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ABSTRACT 

  

  
This paper describes a component-based nonlinear physical 
system simulation prototyping package written entirely in Java 
using object-oriented design.  The package provides scientists and 
engineers a “developer-friendly” software environment for large-
scale computational algorithm and physical model development.  
The software design centers on the Jacobian-Free Newton-Krylov 
solution method surrounding a finite-volume treatment of 
conservation equations. This enables a clean component-like 
implementation.  We first provide motivation for the development 
of the software and then discuss software structure.  Discussion 
includes a description of the use of Java’s built-in thread facility 
that enables parallel, shared-memory computations on a wide 
variety of unstructured grids with triangular, quadrilateral, 
tetrahedral and hexahedral elements.  We also discuss the use of 
Java’s inheritance mechanism in the construction of a hierarchy of 
physics systems objects and linear and nonlinear solver objects 
that simplify development and foster software re-use.  We also 
provide a brief review of the Jacobian-Free Newton-Krylov 
nonlinear system solution method and discuss how it fits into our 
design.  Following this, we show results from example 
calculations and then discuss plans including the extension of the 
software to distributed memory computer systems. 
 
1. INTRODUCTION 
Specialized simulation software for nonlinear physical systems is 
one of the central research products from many of the programs 
here at Los Alamos National Laboratory (LANL) and at other 
similar institutions.  Such systems are often 3-dimensional and are 
solved on unstructured computational grids.  Thus, simulation 
software for these systems can be quite complex.  Very often, 
simulation projects involve the modification of existing software 
to produce new capabilities.  Furthermore, program goals change 
frequently as funding priorities evolve or as research 
developments lead to new branches of investigation.  As such, 
application development is often the bottleneck on these projects. 
There is, therefore, substantial incentive for software and software 
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environments that are “developer-friendly”—easy for scientific 
and engineering software developers to modify and extend.  
Fortunately, two technology trends address this need in a 
coordinated fashion. 

First, object-oriented and component-based software has made 
an enormous impact in the commercial software arena for 
telecommunications and e-Business.  Enhancement of software 
developer productivity has come from a variety of sources 
including new languages such as Java which support object 
orientation and component software and a host of software 
developer productivity tools including graphical design 
applications, graphical debuggers, etc., that work with these 
languages.   At the same time, significant advances have occurred 
in nonlinear systems solutions methods.  In particular, Jacobian-
Free Newton-Krylov (JFNK), [3], methods have been employed 
and extended to provide robust and flexible solution methods for 
a wide variety of coupled nonlinear physics simulation 
capabilities.  In addition, the combination of JFNK and the finite-
volume technique, [9], fits well into an object-oriented or 
component-based software environment. 

Thus, the goal of the CartaBlanca project is to produce a 
modern flexible software environment for prototyping physical 
models, discretization schemes and solution methods for 
nonlinear physics problems on unstructured grids.  CartaBlanca 
employs an object-oriented, component-based design using the 
Java programming language.  CartaBlanca uses unstructured grids 
composed of either, triangular or quadrilateral mesh elements in 2 
dimensions, or tetrahedral or hexahedral mesh elements in 3 
dimensions.  CartaBlanca employs the finite-volume method, [9], 
to provide for flexibility with regard to both meshes and physical 
effects.  Finally, CartaBlanca uses Java’s built-in thread facility 
for shared-memory parallelization. 

1.1. Status 
We currently have a great deal of infrastructure for CartaBlanca 
in place.  Our updated list of features since first reporting on 
CartaBlanca, [28],  includes: 
 
• Accepts unstructured grids in 2 and 3 dimensions with 

triangular, tetrahedral, quadrilateral and hexahedral 
elements. 



• Accepts Metis, [16], generated mesh partition files; 
computes in parallel on Metis sub domains. 

• Has a Graphical User Interface (GUI) for problem 
specification. 

• Uses abstract classes for state, physics and solvers objects; 
imposes a uniform component-like interface for developers. 

• Pre-conditioned Conjugate gradient and GMRES Krylov 
linear solvers interact seamlessly with physics objects. 

• Nonlinear quasi-Newton solver wraps around linear Krylov 
solvers to provide a JFNK solver. 

• Physics objects available for high accuracy scalar advection, 
interface tracking, heat transfer and multiphase flow. 

• Automatic generation of Tecplot (from Amtec Engineering) 
graphics files for arbitrary physical systems. 

• Embedded software-testing facility based on the JUnit 
framework, [15]. 

• Direct remote access to CVS revision control server is 
enabled for efficient team code development.  

