
LA-UR-00-6049
Approved for public release;
distribution is unlimited.

Title: CartaBlanca– A Pure-Java, Component-based Systems Simulation
Tool for Coupled Nonlinear Physics on Unstructured Grids—An Update

Author(s): W. B. VanderHeyden
E. D. Dendy
N. T. Padial-Collins

Submitted to: Concurrency & Practice

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U. S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for
U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right
to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
Form 836 (8/00)

CartaBlanca– A Pure-Java, Component-based Systems
Simulation Tool for Coupled Nonlinear Physics on

Unstructured Grids –An Update©

W. B. VanderHeyden
Los Alamos National Laboratory

Theoretical Division and
Los Alamos Computer Science

Institute
Los Alamos, NM 87545

wbv@lanl.gov

E. D. Dendy
Los Alamos National Laboratory

Theoretical Division and
Los Alamos Computer Science

Institute
Los Alamos, NM 87545

dendy@lanl.gov

N. T. Padial-Collins
Los Alamos National Laboratory

Theoretical Division and
Los Alamos Computer Science

Institute
Los Alamos, NM 87545
nelylanl@lanl.gov

ABSTRACT

This paper describes a component-based nonlinear physical
system simulation prototyping package written entirely in Java
using object-oriented design. The package provides scientists and
engineers a “developer-friendly” software environment for large-
scale computational algorithm and physical model development.
The software design centers on the Jacobian-Free Newton-Krylov
solution method surrounding a finite-volume treatment of
conservation equations. This enables a clean component-like
implementation. We first provide motivation for the development
of the software and then discuss software structure. Discussion
includes a description of the use of Java’s built-in thread facility
that enables parallel, shared-memory computations on a wide
variety of unstructured grids with triangular, quadrilateral,
tetrahedral and hexahedral elements. We also discuss the use of
Java’s inheritance mechanism in the construction of a hierarchy of
physics systems objects and linear and nonlinear solver objects
that simplify development and foster software re-use. We also
provide a brief review of the Jacobian-Free Newton-Krylov
nonlinear system solution method and discuss how it fits into our
design. Following this, we show results from example
calculations and then discuss plans including the extension of the
software to distributed memory computer systems.

1. INTRODUCTION
Specialized simulation software for nonlinear physical systems is
one of the central research products from many of the programs
here at Los Alamos National Laboratory (LANL) and at other
similar institutions. Such systems are often 3-dimensional and are
solved on unstructured computational grids. Thus, simulation
software for these systems can be quite complex. Very often,
simulation projects involve the modification of existing software
to produce new capabilities. Furthermore, program goals change
frequently as funding priorities evolve or as research
developments lead to new branches of investigation. As such,
application development is often the bottleneck on these projects.
There is, therefore, substantial incentive for software and software

 ©

environments that are “developer-friendly”—easy for scientific
and engineering software developers to modify and extend.
Fortunately, two technology trends address this need in a
coordinated fashion.

First, object-oriented and component-based software has made
an enormous impact in the commercial software arena for
telecommunications and e-Business. Enhancement of software
developer productivity has come from a variety of sources
including new languages such as Java which support object
orientation and component software and a host of software
developer productivity tools including graphical design
applications, graphical debuggers, etc., that work with these
languages. At the same time, significant advances have occurred
in nonlinear systems solutions methods. In particular, Jacobian-
Free Newton-Krylov (JFNK), [3], methods have been employed
and extended to provide robust and flexible solution methods for
a wide variety of coupled nonlinear physics simulation
capabilities. In addition, the combination of JFNK and the finite-
volume technique, [9], fits well into an object-oriented or
component-based software environment.

Thus, the goal of the CartaBlanca project is to produce a
modern flexible software environment for prototyping physical
models, discretization schemes and solution methods for
nonlinear physics problems on unstructured grids. CartaBlanca
employs an object-oriented, component-based design using the
Java programming language. CartaBlanca uses unstructured grids
composed of either, triangular or quadrilateral mesh elements in 2
dimensions, or tetrahedral or hexahedral mesh elements in 3
dimensions. CartaBlanca employs the finite-volume method, [9],
to provide for flexibility with regard to both meshes and physical
effects. Finally, CartaBlanca uses Java’s built-in thread facility
for shared-memory parallelization.

1.1. Status
We currently have a great deal of infrastructure for CartaBlanca
in place. Our updated list of features since first reporting on
CartaBlanca, [28], includes:

• Accepts unstructured grids in 2 and 3 dimensions with

triangular, tetrahedral, quadrilateral and hexahedral
elements.

• Accepts Metis, [16], generated mesh partition files;
computes in parallel on Metis sub domains.

• Has a Graphical User Interface (GUI) for problem
specification.

• Uses abstract classes for state, physics and solvers objects;
imposes a uniform component-like interface for developers.

• Pre-conditioned Conjugate gradient and GMRES Krylov
linear solvers interact seamlessly with physics objects.

• Nonlinear quasi-Newton solver wraps around linear Krylov
solvers to provide a JFNK solver.

• Physics objects available for high accuracy scalar advection,
interface tracking, heat transfer and multiphase flow.

• Automatic generation of Tecplot (from Amtec Engineering)
graphics files for arbitrary physical systems.

• Embedded software-testing facility based on the JUnit
framework, [15].

• Direct remote access to CVS revision control server is
enabled for efficient team code development.

