table of pointers it has
handed out to native code is a group of slots that are roots for col-
lection and thus part of the U region, as previously mentioned.

mutator, mutator thread: One or more loci of control, gen-
erally Java threads (or OS threads accessing the heap through a
controlled interface such as JNI), that perform application work.
A mutator obviously interacts with the collector when the muta-
tor allocates (though such interaction does not generally require
close synchronization), updates heap slots, and “flips” its stack
from old-space to new-space.

null pointer: A specific pointer value that refers to no object.
By convention, the null pointer value is numerically 0 in most
systems, but Sapphire does not depend on that.

object: A collection of contiguous memory locations, lying in
a single region that can be addressed and accessed via references.
Objects do not overlap and may be relocated independently of
one another by the collector. In many cases an object as we use
the term here corresponds to a Java object, but sometimes we
may use multiple low-level objects to represent a single Java ob-
ject. A typical case of this is a Java object with complex monitor
locking happening. An object may contain slots, non-slot data,
or both.

pointer: The address of an object, i.e., a reference (q.v.).
reachable: An object is reachable if a root slot points to it, or a

reachable object has a slot pointing to it. Put another way, reach-
ability is the transitive closure of reference following, starting
from roots.

read barrier: Operations performed when loading a pointer
(or possibly when accessing its referent object). It is called a bar-
rier because the operations must be performed before the pointer
use proceeds, since the barrier may replace the pointer with an-
other one, etc. Sapphire does not use read barriers.

reference: The address of an object, also called a pointer. Here
we generally mean the value; if we mean a memory location con-
taining a reference, we use the word slot.

root: A slot whose referent object (if any), is considered reach-
able, along with all objects transitively reachable from it. The S
and U regions contain roots, which are where collection “starts”
in its determination of reachable O objects.

slot: A memory location that may contain a reference (pointer)
to an object. It may also refer to no object, i.e., contain the null
pointer. As previously mentioned, we assume that memory lo-
cations can be categorized into slots and non-slot data correctly
and unambiguously.

synchronization point: A point in code, that when reached, en-
tails a synchronization between threads. We also use the term to
refer to the reaching of a synchronization point, i.e., an event in
time. The Java programming language and the Java virtual ma-
chine have precise definitions of required synchronization points
and their effects. The principal points are acquisition and re-
lease of monitor locks, and reads and writes of volatile variables.
Sapphire assumes that user code obeys the protocols (i.e., non-
volatile fields are not accessed concurrently, i.e., without monitor
locks being held).

write barrier: Operations performed when a datum (typically
a pointer) is stored into a heap object. The operations need to
be loosely synchronized with the actual update, but the synchro-
nization requirements are generally not as stringent as for a read
barrier. Generational collectors use write barriers to detect and
record pointers from older to younger generations, so that upon
collection they can locate pointers from U to C efficiently. Sap-
phire uses more complex write barriers in some phases, to bring
O and N copies of objects into consistency and to assist in flip-
ping. Some of these write barriers must occur for all updates
rather than only those that store pointers.

B. CORRECTNESS OF COPY-WORD

We refer to the code of copy-word, shown earlier in the pa-
per. We first argue that if the collector executes the first return
statement then the copying operation is correct. Call the muta-
tor action of writing *p mp, and likewise mq for writing *q.



Call the collector actions rp, rq, and wq, for reading *p and *q
and writing *q, respectively. The collector actions consist of
one or more � rp, wq � pairs followed by a final rp. Mutator ac-
tions for a single update consist of an � mp, mq � pair, but mul-
tiple mutator updates can come, one after another (but not inter-
leaved!). Our goal is that once a collector sequence is complete,
and any mutator sequence begun before the collector sequence
ends, *q == forward(*p).

Consider the possible interleavings of mutator and collector
actions on a given slot. The � rp, wq � and � mp, mq � pairs
may execute without interleaving, or we may have one of the
following orders:

� � rp, mp, wq, mq � : This gives the right outcome with
no further work; the mutation occurs logically after the
copying. However, when the collector does the second
rp, it will see that p changed and will harmlessly recopy,
which can occur either before or after mq.

� � rp, mp, mq, wq � : In this case the logically earlier copy
operation clobbers the logically later update of q. But the
second rp will detect a difference and redo the copying,
with the new value.