1.2. Java Performance 
A recent article by Schatzman and Donehower, [25], provides a 
useful discussion of the potential pitfalls involved and tips on how 
to program in Java to try to achieve performance comparable to 
that obtainable using C, C++ and FORTRAN.  Similar 
information is also available in reference, [27].  More 
encouraging news regarding Java performance has been reported 
by Boisvert, et. Al., [4].  These authors provide an up-to-date 
review, which shows that Java performance has improved 
significantly over the past several versions of the Java Version 
Machine (JVM). Remarkably, they show that, for some cases, 
Java is slightly faster than C when tested back-to-back on a suite 
of scientific computing benchmark applications called Scimark 
from the US National Institute of Standards and Technology.  In 
addition, Reinholtz, [23], writes that not only is it possible for 
Java to have better general performance than C++, but also that it 
is likely that this will actually occur.  He argues that Java 
performance can exceed that of C++ because dynamic 
compilation gives the Java compiler access to runtime 
information not available to a C++ compiler.  Furthermore, the 
rapidly growing market for embedded systems will drive such 
performance improvements to extend battery life.  Considering 
the above information and the important benefits from Java’s 
strong typing, clean design, object-orientation, it is our opinion 
that Java is now a serious alternative language for scientific and 
engineering computing applications. 

1.3. Related Efforts 
CartaBlanca builds on some important existing software programs 
here at LANL.  Here is a brief description of these programs.  
CFDLIB, [17], a FORTRAN 77 program, is an outgrowth of the 
Caveat program, [1], which provides a flexible finite-volume 
multiphase flow simulation capability.  The Telluride program, 
[31], provides a multi-material simulation capability with 
interface tracking on unstructured grids.  Telluride makes 
extensive use of the FORTRAN 90 module concept.  The CHAD 
program, [21], is a flexible node-based finite-volume simulation 
program for flow simulation on unstructured grids.  CHAD uses 
FORTRAN 90 and accommodates hybrid grids using an edge-
based connectivity data structure, [26].  Finally, Kokopelli, is a 
C++ program for interfacial and polymer flow problems.  The 

authors have had extensive experience with these programs.  The 
design and implementation of CartaBlanca builds on the lessons 
learned from these experiences. 

It is also worthwhile to note two relevant examples from 
outside our laboratory.  First, Hauser, et. Al., [14], have produced 
an object-oriented, pure-Java simulation code for aerospace 
applications.  They employ a multi-block structured grid 
computation scheme and use Java’s thread and RMI facilities for 
parallelization and to enable remote interaction between a 
graphical user interface and the numerical application. 

Another effort worth noting here is that of Hatakeyama, et. Al., 
[13], who describe an object-oriented paradigm for flow 
simulation software in which the object-oriented concept is used 
at the computational node level to produce flexible abstractions.  
They demonstrate their concepts with a C++, structured grid 
simulation of a wind tunnel with a test object and show that they 
can easily insert and extract arbitrary-shaped flow obstacles. 

1.4. Outline 
In Section 2 we provide an overview of the finite-volume method 
for discretization of conservation equations.  In Section 3 we 
describe the major features of the Jacobian-Free Newton-Krylov 
solution method.  We then proceed in Section 4 to give an 
overview of the CartaBlanca software packages.  We follow this 
in Section 5 with some results from example calculations.  
Finally, in Section 6 we provide a discussion of conclusions and 
plans. 
 
2. FINITE VOLUME METHOD 
CartaBlanca is based on the finite-volume method, [9], for 
conservation equations.  CartaBlanca adopts the node-based 
version of this scheme with edge-based connectivity, [21], [26].  
We provide here a very simplified outline of the method.  For an 
arbitrary control volume V  with bounding surface A  the generic 
conservation statement is of the form 
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where q is the density of some conserved quantity such as mass, 

momentum or energy, f
�

is the local flux of this conserved 
quantity due to a variety of mechanisms, n� is an outward normal 
vector defined on the surface of the control volume, and s  is a 
generalized source density.  The first and third integrals in 
Equation (1) are over the entire space of the control volume; the 
second integral is over the surface of the control volume.  The 
derivative on the first integral quantity in Equation (1) is with 
respect to time.  For numerical computations, Equation (1) is 
discretized in time and in space on a computational grid.  On such 
a grid, conservation nodes are connected by edges as shown in 
Figure 1.  



 

Figure 1. Control volume for thi  node. 

Each node is associated with a polyhedral control volume, iV , as 
depicted in Figure 1. For each node, the averaged value of the 
conserved density is defined as 
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The quantities iq  are, typically, the state variables for the 
numerical simulation.  Similarly, the average source over each 
control volume is 
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Let ef

�

 be the average flux on the control volume face associated 
with edge e .  Then, if we integrate the Equation (1) over a time 
step, t∆ , using, for example, a first-order difference 
approximation for the time derivative, we obtain the discretized 
form of the conservation equation 
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where the superscripts n and 1n +  denote the present and future 
time levels, respectively.  Of course, the fluxes and source terms 
are generally functions of space, time and the state variables, iq .  
Thus, the set of discretized conservation equations for all nodes 
and all types of conservation quantities forms a nonlinear 
algebraic system.  The physics for a given application lies in the 
definition of the fluxes and sources in Equation (4).  The aim of 
CartaBlanca is to provide scientists and engineers a friendly 
environment using object-oriented Java for the implementation of 
component-like physics and solver objects for the solution of the 
corresponding coupled nonlinear conservation equations. 
 