1.2. Java Performance
A recent article by Schatzman and Donehower, [25], provides a
useful discussion of the potential pitfalls involved and tips on how
to program in Java to try to achieve performance comparable to
that obtainable using C, C++ and FORTRAN. Similar
information is also available in reference, [27]. More
encouraging news regarding Java performance has been reported
by Boisvert, et. Al., [4]. These authors provide an up-to-date
review, which shows that Java performance has improved
significantly over the past several versions of the Java Version
Machine (JVM). Remarkably, they show that, for some cases,
Java is slightly faster than C when tested back-to-back on a suite
of scientific computing benchmark applications called Scimark
from the US National Institute of Standards and Technology. In
addition, Reinholtz, [23], writes that not only is it possible for
Java to have better general performance than C++, but also that it
is likely that this will actually occur. He argues that Java
performance can exceed that of C++ because dynamic
compilation gives the Java compiler access to runtime
information not available to a C++ compiler. Furthermore, the
rapidly growing market for embedded systems will drive such
performance improvements to extend battery life. Considering
the above information and the important benefits from Java’s
strong typing, clean design, object-orientation, it is our opinion
that Java is now a serious alternative language for scientific and
engineering computing applications.

1.3. Related Efforts
CartaBlanca builds on some important existing software programs
here at LANL. Here is a brief description of these programs.
CFDLIB, [17], a FORTRAN 77 program, is an outgrowth of the
Caveat program, [1], which provides a flexible finite-volume
multiphase flow simulation capability. The Telluride program,
[31], provides a multi-material simulation capability with
interface tracking on unstructured grids. Telluride makes
extensive use of the FORTRAN 90 module concept. The CHAD
program, [21], is a flexible node-based finite-volume simulation
program for flow simulation on unstructured grids. CHAD uses
FORTRAN 90 and accommodates hybrid grids using an edge-
based connectivity data structure, [26]. Finally, Kokopelli, is a
C++ program for interfacial and polymer flow problems. The

authors have had extensive experience with these programs. The
design and implementation of CartaBlanca builds on the lessons
learned from these experiences.

It is also worthwhile to note two relevant examples from
outside our laboratory. First, Hauser, et. Al., [14], have produced
an object-oriented, pure-Java simulation code for aerospace
applications. They employ a multi-block structured grid
computation scheme and use Java’s thread and RMI facilities for
parallelization and to enable remote interaction between a
graphical user interface and the numerical application.

Another effort worth noting here is that of Hatakeyama, et. Al.,
[13], who describe an object-oriented paradigm for flow
simulation software in which the object-oriented concept is used
at the computational node level to produce flexible abstractions.
They demonstrate their concepts with a C++, structured grid
simulation of a wind tunnel with a test object and show that they
can easily insert and extract arbitrary-shaped flow obstacles.

1.4. Outline
In Section 2 we provide an overview of the finite-volume method
for discretization of conservation equations. In Section 3 we
describe the major features of the Jacobian-Free Newton-Krylov
solution method. We then proceed in Section 4 to give an
overview of the CartaBlanca software packages. We follow this
in Section 5 with some results from example calculations.
Finally, in Section 6 we provide a discussion of conclusions and
plans.

2. FINITE VOLUME METHOD
CartaBlanca is based on the finite-volume method, [9], for
conservation equations. CartaBlanca adopts the node-based
version of this scheme with edge-based connectivity, [21], [26].
We provide here a very simplified outline of the method. For an
arbitrary control volume V with bounding surface A the generic
conservation statement is of the form

 0,
V A V

d qdV f ndS sdV
dt

+ ⋅ + =∫ ∫ ∫
�

�

� (1)

where q is the density of some conserved quantity such as mass,

momentum or energy, f
�

is the local flux of this conserved
quantity due to a variety of mechanisms, n� is an outward normal
vector defined on the surface of the control volume, and s is a
generalized source density. The first and third integrals in
Equation (1) are over the entire space of the control volume; the
second integral is over the surface of the control volume. The
derivative on the first integral quantity in Equation (1) is with
respect to time. For numerical computations, Equation (1) is
discretized in time and in space on a computational grid. On such
a grid, conservation nodes are connected by edges as shown in
Figure 1.

Figure 1. Control volume for thi node.

Each node is associated with a polyhedral control volume, iV , as
depicted in Figure 1. For each node, the averaged value of the
conserved density is defined as

 1 .
i

i
i V

q qdV
V

≡ ∫ (2)

The quantities iq are, typically, the state variables for the
numerical simulation. Similarly, the average source over each
control volume is

 1 .
i

i
i V

s sdV
V

≡ ∫ (3)

Let ef

�

 be the average flux on the control volume face associated
with edge e . Then, if we integrate the Equation (1) over a time
step, t∆ , using, for example, a first-order difference
approximation for the time derivative, we obtain the discretized
form of the conservation equation

 1 1 0,
i

n n n n
i i i e e e i i

edges
q V q V t f n A sV+ + − +∆ ⋅ + =

∑

�

� (4)

where the superscripts n and 1n + denote the present and future
time levels, respectively. Of course, the fluxes and source terms
are generally functions of space, time and the state variables, iq .
Thus, the set of discretized conservation equations for all nodes
and all types of conservation quantities forms a nonlinear
algebraic system. The physics for a given application lies in the
definition of the fluxes and sources in Equation (4). The aim of
CartaBlanca is to provide scientists and engineers a friendly
environment using object-oriented Java for the implementation of
component-like physics and solver objects for the solution of the
corresponding coupled nonlinear conservation equations.