� � mp, rp, wq, mq � or � mp, rq, mq, wq � : The copy oc-
curs logically after the update; wq and mq write the same
value, and the second rp will see no change.

If another update comes along after the mq, the collector may go
through another cycle of copying and checking. Since this can
happen indefinitely, the code sequence switches to an atomic up-
date strategy. This involves actions rp, rq (reading q), and csq
(compare and swap on q), which gives these possible interleav-
ings:

� � rq, mp, mq, rp, csq � , � rq, mp, rp, mq, csq � , � rq, rp,
mp, mq, csq � , � mp, rq, mq, rp, csq � , or � mp, rq, rp,
mq, csq � : The compare-and-swap fails, leaving the log-
ically later value from the mq (unless the update did not
actually change the value, in which case the compare-and-
swap will succeed, but not change the value either).

� � rq, mp, rp, csq, mq � or � mp, rq, rp, csq, mq � : The
compare-and-swap succeeds, installing the logically newer
value. The later mq writes that same value again.

� � rq, rp, mp, csq, mq � : The compare-and-swap succeeds,
installing the logically older value. The later mq install the
correct final value.

Note that when the compare-and-swap succeeds, another mu-
tator update cannot have begun (the mq happens after the csq).
What could possibly allow a csq to succeed when it should have
failed? If, after the collector’s rq and rp there are further updates
that (a) set q to the value read by the rq (i.e., update both p and
q) and then (b) update p to some new value (but the write to q
has not yet happened), then the csq will succeed. But the final
mq cannot have happened before the csq (or the csq would have
failed), hence the mq will happen later and q will end up with the
correct value.

The compare-and-swap based copying sequence updates q in
the same order as p, whereas the other sequence may not update
q in the same order (but will give a correct final value when it

terminates). This is not of great import here, since mutators do
not read q until after this phase is complete.

Note that we rely on Java locking semantics to resolve possi-
ble race conditions between mutators. In particular, we assume
there is no interleaving of � mp, mq � update pairs from differ-
ent threads. For consideration of Java volatile variables, see the
related appendix.

C. JAVA MONITOR LOCKS
The Java programming language and virtual machine offer means
to obtain exclusive access to individual objects, via monitor locks
associated with (some) objects. Virtual machine implementa-
tions typically acquire a monitor lock by performing an atomic
memory operation on some word associated with the synchro-
nized object, which we term the lock word. If mutators run dur-
ing collection, and the lock word of a copied object moves, we
must insure that mutators always direct their locking related op-
erations to the appropriate memory word.

Our design builds on the thin lock protocol [2]. In that proto-
col, the most common lock states are represented by lock values
that fit in the lock word of the synchronized object. Less common
states require a fat lock, a group of words allocated in memory,
which we call a lock object. To this model we add the notion
of a forwarded lock word: the lock word of an O copy forwards
lock operations to the lock word of the N copy, which may it-
self be thin or fat. Thus our lock words have four states: thin,
fat, forwarded, and meta-locked, while in the original protocol
they have only three. In both protocols one uses the meta-locked
state to accomplish atomic transitions between more complex
lock states. When a lock word is meta-locked, other readers and
writers of the word spin until the holder of the meta-lock releases
it, by writing a lock word value that is not meta-locked.

To “move” a lock from an O copy to its N copy, we acquire the
meta-lock on the O copy lock word, write the old lock value into
the N copy, and write a forwarding lock value into the O copy
lock word. If the moved lock is fat, we also update the fat lock’s
back pointer to the synchronized object to refer to the N copy,
while holding the meta-lock. This design was relatively simple
to add to the existing thin lock implementation of our JVM. It
also keeps locks thin almost as often as before.

We allocate lock objects in a non-moving space, but we could
copy them, by acquiring the meta-lock so as to gain exclusive
access to the lock data structure.

D. VOLATILE FIELDS
Java has a feature whereby one can annotate a field as being
volatile. Similar to the semantics of C and C++, this means that
each logical read (write) of the volatile field in the source code
must turn into exactly one physical read (write) of the field when
executed at run time. Volatile fields thus have different memory
synchronization properties from ordinary fields: ordinary fields
need only be synchronized with memory at each synchronization
point. Sapphire takes advantage of the “loose” synchronization
of ordinary fields.