3. JACOBIAN-FREE NEWTON-KRYLOV 

METHOD 
We may write the set of conservation equations in the compact, 
abstract form 
 
 ( )1 0n

iF q + =  (5) 

 

where iF  denotes the left hand side of Equation (4) and 1nq +  
denotes the entire set of state variables at the advanced time.  The 
quantity iF is called the residual function.  The system 
represented by Equation (5) is, in general, nonlinear.  We employ 
the Jacobian-Free Newton-Krylov method, [3], in CartaBlanca to 
solve these systems.  We provide here a brief outline in order to 
motivate our discussion of the software design.  Newton’s method 
for a nonlinear system begins with an initial guess of the solution, 

1(0)n
jq + , where the superscript in parenthesis denotes the iterate 

level.  This is, typically, the solution from time level n.  Newton’s 
method then proceeds through a series of iterations involving the 
solution of a sequence of linear systems 
 
 ( )( ) ( )( )1 1 ,n k n kk

ij j iJ q F qδ+ += −  (6) 

 
along with the update 
 
 ( ) ( )1 1 1 ,n k n k kq q δ+ + += +  (7) 
 
where there is an implied summation in Equation (6) on the 
repeated index, j .  The goal, of course, is to proceed until we 
find the solution to Equation (5).  The matrix quantity, ijJ , is the 
Jacobian matrix defined as 
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Explicit formation of the Jacobian matrix is typically a very 

expensive computation.  Fortunately, the JFNK method takes 
advantage of the fact that Krylov linear solution methods require 
only the evaluation of matrix-vector products, Jv  (where v is a 
Krylov vector), and not the matrix J by itself, [3].  Furthermore, 
matrix-vector products can be approximated numerically using a 
directional difference formula, 
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where ε  is some small scalar perturbation parameter, [3].  This 
approximation allows us to structure CartaBlanca in such a way 
that the physics developer can focus on providing residual 
functions inside physics objects or components.  Using the 
abstraction embodied in Equation (5) we have genericized the rest 
of the infrastructure for solving and processing physics problems 
so that developers can work simultaneously on a variety of 
different problems using the same software. 
 
4. SOFTWARE 
CartaBlanca is composed, at present, of twelve separate packages.  
Each contains classes that perform distinct functions.  We have 
tried to design these classes to serve as software components that 
can be interchanged in a “plug and play” mode by developers.  
We have also tried to write the utility classes in such a way that 
physics and solver class developers need not concern themselves 
with the implementation of the parallel features of the software. 



In the following, we describe each of these packages and the 
classes they contain.  We also describe the interactions and 
associations between the classes in the different packages.  We 
choose to start the discussion with the mesh and input packages.  
These are low-level packages; they are used by many but make 
sparing use of other packages.  We then work our way up through 
the remaining packages of increasing complexity until we finally 
describe the main package, which contains the main methods.  
Before proceeding to the discussion of the CartaBlanca software 
packages, we start by commenting on our general design 
approach and on our software engineering methods. 

4.1. Approach 
Our approach to the design of CartaBlanca includes the following 
general guiding principles.  First, we have endeavored to make 
use of object-orientation at the highest levels from a physical 
point of view.  Thus, our objects are things that exist over entire 
sections of the computational domain or grid, rather than at 
individual nodes.  This choice was made based on the idea that 
this would yield higher numerical performance by avoiding 
excessive overhead at the node level.  This choice also provides a 
smoother transition into object-oriented programming for 
developers more familiar with procedural scientific legacy codes.  
Nevertheless, this approach has allowed us to make substantial 
use of Java and its object-oriented features. 

Another principle we have employed is to make the top levels 
of the program as generic as possible so that the developer can 
plug physics into the appropriate program locations and then have 
the rest of the program able to immediately interact.  This was 
accomplished, in part, by the use of abstract classes, which 
provide general functionality and interfaces for things such as 
physics and solver objects.  Thus, these objects are like 
components. 

4.2. Software Engineering 
Our approach to team programming follows the lightweight 
processes advocated in the recent article by Fowler, [10].  
Iterative programming and component development has, for 
example, been very useful.  The use of team coding has also 
proved helpful. 

In order to foster the team software approach, we have 
incorporated the JUnit, [15], testing facility into CartaBlanca.  
This has been useful in that any developer can perform tests easily 
on their local computing platform to make sure his modifications 
have not corrupted the software.  This is in contrast to a situation 
in which software testing is performed using specialized software 
available only on a certain computing platform. 

We have found it very helpful to use a common integrated 
development environment (IDE) for our software development.  
We are currently using JBuilder 4.0 Professional by Borland 
Technologies.  JBuilder gives us an identical programming 
environment on our Windows NT and Solaris workstations.  
JBuilder is also available for LINUX operating systems.  The 
JBuilder environment, conveniently, recognizes the JavaDoc 
@todo functionality.  We use this feature as a simple issues 
tracking mechanism. 

In addition to the JBuilder IDE, we use the GNU CVS revision 
control software for our software repository.  We run CVS as a 
‘pserver’ on one of our Solaris workstations.  Thus, we can check 
pieces of software in and out over the network directly.  We 
currently run a simple implicit heat transfer, scalar advection and 

multiphase flow problems (discussed in Section 5) as test 
problems before committing software modifications to our CVS 
repository. 