3. JACOBIAN-FREE NEWTON-KRYLOV

METHOD
We may write the set of conservation equations in the compact,
abstract form

 ()1 0n

iF q + = (5)

where iF denotes the left hand side of Equation (4) and 1nq +
denotes the entire set of state variables at the advanced time. The
quantity iF is called the residual function. The system
represented by Equation (5) is, in general, nonlinear. We employ
the Jacobian-Free Newton-Krylov method, [3], in CartaBlanca to
solve these systems. We provide here a brief outline in order to
motivate our discussion of the software design. Newton’s method
for a nonlinear system begins with an initial guess of the solution,

1(0)n
jq + , where the superscript in parenthesis denotes the iterate

level. This is, typically, the solution from time level n. Newton’s
method then proceeds through a series of iterations involving the
solution of a sequence of linear systems

 ()() ()()1 1 ,n k n kk

ij j iJ q F qδ+ += − (6)

along with the update

 () ()1 1 1 ,n k n k kq q δ+ + += + (7)

where there is an implied summation in Equation (6) on the
repeated index, j . The goal, of course, is to proceed until we
find the solution to Equation (5). The matrix quantity, ijJ , is the
Jacobian matrix defined as

 () ()
.i

ij
j

F q
J q

q
∂

=
∂

 (8)

Explicit formation of the Jacobian matrix is typically a very

expensive computation. Fortunately, the JFNK method takes
advantage of the fact that Krylov linear solution methods require
only the evaluation of matrix-vector products, Jv (where v is a
Krylov vector), and not the matrix J by itself, [3]. Furthermore,
matrix-vector products can be approximated numerically using a
directional difference formula,

() ()

,
F q v F q

Jv
ε

ε
+ −

≈ (9)

where ε is some small scalar perturbation parameter, [3]. This
approximation allows us to structure CartaBlanca in such a way
that the physics developer can focus on providing residual
functions inside physics objects or components. Using the
abstraction embodied in Equation (5) we have genericized the rest
of the infrastructure for solving and processing physics problems
so that developers can work simultaneously on a variety of
different problems using the same software.

4. SOFTWARE
CartaBlanca is composed, at present, of twelve separate packages.
Each contains classes that perform distinct functions. We have
tried to design these classes to serve as software components that
can be interchanged in a “plug and play” mode by developers.
We have also tried to write the utility classes in such a way that
physics and solver class developers need not concern themselves
with the implementation of the parallel features of the software.

In the following, we describe each of these packages and the
classes they contain. We also describe the interactions and
associations between the classes in the different packages. We
choose to start the discussion with the mesh and input packages.
These are low-level packages; they are used by many but make
sparing use of other packages. We then work our way up through
the remaining packages of increasing complexity until we finally
describe the main package, which contains the main methods.
Before proceeding to the discussion of the CartaBlanca software
packages, we start by commenting on our general design
approach and on our software engineering methods.

4.1. Approach
Our approach to the design of CartaBlanca includes the following
general guiding principles. First, we have endeavored to make
use of object-orientation at the highest levels from a physical
point of view. Thus, our objects are things that exist over entire
sections of the computational domain or grid, rather than at
individual nodes. This choice was made based on the idea that
this would yield higher numerical performance by avoiding
excessive overhead at the node level. This choice also provides a
smoother transition into object-oriented programming for
developers more familiar with procedural scientific legacy codes.
Nevertheless, this approach has allowed us to make substantial
use of Java and its object-oriented features.

Another principle we have employed is to make the top levels
of the program as generic as possible so that the developer can
plug physics into the appropriate program locations and then have
the rest of the program able to immediately interact. This was
accomplished, in part, by the use of abstract classes, which
provide general functionality and interfaces for things such as
physics and solver objects. Thus, these objects are like
components.

4.2. Software Engineering
Our approach to team programming follows the lightweight
processes advocated in the recent article by Fowler, [10].
Iterative programming and component development has, for
example, been very useful. The use of team coding has also
proved helpful.

In order to foster the team software approach, we have
incorporated the JUnit, [15], testing facility into CartaBlanca.
This has been useful in that any developer can perform tests easily
on their local computing platform to make sure his modifications
have not corrupted the software. This is in contrast to a situation
in which software testing is performed using specialized software
available only on a certain computing platform.

We have found it very helpful to use a common integrated
development environment (IDE) for our software development.
We are currently using JBuilder 4.0 Professional by Borland
Technologies. JBuilder gives us an identical programming
environment on our Windows NT and Solaris workstations.
JBuilder is also available for LINUX operating systems. The
JBuilder environment, conveniently, recognizes the JavaDoc
@todo functionality. We use this feature as a simple issues
tracking mechanism.

In addition to the JBuilder IDE, we use the GNU CVS revision
control software for our software repository. We run CVS as a
‘pserver’ on one of our Solaris workstations. Thus, we can check
pieces of software in and out over the network directly. We
currently run a simple implicit heat transfer, scalar advection and

multiphase flow problems (discussed in Section 5) as test
problems before committing software modifications to our CVS
repository.

4.3. I/O Package
CartaBlanca reads mesh files (see Section 4.6) and writes
graphics files (see Section 4.11). In the initial stages of the
project, an I/O package was imported from S. J. Chapman, [5],
for these operations, [28]. This package contained classes with
methods that enabled the developer to write C-language-syntax
file print and read statements. We have since abandoned this
package in favor of using Java’s very effective Reader and Writer
classes in the java.io package, [12]. We make use of the non-
standard ExponentialFormat class provided in reference [12] for
writing doubles to text files. At present, this is the only class
contained in the I/O Package.

4.4. Input Package
The input package contains the basic input facilities for problem
specification. The user specifies parameters such as solver
tolerances, physical properties and boundary conditions using a
graphical user interface (GUI). Problem data is written to a
‘ProblemSpecifier’ class object. The ‘ProblemSpecifier’ object
contains all input information from the GUI. It can be queried by
as needed for information in the rest of the program. The
‘ProblemSpecifier’ object is serializable. This feature is used to
save ProblemSpecifier settings to disk. This eliminates the need
for any text-based input files, other than the mesh files (see
section 4.6).

The GUI is contained in three classes named
‘TabbedInputClass’, ‘TabbedInputFrame’ and
‘TabbedInputFrame_AboutBox.’ The GUI covers several
categories of input separated into several tabbed input frames.
The input categories are General Information, Physics, Linear
Solver, Nonlinear Solver, Pre-conditioner, Initial Conditions,
Boundary Conditions and Materials. A snapshot of the GUI
interface is shown in Figure 2.