Assume that volatile reads and writes must appear to be to-
tally ordered (we discuss weak memory access ordering later). A
simple approach to implementing volatile reads and writes is to
mimic ordinary reads and writes. Unfortunately, this fails during
some Sapphire phases. For example, suppose we have a volatile
field X in one object, and a (non-volatile) counter C in some other
object, and we always update C via synchronized methods. Say



that the object containing X has been copied, so we have two
copies of X, namely Xo and Xn. Suppose thread T1 is in the
middle of updating X, and has written Xo but not Xn. At this
point, T2 comes along and reads the new value in Xo and then
increments C. Then T3 increments C and reads Xn, obtaining the
old value of X, but at a time (indicated by the counter C) clearly
after T2’s read of the new value. Threads T2 and T3 have per-
ceived memory update events in inconsistent orders. How do we
avoid such inconsistencies?

First, we note that the problem only comes up during those
phases in which there are (a) two copies of an object, and (b) at
least one mutator can access the old copy and at least one the
new copy. Similar to monitor locks, we insure that accesses to
any given volatile field are ultimately ordered by accesses to a
specific memory word. Here are the details of the strategy:

� Until an O copy of an object is forwarded, accesses to its
volatile fields happen on the O copy.

� Once an O copy has an N copy (i.e., it is forwarded), ac-
cesses happen to the N copy.

� To make the switch from O copy to N copy atomic and
consistent, the collector acquires the O copy meta-lock
(which it must do anyway) and copies the volatile fields
while holding the meta-lock.

� To insure ordering between volatile writes and collector
copying, during the Replicate Phase Sapphire requires mu-
tators to perform volatile writes to unforwarded O copies
by first acquiring the O copy meta-lock. Note also that
writes to volatile pointer fields must also perform a write
barrier, not shown in the code below so as not to distract.

� During the Replicate Phase, volatile reads must check the
lock field to see if the object is forwarded. If it is for-
warded, they read the N copy, and (for pointer fields) un-
forward the value read (since during this phase they should
see only O references, and N copy volatile pointer fields
may contain N references).

If the object is not forwarded, we can perform a volatile
read on the O copy. This may appear to be a race con-
dition, but if the object is forwarded and later written,
the read is legally serialized before the forwarding, so the
value read is consistent with a legal ordering of accesses.

Here is pseudo-code for Replicate Phase volatile accesses:

// Replicate Phase Volatile Read
// p refers to an O copy
// f is a field
repl-vol-read(p, f) {
top:
l = p->lock;
if (metalocked(l)) goto top;
if (not forwarded(l))

return vol-read(p->f);
p = forward(p);
v = vol-read(p->f);

// v MAY refer to N space
return unforward(v);

}

// Replicate Phase Volatile Write
// p refers to an object
// f is a field

// v is the value
repl-vol-write(p, f, v) {
if (forwarded(p)) {
p = forward(p);
v = forward(v);
vol-write(p->f, v);
return;

}
p = acquire-metalock(p->lock);
// note: forwards to N copy, if any

if (p is in N) v = forward(v);
vol-write(p->f, v);
release-metalock(p->lock);

}

E. WEAK ACCESS ORDERING
Pugh [14] indicates that the Java memory model as described
in the original JVM specification ([12]) is problematic. In a re-
cent proposal [15] he suggests a model in which volatile accesses
must be sequentially consistent, with each other and with certain
synchronization events. On a system that enforces total ordering
of all stores and consistency of loads with that order at each pro-
cessor, we need not do much. However, we were concerned with
supporting the IA-64’s acquire-release weak ordering model. It
turns out that for order-critical accesses (volatiles and monitor
locks), we should replace loads with load-acquires, stores with
store-releases, and in between a store-release and the next load-
acquire, we should insert a memory-fence. It is straightforward
to apply these transformations to copy-word, etc., and obtain
correct behavior of Sapphire in the acquire-release model. Like-
wise, it is straightforward to determine correct places to insert
memory fences for other weak ordering models.

The point is that Sapphire’s approach to monitor locks and
volatiles still orders accesses through a single word—the object’s
lock field—and one simply applies whatever techniques one oth-
erwise needs to insure adequate ordering to support the language
memory model. In short, Sapphire introduces no new issues.