4.3. I/O Package 
CartaBlanca reads mesh files (see Section 4.6) and writes 
graphics files (see Section 4.11).  In the initial stages of the 
project, an I/O package was imported from S. J. Chapman, [5], 
for these operations, [28].  This package contained classes with 
methods that enabled the developer to write C-language-syntax 
file print and read statements.  We have since abandoned this 
package in favor of using Java’s very effective Reader and Writer 
classes in the java.io package, [12].  We make use of the non-
standard ExponentialFormat class provided in reference [12] for 
writing doubles to text files.  At present, this is the only class 
contained in the I/O Package. 

4.4. Input Package 
The input package contains the basic input facilities for problem 
specification.  The user specifies parameters such as solver 
tolerances, physical properties and boundary conditions using a 
graphical user interface (GUI).  Problem data is written to a 
‘ProblemSpecifier’ class object.  The ‘ProblemSpecifier’ object 
contains all input information from the GUI.  It can be queried by 
as needed for information in the rest of the program.  The 
‘ProblemSpecifier’ object is serializable.  This feature is used to 
save ProblemSpecifier settings to disk.  This eliminates the need 
for any text-based input files, other than the mesh files (see 
section 4.6). 

The GUI is contained in three classes named 
‘TabbedInputClass’, ‘TabbedInputFrame’ and 
‘TabbedInputFrame_AboutBox.’  The GUI covers several 
categories of input separated into several tabbed input frames.  
The input categories are General Information, Physics, Linear 
Solver, Nonlinear Solver, Pre-conditioner, Initial Conditions, 
Boundary Conditions and Materials.  A snapshot of the GUI 
interface is shown in Figure 2. 
 

 



Figure 2. Snapshot of GUI.  Tabs enable user to provide input 
on the various categories of input. 

The user can click on the various tabs along the top of the GUI 
to access the different categories of input.  As the user types in 
new information into the fields of the GUI, the information is 
written to the ProblemSpecifier object.  When the user exits the 
GUI, the ProblemSpecifier is output to disk as a serialized object 
for future use and the rest of the program then begins executing 
based on the information in the ProblemSpecifier object. 

4.5. Communications Package 
The communications package contains classes of objects that 
provide functionality for inter-partition communication and for 
global mesh operations.  The class CyclicBarrier provides a 
simple barrier that objects may invoke to synchronize 
calculations.  The implementation was modeled on the barrier 
class provided in Chapter 5 of Oaks and Wong, [20].  The 
CyclicBarrier is used, for example, in discrete operations such as 
divergence field computations in which communication of flux 
quantities among mesh partitions are required. 

The Reduction class in the communications package provides 
for the computation of global quantities across the entire mesh 
such as a global maximum or a global sum.  Global sums are 
required, for example, for mesh-wide dot products of vectors in 
the various Krylov solvers.  The Reduction class accomplishes 
this by using static class variables for sums and extrema. 

4.6. Mesh Package 
The mesh package contains several classes that describe mesh 
elements, edges, interior boundary nodes, and partition and global 
meshes. These classes are built from mesh information read from 
mesh files.  CartaBlanca requires three types of mesh information 
files, which follow the format used by the Metis mesh-
partitioning program, [16].  The three files contain the mesh 
connectivity, the node coordinates and the partitioning of the 
mesh elements. Please see the Metis manual, [16], for a 
description of these files. 

 
CartaBlanca requires mesh partitioning to be done in such a 

way that elements and not nodes are partitioned.  Referring to 
Figure 3, the mesh partitioning for CartaBlanca must be done 
along node-edge connections.  In the Figure, the heavier edge 
connections denote the boundary between partitions A and B.  To 
implement this mode of partitioning in CartaBlanca, nodes on the 
partition boundaries are duplicated.  In the example in the Figure, 
the three nodes along the partition boundary would be present in 
each partition as duplicates.  

 

Figure 3. Partitioning in CartaBlanca.  Meshes must be 
partitioned along node connections. 

Figure 4 shows an example of an element-partitioned mesh for 
CartaBlanca. 
 

 
Figure 4. Two-dimensional 3000 node partitioned mesh. 
Partitions were generated using Metis. 
 

The mesh partitioning shown in Figure 4 was performed using 
the Metis program and the Metis output was then fed to 
CartaBlanca for computations.  The actual plot was generated 
using the Tecplot program which operates on graphics output 
files from CartaBlanca (see Section 4.11)  A further example 
mesh is shown in Figure 5 for the case of a 3-dimensional 
tetrahedral mesh. 
 

 
Figure 5.  Three-dimensional tetrahedral element mesh. The 
shading denotes the 4 partitions that were computed by Metis. 