Figure 2. Snapshot of GUI. Tabs enable user to provide input
on the various categories of input.

The user can click on the various tabs along the top of the GUI
to access the different categories of input. As the user types in
new information into the fields of the GUI, the information is
written to the ProblemSpecifier object. When the user exits the
GUI, the ProblemSpecifier is output to disk as a serialized object
for future use and the rest of the program then begins executing
based on the information in the ProblemSpecifier object.

4.5. Communications Package
The communications package contains classes of objects that
provide functionality for inter-partition communication and for
global mesh operations. The class CyclicBarrier provides a
simple barrier that objects may invoke to synchronize
calculations. The implementation was modeled on the barrier
class provided in Chapter 5 of Oaks and Wong, [20]. The
CyclicBarrier is used, for example, in discrete operations such as
divergence field computations in which communication of flux
quantities among mesh partitions are required.

The Reduction class in the communications package provides
for the computation of global quantities across the entire mesh
such as a global maximum or a global sum. Global sums are
required, for example, for mesh-wide dot products of vectors in
the various Krylov solvers. The Reduction class accomplishes
this by using static class variables for sums and extrema.

4.6. Mesh Package
The mesh package contains several classes that describe mesh
elements, edges, interior boundary nodes, and partition and global
meshes. These classes are built from mesh information read from
mesh files. CartaBlanca requires three types of mesh information
files, which follow the format used by the Metis mesh-
partitioning program, [16]. The three files contain the mesh
connectivity, the node coordinates and the partitioning of the
mesh elements. Please see the Metis manual, [16], for a
description of these files.

CartaBlanca requires mesh partitioning to be done in such a

way that elements and not nodes are partitioned. Referring to
Figure 3, the mesh partitioning for CartaBlanca must be done
along node-edge connections. In the Figure, the heavier edge
connections denote the boundary between partitions A and B. To
implement this mode of partitioning in CartaBlanca, nodes on the
partition boundaries are duplicated. In the example in the Figure,
the three nodes along the partition boundary would be present in
each partition as duplicates.

Figure 3. Partitioning in CartaBlanca. Meshes must be
partitioned along node connections.

Figure 4 shows an example of an element-partitioned mesh for
CartaBlanca.

Figure 4. Two-dimensional 3000 node partitioned mesh.
Partitions were generated using Metis.

The mesh partitioning shown in Figure 4 was performed using
the Metis program and the Metis output was then fed to
CartaBlanca for computations. The actual plot was generated
using the Tecplot program which operates on graphics output
files from CartaBlanca (see Section 4.11) A further example
mesh is shown in Figure 5 for the case of a 3-dimensional
tetrahedral mesh.

Figure 5. Three-dimensional tetrahedral element mesh. The
shading denotes the 4 partitions that were computed by Metis.

In general terms, the mesh package classes perform the
following functions:

• Read and store data from mesh input files. This includes

element connectivity, node coordinates and element
partitioning,

• Compute all required element and node geometrical
information such as cell face areas and normal vectors for
the global mesh,

• Compute all edge connectivity and geometric information
from the element information for the global mesh,

• Link all nodes via edge elements,
• Setup up partition meshes with links between global and

partition mesh objects including nodes, elements and edges.
• Set up connectivity between duplicate nodes on different

partitions.

4.7. Discrete Operations Package
The discrete operations package contains a class called
Divergence which provides a variety of mesh-wide discrete
operations including the computation of the divergence of a
vector field, the gradient of a scalar at both mesh nodes and mesh
faces as well as some more specialized operations. Some of the
specialized operations include finding the maximum face-by-face
inflow values for each node for advection calculations and finding
the diagonal term of a mesh-wide matrix operator. All of these
operations require communication and therefore use the duplicate
node connectivity information from the mesh package classes and
the barrier object from the communications package.

4.8. Physical Properties Package
Physical properties such as material densities and transport
properties such as viscosities, mass diffusivities and thermal
conductivities are required in simulations of physical systems.
These quantities are often predicted using equations of state from
system quantities such as temperature and pressure. The details
of these predictions are kept separate from the solution of
conservation equations by isolating the implementation in a
separate package. This package contains, at present, classes for
the prediction of material densities diffusivities, and inter-phase
exchange parameters such as drag coefficients. The classes use
information input by the user from the materials input pages of
the GUI and provide methods to the physics package classes (see
Section 4.9) for the materials properties predictions. Thus, the
physical properties package classes also insulates the physics
developers from changes in the details of the materials properties
input specifications.

4.9. Physics Package
The physics package contains classes that allow a developer to
encode the conservation equations that he or she would like to
solve. The developer first must set up an AbsState class
corresponding to his physical system. AbsState is a container
class (seesection 4.9.1). Once the AbsSstate class is set up, the
user then can encode his conservation equations in an
AbsProblemPhysics class. This is discussed in section 4.9.2.
When specifying both the AbsState class and the
AbsProblemPhysics class, the user must extend abstract classes

that provide the basic interface expected by the rest of
CartaBlanca.

4.9.1. AbsState Class
The AbsState class is an abstract class that must be extended by
the developer to provide a data container for state variables for
specific physics problems. The state variables are fundamentally
stored in a two dimensional array wherein the first dimension is
the variable type and the second dimension is the node index. For
example, if one is trying to solve a problem with state variables
for pressure, and three components of velocity, then the first
dimension of this array would be four. The two-dimensional
representation is convenient for developers since they tend to
work with the governing equations a field or state variable type at
a time. The two-dimensional view is also a convenient format for
the graphics package since it also processes the data a field at a
time.