F. ALIASING
One might be concerned that, during the Flip phases of Sapphire,
having distinct pointers refer to what is logically the same object
presents new issues of aliases and alias analysis to compilers and
hardware. If the update of the “other” copy is deferred, we might
have an issue at the hardware level. For example, if we wrote a
field via pointer p in O space and read it via pointer q in N space,
the read might not reflect the write. Thus, we require that a thread
complete updates to both O and N space before proceeding to the
next field read or write that might possibly touch the same field.
Note that interference from other threads is not an issue, because
Java synchronization rules require locking in such cases (see the
related appendix for discussion of volatile fields). If we follow
the rule of updating both spaces before accessing possibly con-
flicting fields in the same thread, then hardware alias detection
mechanisms will work correctly. The possibility of two physical
copies of the same logical object does not affect compiler alias
analysis: we could have distinct p and q referring to copies of the
same logical object only when p and q could refer to the same
physical copy. However, if the compiler inserts run-time tests
of pointer equality to conditionalize code based on aliasing, then
those equality tests must allow for the possibility of physically
distinct copies of the same logical object, i.e., the compiler must
emit code for the more complex equality test.



G. GENERATIONAL WRITE BARRIERS
In a generational collector, to avoid scanning the (usually large)
older generations when collecting younger generations, one tracks
mutator writes using a write barrier. Specifically, when object p
is modified to refer to object q, if p is in an older generation than
q, we remember that fact. Some write barrier schemes record
something about every pointer write. For example, card mark-
ing records the region that was modified (the region containing
p). Later the information is filtered to determine if one actu-
ally created an older-to-younger pointer, and such pointers may
be remembered across collections, etc. The important thing to
note about the Sapphire scheme is that, unlike most generational
schemes, in Sapphire we must apply the write barrier to stores
that initialize pointer fields of newly allocated objects. This does
not arise from the age relationships of generational collection,
but rather with the fact that newly allocated objects are not placed
in the C region and we need to know about references to C ob-
jects from outside the C region. However, we can arrange the
ages of regions so that a generational write barrier will remem-
ber the pointers that need to be remembered, as follows. Make
the (logical) age of the nursery older than that of the O region, so
that we will record references to O objects from nursery objects.
In order to end up with the desired remembered pointers at the
end of collection, arrange for the age of the N region to be older
than the nursery.

While one may do more generational write barrier work in
Sapphire than in a collector that includes the nurseries in every
collection, it is hard to guarantee termination if one includes the
nurseries in C. Also, one should expect that a concurrent col-
lector will do more total work (across all CPUs) than a stop-he-
world collector. What one is gaining with Sapphire is minimal
disruption and better system utilization.

H. REFINEMENTS TO MARKING FROM
STACKS

Marking requires finding S pointers to O objects, i.e., scanning
thread stacks. The collector briefly suspends a thread to scan the
stack (and registers) for references to white (unmarked) objects
and to invoke the mark phase write barrier on them. Here are
some useful refinements to this process.

We need not process an entire stack at once. We can process
registers, the top frame, and zero or more additional frames, pro-
cessing the rest after resuming the mutator, in the style of gener-
ational stack collection [6]. This may further shorten pauses.

This refinement requires the mutator and the collector to syn-
chronize. In particular, the collector cannot process a frame in
which the mutator is running, or a frame from which the mutator
has returned. Hence, for the collector to work on frames below
a certain point in a thread stack, the collector should install a
stack barrier. One can implement barriers by “hijacking” the re-
turn address into the frame, making the return address point to
a routine that will synchronize with the collector appropriately.
(This way the mutator does not need code to check explicitly
for needed synchronization.) The collector will remove the stack
barrier when it is done scanning, or can move the barrier down
the stack incrementally, one or more frames at a time, as it fin-
ishes scanning frames for pointers to white (unmarked) objects.

The collector processes suspended threads. It may be possi-
ble to remember O-to-N object mappings, and to update long-
suspended threads less often, or just at they are awakened. The
idea here is to avoid repeated scanning of the stacks of threads

that are suspended for a long time. We would need to remember
or update the O-to-N maps for objects referred to by suspended
threads. It may turn out to be not only simpler but as fast or faster
just to record the locations of a suspended thread’s non-null stack
references and to update them as part of each collection.
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