In general terms, the mesh package classes perform the 
following functions: 
 
• Read and store data from mesh input files. This includes 

element connectivity, node coordinates and element 
partitioning, 

• Compute all required element and node geometrical 
information such as cell face areas and normal vectors for 
the global mesh, 

• Compute all edge connectivity and geometric information 
from the element information for the global mesh, 

• Link all nodes via edge elements, 
• Setup up partition meshes with links between global and 

partition mesh objects including nodes, elements and edges. 
• Set up connectivity between duplicate nodes on different 

partitions. 

4.7. Discrete Operations Package 
The discrete operations package contains a class called 
Divergence which provides a variety of mesh-wide discrete 
operations including the computation of the divergence of a 
vector field, the gradient of a scalar at both mesh nodes and mesh 
faces as well as some more specialized operations.  Some of the 
specialized operations include finding the maximum face-by-face 
inflow values for each node for advection calculations and finding 
the diagonal term of a mesh-wide matrix operator.  All of these 
operations require communication and therefore use the duplicate 
node connectivity information from the mesh package classes and 
the barrier object from the communications package. 
 

4.8. Physical Properties Package 
Physical properties such as material densities and transport 
properties such as viscosities, mass diffusivities and thermal 
conductivities are required in simulations of physical systems.  
These quantities are often predicted using equations of state from 
system quantities such as temperature and pressure.  The details 
of these predictions are kept separate from the solution of 
conservation equations by isolating the implementation in a 
separate package.  This package contains, at present, classes for 
the prediction of material densities diffusivities, and inter-phase 
exchange parameters such as drag coefficients.  The classes use 
information input by the user from the materials input pages of 
the GUI and provide methods to the physics package classes (see 
Section 4.9) for the materials properties predictions.   Thus, the 
physical properties package classes also insulates the physics 
developers from changes in the details of the materials properties 
input specifications. 

4.9. Physics Package 
The physics package contains classes that allow a developer to 
encode the conservation equations that he or she would like to 
solve.  The developer first must set up an AbsState class 
corresponding to his physical system.  AbsState is a container 
class (seesection 4.9.1).  Once the AbsSstate class is set up, the 
user then can encode his conservation equations in an 
AbsProblemPhysics class.  This is discussed in section 4.9.2.  
When specifying both the AbsState class and the 
AbsProblemPhysics class, the user must extend abstract classes 

that provide the basic interface expected by the rest of 
CartaBlanca. 

4.9.1. AbsState Class 
The AbsState class is an abstract class that must be extended by 
the developer to provide a data container for state variables for 
specific physics problems.  The state variables are fundamentally 
stored in a two dimensional array wherein the first dimension is 
the variable type and the second dimension is the node index.  For 
example, if one is trying to solve a problem with state variables 
for pressure, and three components of velocity, then the first 
dimension of this array would be four.  The two-dimensional 
representation is convenient for developers since they tend to 
work with the governing equations a field or state variable type at 
a time.  The two-dimensional view is also a convenient format for 
the graphics package since it also processes the data a field at a 
time. 

Krylov solvers, however, work in terms of a one-dimensional 
state vector. Thus, the AbsState class also provides a one-
dimensional view of the same state data.  Currently, the one-
dimensional view is provided as a copy of the two dimensional 
data.  The copy is performed using Java’s System.arraycopy 
function for best performance. 

4.9.2. AbsProblemPhysics Class 
For linear physical systems, developers can specify their physical 
system behavior by extending the AbsProblemPhysics class.  
AbsProblemPhysics is an abstract class that lays out what 
CartaBlanca expects from physics objects.  The most important 
feature of this class of objects is the methods to get the right and 
left hand side of the governing equations for the state variables.  
The solvers in CartaBlanca interact with these physics object 
methods to obtain the right-hand side of the linear equation 
system and the matrix-vector multiply.  Another important 
behavior of AbsProblemPhysics objects is the pre-conditioning 
method.  The Krylov solvers also interact with physics objects by 
invoking their pre-conditioning method.  This method takes a 
Krylov vector from the Krylov solver and updates it according to 
some iterative improvement scheme.  Currently, diagonal, Jacobi  
and symmetric successive over-relaxation pre-conditioning are 
available.  Plans for a multigrid-like scheme are in place to obtain 
improved solver performance. 

AbsProblemPhysics classes also inherit some methods for the 
base class for converting time n  states to time 1n + states.  
These methods, of course, can be overridden in the derived 
classes to provide additional functionality. 

4.9.3. NLAbsProblemPhysics Class 
In the case of nonlinear physics problems, the matrix-vector 
multiply evaluation has to be provided in a generic fashion 
following Equation (9).  The NLAbsProblemPhysics class of 
CartaBlanca extends the AbsProblemPhysics to provide this 
behavior.  In this class of objects, the developer must encode the 
governing equations into methods that return the full nonlinear 
residual equation in the form of a left and right hand side.  The 
left and right hand side correspond to the implicit and explicit 
parts of the governing equations.  These objects invoke these 
nonlinear get methods from the overridden linear get methods 
from AbsProblemPhysics class using Equation (9) to produce a 
linear matrix-vector multiply evaluation.  Since 



NLAbsProblemPhysics inherits from AbsProblemPhysics, all 
other behavior, such as pre-conditioning is also available. 