Krylov solvers, however, work in terms of a one-dimensional
state vector. Thus, the AbsState class also provides a one-
dimensional view of the same state data. Currently, the one-
dimensional view is provided as a copy of the two dimensional
data. The copy is performed using Java’s System.arraycopy
function for best performance.

4.9.2. AbsProblemPhysics Class
For linear physical systems, developers can specify their physical
system behavior by extending the AbsProblemPhysics class.
AbsProblemPhysics is an abstract class that lays out what
CartaBlanca expects from physics objects. The most important
feature of this class of objects is the methods to get the right and
left hand side of the governing equations for the state variables.
The solvers in CartaBlanca interact with these physics object
methods to obtain the right-hand side of the linear equation
system and the matrix-vector multiply. Another important
behavior of AbsProblemPhysics objects is the pre-conditioning
method. The Krylov solvers also interact with physics objects by
invoking their pre-conditioning method. This method takes a
Krylov vector from the Krylov solver and updates it according to
some iterative improvement scheme. Currently, diagonal, Jacobi
and symmetric successive over-relaxation pre-conditioning are
available. Plans for a multigrid-like scheme are in place to obtain
improved solver performance.

AbsProblemPhysics classes also inherit some methods for the
base class for converting time n states to time 1n + states.
These methods, of course, can be overridden in the derived
classes to provide additional functionality.

4.9.3. NLAbsProblemPhysics Class
In the case of nonlinear physics problems, the matrix-vector
multiply evaluation has to be provided in a generic fashion
following Equation (9). The NLAbsProblemPhysics class of
CartaBlanca extends the AbsProblemPhysics to provide this
behavior. In this class of objects, the developer must encode the
governing equations into methods that return the full nonlinear
residual equation in the form of a left and right hand side. The
left and right hand side correspond to the implicit and explicit
parts of the governing equations. These objects invoke these
nonlinear get methods from the overridden linear get methods
from AbsProblemPhysics class using Equation (9) to produce a
linear matrix-vector multiply evaluation. Since

NLAbsProblemPhysics inherits from AbsProblemPhysics, all
other behavior, such as pre-conditioning is also available.

Figure 6 provides a graphical overview of the physics class
inheritance hierarchy that was generated directly from the Java
source code using GDPro from Embarcadero Technologies.

Figure 6. UML Class hierarchy diagram of the Physics
package.

4.10. Solver Package
The solver package contains classes for linear and nonlinear
solvers. As was the case for the classes in the physics package, an
abstract solver class, AbsSolver, is provided as a parent for all
solvers. Currently, this class has been extended to provide users
Krylov solver classes based on Conjugate Gradient and both the
standard and flexible variant of Gmres, [24]. In addition, an
‘explicit’ solver is provided for fully explicit calculations which
essentially bypasses any solution method at all and simply returns
the right hand side as the solution. Finally, a Newton-Krylov
(JFNK) solver is provided for nonlinear problems. Each of these
solvers communicates directly with physics objects through
method invocations. The solver class inheritance hierarchy is
shown in Figure 7.

Figure 7. Solver package class hierarchy.

4.11. Graphics Package
The Graphics package, at present, contains only one class that

can be used to produce Tecplot format output text files. The class
interacts with the abstract state class so that it automatically
knows about new state variables, etc. Eventually, this class will
be extended to allow for additional plot file output formats. We
also envision direct use of Java graphics.

4.12. Problem Driver Package
The ProblemDriver package contains the Driver class, a top-level
driver for solving physics problems on each mesh partition. The
Driver class implements Java’s Thread-class Runnable interface.
This enables data-parallel computation in CartaBlanca with each
thread corresponding to a particular mesh partition. Figure 8
shows a UML association diagram for the Driver class.

Driver

CyclicBarrier
{Imported}

Divergence
{Imported}

ProblemSpecifier
{Imported}

MeshDriver
{Imported}

AbsProblemPhysics
{Imported}

AbsSolver
{Imported}

Runnable
{Imported}

Figure 8. Association diagram for driver class.

As can be seen, the Driver class interacts with all the major
CartaBlanca objects from an AbsProblemPhysics object to an
AbsSolver object.

4.13. Boundary Conditions Package
Boundary conditions are required for the complete specification
of all but the simplest physical problems. In order to build a layer
of abstraction between the core physics classes and the user
interface for boundary conditions, we have introduced a separate
boundary conditions package. At present, this package contains
only one class, which implements boundary conditions. This
class takes user input data from the ProblemSpecifier object and
provides methods for setting boundary fluxes for use in the
conservations equations in the physics classes.

4.14. Main Package
The main package consists of several classes that contain the
public static main method that drives the entire simulation. The
class PhysMain contains a main method that instantiates all high-
level objects and invokes the start method for all of the Driver
objects for each mesh partition.

Figure 9. Flow chart for CartaBlanca main method.

5. RESULTS
Here we provide information on compilation, run-time
performance and some preliminary simulation results from
CartaBlanca. Computations were performed on a dual 500 Mhz
Pentium III processor SGI 320 PC running a Windows NT
operating system, on a single processor Sun Ultra 60 workstation
running Solaris 2.7 operating system and on a 4-processor SGI
Origin 200 workstation running the IRIX operating system. The
entire software package compiles to byte code in a matter of a few
seconds.

5.1. Scalar Advection
The first two examples are of explicit scalar advection
calculations done on the triangular element grid shown in Figure
4. The results of the calculations are shown in Figure 10 and
Figure 11. These calculations were performed using 2 threads in
parallel on our dual-processor SGI PC. Each thread operated on a
separate mesh partition.

Figure 10. Results from a continuum scalar advection
simulation on a two-dimensional triangular mesh.

Figure 11. Results from a interface-tracking scalar advection
simulation on a two-dimensional triangular mesh.