Figure 6 provides a graphical overview of the physics class 
inheritance hierarchy that was generated directly from the Java 
source code using GDPro from Embarcadero Technologies. 
 

 
Figure 6. UML Class hierarchy diagram of the Physics 
package. 

4.10. Solver Package 
The solver package contains classes for linear and nonlinear 
solvers.  As was the case for the classes in the physics package, an 
abstract solver class, AbsSolver, is provided as a parent for all 
solvers.  Currently, this class has been extended to provide users 
Krylov solver classes based on Conjugate Gradient and both the 
standard and flexible variant of Gmres, [24].  In addition, an 
‘explicit’ solver is provided for fully explicit calculations which 
essentially bypasses any solution method at all and simply returns 
the right hand side as the solution.  Finally, a Newton-Krylov 
(JFNK) solver is provided for nonlinear problems.  Each of these 
solvers communicates directly with physics objects through 
method invocations.  The solver class inheritance hierarchy is 
shown in Figure 7. 

 
Figure 7.  Solver package class hierarchy. 

 

4.11. Graphics Package 
The Graphics package, at present, contains only one class that 

can be used to produce Tecplot format output text files.  The class 
interacts with the abstract state class so that it automatically 
knows about new state variables, etc.  Eventually, this class will 
be extended to allow for additional plot file output formats.  We 
also envision direct use of Java graphics. 

4.12. Problem Driver Package 
The ProblemDriver package contains the Driver class, a top-level 
driver for solving physics problems on each mesh partition.  The 
Driver class implements Java’s Thread-class Runnable interface.  
This enables data-parallel computation in CartaBlanca with each 
thread corresponding to a particular mesh partition.  Figure 8 
shows a UML association diagram for the Driver class. 
 

 
Driver

CyclicBarrier
{Imported}

 

Divergence
{Imported}

 

ProblemSpecifier
{Imported}

 

MeshDriver
{Imported}

 

AbsProblemPhysics
{Imported}

 

AbsSolver
{Imported}

Runnable
{Imported}  

Figure 8.  Association diagram for driver class. 

As can be seen, the Driver class interacts with all the major 
CartaBlanca objects from an AbsProblemPhysics object to an 
AbsSolver object. 
 

4.13. Boundary Conditions Package 
Boundary conditions are required for the complete specification 
of all but the simplest physical problems.  In order to build a layer 
of abstraction between the core physics classes and the user 
interface for boundary conditions, we have introduced a separate 
boundary conditions package.  At present, this package contains 
only one class, which implements boundary conditions.  This 
class takes user input data from the ProblemSpecifier object and 
provides methods for setting boundary fluxes for use in the 
conservations equations in the physics classes. 

4.14. Main Package 
The main package consists of several classes that contain the 
public static main method that drives the entire simulation.  The 
class PhysMain contains a main method that instantiates all high-
level objects and invokes the start method for all of the Driver 
objects for each mesh partition. 
 



 
Figure 9. Flow chart for CartaBlanca main method. 

 
5. RESULTS 
Here we provide information on compilation, run-time 
performance and some preliminary simulation results from 
CartaBlanca.  Computations were performed on a dual 500 Mhz 
Pentium III processor SGI 320 PC running a Windows NT 
operating system, on a single processor Sun Ultra 60 workstation 
running Solaris 2.7 operating system and on a 4-processor SGI 
Origin 200 workstation running the IRIX operating system.  The 
entire software package compiles to byte code in a matter of a few 
seconds. 

5.1. Scalar Advection 
The first two examples are of explicit scalar advection 
calculations done on the triangular element grid shown in Figure 
4. The results of the calculations are shown in Figure 10 and 
Figure 11.  These calculations were performed using 2 threads in 
parallel on our dual-processor SGI PC. Each thread operated on a 
separate mesh partition. 

 

 
Figure 10.  Results from a continuum scalar advection 
simulation on a two-dimensional triangular mesh.  

 
Figure 11. Results from a interface-tracking scalar advection 
simulation on a two-dimensional triangular mesh. 

Each calculation started with a pulse of concentration in the lower 
left hand corner of the domain.  In the first example, the 
concentration pulse has a Gaussian spatial distribution while in 
the second example; the pulse was a spatial step function with 
circular shape.  This material was advected towards the top right 
according to the conservation equation 
 

 0i

i

c cu
t x

∂ ∂+ =
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 (10) 

 
where c is concentration, iu  is the thi  component of velocity, t  
is time and ix is the thi spatial coordinate.  There is an implied 
summation over the repeated index in the second term.  In these 
example calculations, the velocity was a constant with component 
values of one in the horizontal and vertical directions.  The final 
conditions of the concentration pulses are shown in the top-right 
of Figure 10 and Figure 11.  Note that in the case of Figure 10 we 
used the continuous field version of CartaBlanca’s advection 
facility while in Figure 11 we used the interface-tracking version 
of the advection facility, [6]. 

The calculations used Cartablanca’s explicit solver to advance 
the solution of Equation (10) over 120 time cycles.  Although 
Equation (10) is relatively simple, it is commonly known that it is 



difficult to obtain accurate numerical solutions for this equation 
that minimize the artificial numerical smearing of such 
concentration pulses and also avoid the creation of artificial 
extrema, especially on triangular grid meshes.  Also, doing such 
calculations using interface tracking is also a very difficult task.  
These examples demonstrate that CartaBlanca has advanced 
advection algorithms that can be used by developers for a wide 
variety of applications.  

5.2. Implicit Heat Transfer 
The second example is a simple implicit heat transfer calculation 
performed on similar triangular element meshes.  CartaBlanca’s 
flexible Gmres solver was used without preconditioning to 
compute the temperature field as a function of time according to 
the equation 
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 (11) 

 
where T is temperature and α  is the thermal diffusivity, which 
was set to one for the example problem.  Zero-gradient boundary 
conditions were used which correspond physically to a perfectly 
insulated box.  The final state is, therefore, a uniform temperature 
of one-half.  CartaBlanca computed the correct solution on a 
46000-node triangular element mesh, using both a single mesh 
partition and multiple mesh partitions running on separate threads 
in parallel. 
 

 
Figure 12. Preliminary example of scaling behavior of 
CartaBlanca on linear heat transfer problem.  Values are wall 
clock time for problem solution scaled by that for a single 
processor calculation. 

 
Figure 12 shows the scaling behavior for this heat transfer 
problem on a 4-processor SGI Origin 200 workstation.  These are 
very preliminary results and are likely to change as we perform 
more tests on the parallel performance of CartaBlanca.  They do 
show, however, that CartaBlanca appears to scale well for this 
problem. 
 

5.3. Multiphase Flow 
We also can compute multiphase flow using CartaBlanca.  The 
details of the governing equations and the numerical algorithm are 
beyond the scope of this publication.  Those interested in the 

governing equations for multiphase flow should consult 
reference, [7], for example.  Our numerical algorithm is closely 
related to the one used in CFDLIB, [17].  We plan to publish a 
detailed exposition of our algorithm in the near future.  In this 
paper we demonstrate our ability to compute multiphase flows on 
complex geometries and to show the performance of CartaBlanca 
compared to the CFDLIB FORTRAN code.  Our first example 
calculation is of the flow of sand grains and water in an 
hourglass.  Our second example is a computation of a so-called 
broken dam experiment due to Martin and Moyce, [19]. 

5.3.1. Hourglass flow 
We show here, some results from computations performed on a 
triangular element mesh in the shape of an hourglass.  Figure 13 
shows both the mesh and the initials conditions for the 
calculation.  The mesh contains 1018 elements and 578 nodes.  
The overall dimensions of the problem are 10 cm by 10 cm.  The 
width of the neck of the hourglass is 1 cm.  The contours indicate 
the initial distribution of materials.  The dark region in the middle 
of the hourglass is filled with 60% (by volume) sand and 40% 
water.  The remainder of the space is filled with water.  At time 
zero, gravity is “turned on” and the sand begins to fall through the 
hourglass throat.  The computation of this example problem was 
performed with CartaBlanca on our SGI PC using a single mesh 
partition.  Figure 14 and Figure 15 show the time evolution of the 
as calculated by CartaBlanca.  The computation took about 15 
minutes on the PC. 
 

 
Figure 13. Initial conditions and mesh for hourglass problem.  
Dark region is 60% sand and 40% water by volume. 

 



 
Figure 14. Hourglass flow problem at 0.2 seconds, real time. 

 
Figure 15 Hourglass flow problem at 0.36 seconds, real time. 

5.3.2. Broken Dam Flow 
The final example calculation is of a broken dam experiment 
performed by Martin and Moyce, [19].  Martin and Moyce 
constructed a small box with dimensions of 28.57cm by 12.57cm 
by 2.3 cm out of plexiglass.  Inside the box, they installed a 
hinged door that served as a dam for water at one end.  The door 
was hinged so that it could be opened quickly to allow water to 
fall freely under the action of gravity. The experimental set up is 
shown in Figure 16 

 
Figure 16. Schematic side-view diagram of broken dam 
experiment. 

Martin and Moyce recorded the time and position of the front of 
water that moved across the bottom of the apparatus.  We have 
used CartaBlanca to successfully simulate the Martin and Moyce 
broken dam experiment on a variety of two- and three-
dimensional meshes composed of quadrilateral, triangular, 
hexahedral and tetrahedral elements.  Figure 17 shows the 
tetrahedral element mesh we used, for example.  This mesh 
consisted of 10076 elements and 2205 nodes. 

 
Figure 17. Tetrahedral element mesh for the broken dam 
problem. 

Figure 18 shows the initial condition of the interface for the 
calculation on the tetrahedral element mesh.  The ‘bumpiness’ of 
the interface is an artifact of the irregular tetrahedral mesh and 
our, at present, simplified way of initializing materials in 
CartaBlanca.  Currently, we simply assign to each node a volume 
fraction of either 0 or 1 according to its position relative to the 
air-water interface.  In the future, we will implement the ability to 
assign fractional volume fractions to nodes that intersect the 
interface using a particle interpolation technique. 