Each calculation started with a pulse of concentration in the lower
left hand corner of the domain. In the first example, the
concentration pulse has a Gaussian spatial distribution while in
the second example; the pulse was a spatial step function with
circular shape. This material was advected towards the top right
according to the conservation equation

 0i

i

c cu
t x

∂ ∂+ =
∂ ∂

 (10)

where c is concentration, iu is the thi component of velocity, t
is time and ix is the thi spatial coordinate. There is an implied
summation over the repeated index in the second term. In these
example calculations, the velocity was a constant with component
values of one in the horizontal and vertical directions. The final
conditions of the concentration pulses are shown in the top-right
of Figure 10 and Figure 11. Note that in the case of Figure 10 we
used the continuous field version of CartaBlanca’s advection
facility while in Figure 11 we used the interface-tracking version
of the advection facility, [6].

The calculations used Cartablanca’s explicit solver to advance
the solution of Equation (10) over 120 time cycles. Although
Equation (10) is relatively simple, it is commonly known that it is

difficult to obtain accurate numerical solutions for this equation
that minimize the artificial numerical smearing of such
concentration pulses and also avoid the creation of artificial
extrema, especially on triangular grid meshes. Also, doing such
calculations using interface tracking is also a very difficult task.
These examples demonstrate that CartaBlanca has advanced
advection algorithms that can be used by developers for a wide
variety of applications.

5.2. Implicit Heat Transfer
The second example is a simple implicit heat transfer calculation
performed on similar triangular element meshes. CartaBlanca’s
flexible Gmres solver was used without preconditioning to
compute the temperature field as a function of time according to
the equation

i i

T T
t x x

α
 ∂ ∂ ∂= ∂ ∂ ∂

 (11)

where T is temperature and α is the thermal diffusivity, which
was set to one for the example problem. Zero-gradient boundary
conditions were used which correspond physically to a perfectly
insulated box. The final state is, therefore, a uniform temperature
of one-half. CartaBlanca computed the correct solution on a
46000-node triangular element mesh, using both a single mesh
partition and multiple mesh partitions running on separate threads
in parallel.

Figure 12. Preliminary example of scaling behavior of
CartaBlanca on linear heat transfer problem. Values are wall
clock time for problem solution scaled by that for a single
processor calculation.

Figure 12 shows the scaling behavior for this heat transfer
problem on a 4-processor SGI Origin 200 workstation. These are
very preliminary results and are likely to change as we perform
more tests on the parallel performance of CartaBlanca. They do
show, however, that CartaBlanca appears to scale well for this
problem.

5.3. Multiphase Flow
We also can compute multiphase flow using CartaBlanca. The
details of the governing equations and the numerical algorithm are
beyond the scope of this publication. Those interested in the

governing equations for multiphase flow should consult
reference, [7], for example. Our numerical algorithm is closely
related to the one used in CFDLIB, [17]. We plan to publish a
detailed exposition of our algorithm in the near future. In this
paper we demonstrate our ability to compute multiphase flows on
complex geometries and to show the performance of CartaBlanca
compared to the CFDLIB FORTRAN code. Our first example
calculation is of the flow of sand grains and water in an
hourglass. Our second example is a computation of a so-called
broken dam experiment due to Martin and Moyce, [19].

5.3.1. Hourglass flow
We show here, some results from computations performed on a
triangular element mesh in the shape of an hourglass. Figure 13
shows both the mesh and the initials conditions for the
calculation. The mesh contains 1018 elements and 578 nodes.
The overall dimensions of the problem are 10 cm by 10 cm. The
width of the neck of the hourglass is 1 cm. The contours indicate
the initial distribution of materials. The dark region in the middle
of the hourglass is filled with 60% (by volume) sand and 40%
water. The remainder of the space is filled with water. At time
zero, gravity is “turned on” and the sand begins to fall through the
hourglass throat. The computation of this example problem was
performed with CartaBlanca on our SGI PC using a single mesh
partition. Figure 14 and Figure 15 show the time evolution of the
as calculated by CartaBlanca. The computation took about 15
minutes on the PC.

Figure 13. Initial conditions and mesh for hourglass problem.
Dark region is 60% sand and 40% water by volume.

Figure 14. Hourglass flow problem at 0.2 seconds, real time.

Figure 15 Hourglass flow problem at 0.36 seconds, real time.

5.3.2. Broken Dam Flow
The final example calculation is of a broken dam experiment
performed by Martin and Moyce, [19]. Martin and Moyce
constructed a small box with dimensions of 28.57cm by 12.57cm
by 2.3 cm out of plexiglass. Inside the box, they installed a
hinged door that served as a dam for water at one end. The door
was hinged so that it could be opened quickly to allow water to
fall freely under the action of gravity. The experimental set up is
shown in Figure 16

Figure 16. Schematic side-view diagram of broken dam
experiment.

Martin and Moyce recorded the time and position of the front of
water that moved across the bottom of the apparatus. We have
used CartaBlanca to successfully simulate the Martin and Moyce
broken dam experiment on a variety of two- and three-
dimensional meshes composed of quadrilateral, triangular,
hexahedral and tetrahedral elements. Figure 17 shows the
tetrahedral element mesh we used, for example. This mesh
consisted of 10076 elements and 2205 nodes.

Figure 17. Tetrahedral element mesh for the broken dam
problem.

Figure 18 shows the initial condition of the interface for the
calculation on the tetrahedral element mesh. The ‘bumpiness’ of
the interface is an artifact of the irregular tetrahedral mesh and
our, at present, simplified way of initializing materials in
CartaBlanca. Currently, we simply assign to each node a volume
fraction of either 0 or 1 according to its position relative to the
air-water interface. In the future, we will implement the ability to
assign fractional volume fractions to nodes that intersect the
interface using a particle interpolation technique.