 
Figure 18. Initial condition for broken dam experiment 
simulation.  Isosurface shows interface between water and air.  
Water is to the right and below the interface. 

 
In Figure 19 through Figure 23 we show the progression of the 
air-water interface after opening the dam door to the point in time 
at 0.2 seconds after the opening of the dam door where the water 
reaches the far end of the box. 

 
Figure 19 Interface at 0.04seconds. 

 

 
Figure 20. Interface at 0.08seconds. 

 
Figure 21. Interface at 0.12 seconds. 

 
Figure 22. Interface at 0.16 seconds. 



 
Figure 23. Interface at 0.2 seconds. 

 
In Figure 24 we show a quantitative comparison of the water front 
position between the experiments of Martin and Moyce and the 
calculations using CartaBlanca.  The CartaBlanca results are a 
little ahead of the Martin and Moyce data and may signal the need 
for improvements in the physical models incorporated into 
CartaBlanca.  (The CartaBlanca simulation neglected viscous and 
surface tension effects.) 
 

 
 

Figure 24.  Comparison of CartaBlanca computation and data 
of Martin and Moyce for water front position as a function of 
time. 

5.4. Performance 
Our last task here is to give some measure of the performance of 
CartaBlanca.  To provide a basis of comparison, we used 
CFDLIB, [17], and CartaBlanca to perform simulations of the 
Martin and Moyce broken dam problem on both two- and three- 
dimensional Cartesian meshes.  We furthermore ran both codes 
using the same treatment of advection mass fluxes, namely, 1st 
order accurate donor cell advection.  Finally, we used the 
Conjugate Gradient method for the solution of the pressure 
equation in CFDLIB and for the preconditioning of the non-linear 
pressure residual in CartaBlanca.  Thus, the two sets of 
calculations, while not identical, were as close to the same as 
possible in terms of the numerical methods used.  Table 1 

provides a comparison of the speed of the codes in terms of the 
so-called grind time--average wall-clock processing time per time 
step per node. 
 
Case\Code Elements Time 

Steps 
CartaBlanca CFDLIB 

2D 
quadrilateral 
element 
mesh 

1100 261 321 147 

3D 
hexahedral 
element 
mesh 

4400 279 779 400 

 

Table 1 Performance comparisons between CartaBlanca and 
CFDLIB on the broken dam problem using 1st order (donor 
cell) fluxes for advection.  Table entries are ‘grind times’ 
defined as average wall-clock processing time in microseconds 
per time step per node. 

All calculations were performed on our Sun Ultra 60 workstation 
running Solaris 2.7.  For the CartaBlanca calculations, we used 
Sun JDK 1.3.1 with the HotSpot JIT.  For the CFDLIB 
calculations, we used Sun FORTRAN 77 compiler version 5.0 
with optimization.  As can be seen from the Table, CartaBlanca 
achieved 46% of the speed of CFDLIB in the two-dimensional 
case and 51% of CFDLIB in the three-dimensional case.  While 
this is not a perfect side-by-side comparison of Java and 
FORTRAN it is a reasonably close comparison.  The results are 
quite pleasing to us when we consider that CFDLIB is a highly 
optimized FORTRAN code, which has many man-years of effort 
behind it and a worldwide user base. Furthermore, CFDLIB is 
recognized as a fast multiphase flow code by our users.  Finally, 
CFDLIB was written for structured grids and does not use 
indirect addressing, as does CartaBlanca. 
 
6. CONCLUSIONS AND FUTURE PLANS 
Since we are still in the development phase of this project, it is 
not appropriate to provide final assessments of the design and 
performance of CartaBlanca.  In a qualitative sense, we can say 
that CartaBlanca has already been a useful tool for algorithm 
development since we have been able to do the research on our 
new advection scheme exclusively within CartaBlanca, [6].  That 
is, CartaBlanca has provided us with sufficient usability and 
performance that we did not choose to go “off-line” to some other 
program or development tool to do one of our main jobs, 
algorithm research and development.  Therefore, in this sense, we 
can already claim some “bottom-line” success. 

The performance comparison of CartaBlanca with CFDLIB is 
quite encouraging.  We hope that with further improvements to 
the CartaBlanca software and with improved Java compilers and 
VM’s we will see the gap close. 

We plan to pursue a number of promising leads in the near 
future.  The following is a partial list covering some of the major 
possible directions: 
 
• Fully investigate the use of Java native-code compilers.  The 

GNU compiler, GCJ, is particularly attractive in that it 
provides the option of turning off array-bounds checking.  
This could provide significant speed-up, [11]. 



• Incorporate fluid-structure interactions to the nonlinear 
multiphase flow class for solidifying flow and elastic-plastic 
flow simulations. 

• Extend CartaBlanca to distributed memory architecture for 
cluster-based computing.  We are considering the use of 
JavaParty, [22], or Jackal, [29], [30], as a means to extend 
CartaBlanca to distributed memory systems. 
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