Figure 18. Initial condition for broken dam experiment
simulation. Isosurface shows interface between water and air.
Water is to the right and below the interface.

In Figure 19 through Figure 23 we show the progression of the
air-water interface after opening the dam door to the point in time
at 0.2 seconds after the opening of the dam door where the water
reaches the far end of the box.

Figure 19 Interface at 0.04seconds.

Figure 20. Interface at 0.08seconds.

Figure 21. Interface at 0.12 seconds.

Figure 22. Interface at 0.16 seconds.

Figure 23. Interface at 0.2 seconds.

In Figure 24 we show a quantitative comparison of the water front
position between the experiments of Martin and Moyce and the
calculations using CartaBlanca. The CartaBlanca results are a
little ahead of the Martin and Moyce data and may signal the need
for improvements in the physical models incorporated into
CartaBlanca. (The CartaBlanca simulation neglected viscous and
surface tension effects.)

Figure 24. Comparison of CartaBlanca computation and data
of Martin and Moyce for water front position as a function of
time.

5.4. Performance
Our last task here is to give some measure of the performance of
CartaBlanca. To provide a basis of comparison, we used
CFDLIB, [17], and CartaBlanca to perform simulations of the
Martin and Moyce broken dam problem on both two- and three-
dimensional Cartesian meshes. We furthermore ran both codes
using the same treatment of advection mass fluxes, namely, 1st
order accurate donor cell advection. Finally, we used the
Conjugate Gradient method for the solution of the pressure
equation in CFDLIB and for the preconditioning of the non-linear
pressure residual in CartaBlanca. Thus, the two sets of
calculations, while not identical, were as close to the same as
possible in terms of the numerical methods used. Table 1

provides a comparison of the speed of the codes in terms of the
so-called grind time--average wall-clock processing time per time
step per node.

Case\Code Elements Time

Steps
CartaBlanca CFDLIB

2D
quadrilateral
element
mesh

1100 261 321 147

3D
hexahedral
element
mesh

4400 279 779 400

Table 1 Performance comparisons between CartaBlanca and
CFDLIB on the broken dam problem using 1st order (donor
cell) fluxes for advection. Table entries are ‘grind times’
defined as average wall-clock processing time in microseconds
per time step per node.

All calculations were performed on our Sun Ultra 60 workstation
running Solaris 2.7. For the CartaBlanca calculations, we used
Sun JDK 1.3.1 with the HotSpot JIT. For the CFDLIB
calculations, we used Sun FORTRAN 77 compiler version 5.0
with optimization. As can be seen from the Table, CartaBlanca
achieved 46% of the speed of CFDLIB in the two-dimensional
case and 51% of CFDLIB in the three-dimensional case. While
this is not a perfect side-by-side comparison of Java and
FORTRAN it is a reasonably close comparison. The results are
quite pleasing to us when we consider that CFDLIB is a highly
optimized FORTRAN code, which has many man-years of effort
behind it and a worldwide user base. Furthermore, CFDLIB is
recognized as a fast multiphase flow code by our users. Finally,
CFDLIB was written for structured grids and does not use
indirect addressing, as does CartaBlanca.

6. CONCLUSIONS AND FUTURE PLANS
Since we are still in the development phase of this project, it is
not appropriate to provide final assessments of the design and
performance of CartaBlanca. In a qualitative sense, we can say
that CartaBlanca has already been a useful tool for algorithm
development since we have been able to do the research on our
new advection scheme exclusively within CartaBlanca, [6]. That
is, CartaBlanca has provided us with sufficient usability and
performance that we did not choose to go “off-line” to some other
program or development tool to do one of our main jobs,
algorithm research and development. Therefore, in this sense, we
can already claim some “bottom-line” success.

The performance comparison of CartaBlanca with CFDLIB is
quite encouraging. We hope that with further improvements to
the CartaBlanca software and with improved Java compilers and
VM’s we will see the gap close.

We plan to pursue a number of promising leads in the near
future. The following is a partial list covering some of the major
possible directions:

• Fully investigate the use of Java native-code compilers. The

GNU compiler, GCJ, is particularly attractive in that it
provides the option of turning off array-bounds checking.
This could provide significant speed-up, [11].

• Incorporate fluid-structure interactions to the nonlinear
multiphase flow class for solidifying flow and elastic-plastic
flow simulations.

• Extend CartaBlanca to distributed memory architecture for
cluster-based computing. We are considering the use of
JavaParty, [22], or Jackal, [29], [30], as a means to extend
CartaBlanca to distributed memory systems.

7. ACKNOWLEDGMENTS
We gratefully acknowledge the support for this work from the
Department of Energy and the Los Alamos Computer Science
Institute (LACSI).

8. REFERENCES
[1] F. L. Addessio, J. R. Baumgardner, J. K. Dukowicz, N. L.

Johnson, B. A. Kashiwa, R. M. Rauenzahn, C. Zemach,
CAVEAT: A Computer Code for Fluid Dynamics Problems
with Large Distortion and Internal Slip, Los Alamos
National Laboratory Report LA-10613-MS, Rev. 1, May,
1992.

[2] R. M. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J.
Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. Van der
Vorst, Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd Edition, SIAM,
Philadelphia, 1994.

[3] P. N. Brown and Y. Saad, Hybrid Krylov Methods for
nonlinear systems of equations, SIAM J. Sci. Stat. Comput.,
11(3):450-81, 1990.

[4] R. F. Boisvert, J. Moriera, M. Phillipsen, R. Pozo, Java and
Numerical Computing, Computing in Science &
Engineering, 3(2):18-24, Mar.-Apr., 2001.

[5] S. J. Chapman, Java for Engineers and Scientists, Prentice
Hall, Upper Saddle River, NJ, 2000.

[6] E. D. Dendy, N. T. Padial-Collins and W. B. VanderHeyden,
A General Purpose, Finite-Volume Advection Scheme for
Continuous and Discontinuous Fields on Unstructured
Grids, in review, J. Comp. Phys.

[7] D. A. Drew and S. L. Passman, Theory of Multicomponent
Fluids, Springer, New York, 1999.

[8] R. M. Eckstein, M. Loy and D. Wood, Java Swing, O’Reilly,
Cambridge, 1998.

[9] J. H. Ferziger and M. Peric, Computational Methods for
Fluid Dynamics, Springer, New York, 1999.

[10] M. Fowler, Put Your Process on a Diet, Software
Development Magazine, 2(12), December 2000.

[11] http://gcc.gnu.org/java/index.html
[12] E. R. Harold, Java I/O, O’Reilly, Cambridge, 1998.
[13] M. Hatakeyama, M. Watanabe and T. Suzuki, Object-

Oriented Fluid Flow Simulation System, Computers &
Fluids, 27(5):581-597, 1998.

[14] J. Hauser, T. Ludewig, T. Gollnick, R. Winkelman, R.
Williams, J. Muylaert and M. Spel, A Pure Java Parallel
Flow Solver, AIAA paper 99-0549.

[15] JUnit, http://www.JUnit.org/.
[16] G. Karypis, and V. Kumar, METIS A Software Package for

Partitioning Unstructured Graphs, Partitioning Meshes, and
Computing Fill-Reducing Orderings of Sparse Matrices,
Version 4.0, University of Minnesota, Department of
Computer Science / Army HPC Research Center,
Minneapolis, MN (http://www-
users.cs.umn.edu/~karypis/metis/index.html)

[17] B. Kashiwa, N. T. Padial, R. M. Rauenzahn and W. B.
VanderHeyden, A Cell-Centered ICE Method for
Multiphase Flow Simulations, FED-Vol. 185, Numerical
Methods in Multiphase Flows, ASME, 185:159-176, 1994.

[18] C. T. Kelly, Iterative Methods for Linear and Nonlinear
Equations, SIAM, Philadelphia, 1995.

[19] J. C. Martin and W. J. Moyce, An experimental study of the
collapse of liquid columns on a rigid horizontal plane,
Philos. Trans. R. Soc., A244:312-324, 1952.

[20] S. Oaks, and H. Wong, Java Threads, O’Reilly, Cambridge,
1999.

[21] P. J. O’Rourke, and M. S. Sahota, CHAD: A Parallel, 3-D.
Implicit, Unstructured-Grid, Multimaterial, Hydrodynamics
Code for All Flow Speeds, Los Alamos National Laboratory
Report LA-UR-98-5663, October, 1998.

[22] M. Philippsen, and M. Zenger, JavaParty: transparent remote
objects in Java, Concurrency-Practice and Experience,
9:1225-1242, November 1997.

[23] K. Reinholtz, Java will be faster than C++, ACM Sigplan
Notices, 35(2):25-28, Feb 2000

[24] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS
Publishing, San Fransisco, 1995.

[25] J. Schatzman and R. Donehower, High-Performance Java
Software Development, Java Report, 6(2):24-41, 2001.

[26] V. Selmin, The Node-Centered Finite Volume Approach:
Bridge between Finite Differences and Finite Elements,
Comput. Methods in Appl. Mech. Engrg., 102(1):107-138,
January, 1993.

[27] J. Shirazi, Java Performance Tuning, O’Reilly, Cambridge,
2000.

[28] W. B. VanderHeyden, E. D. Dendy and N. T. Padial-Collins,
CartaBlanca- A Pure-Java, Component-based Systems
Simulation Tool for Coupled Nonlinear Physics on
Unstructured Grids, Proceedings for the ACM 2001 Java
Grande/ISCOPE Conference, ACM Press, New York, 2001.

[29] R. Veldema, R. F. H. Hofman, C. Jacobs, R. A. F.
Bhoedjang, and H. E. Bal, Jackal, A Compiler-Supported
Distributed Shared Memory Implementation of Java,
submitted for publication.
http://www.cs.vu.nl/rveldema/jackal-2001.ps, 2001.

[30] R. Veldema, R. F. H. Hofman, R. A. F. Bhoedjang, and H.
E. Bal, Runtime Optimizations for a Java DSM
Implementation, Proceedings for the ACM 2001 Java
Grande/ISCOPE Conference, ACM Press, New York, 2001.

[31] Telluride, http://public.lanl.gov/mww/HomePage.html, Los
Alamos National Laboratory Report LA-UR-99-1664, 1999.

http://www-users.cs.umn.edu/~karypis/metis/index.html
http://www-users.cs.umn.edu/~karypis/metis/index.html
http://www.cs.vu.nl/rveldema/jackal-2001.ps

	LA-UR-00-6049
	INTRODUCTION
	Status
	Java Performance
	Related Efforts
	Outline

	FINITE VOLUME METHOD
	JACOBIAN-FREE NEWTON-KRYLOV METHOD
	SOFTWARE
	Approach
	Software Engineering
	I/O Package
	Input Package
	Communications Package
	Mesh Package
	Discrete Operations Package
	Physical Properties Package
	Physics Package
	AbsState Class
	AbsProblemPhysics Class
	NLAbsProblemPhysics Class

	Solver Package
	Graphics Package
	Problem Driver Package
	Boundary Conditions Package
	Main Package

	RESULTS
	Scalar Advection
	Implicit Heat Transfer
	Multiphase Flow
	Hourglass flow
	Broken Dam Flow

	Performance

	CONCLUSIONS AND FUTURE PLANS
	ACKNOWLEDGMENTS
	REFERENCES

