Providing Soft Real-time QoS Guarantees for Java Threads

James C. Pang!, Gholamali C. Shoja, and Eric G. Manning?
Department of Computer Science
University of Victoria, Victoria, BC, Canada, V8W 3P6
Jcpang@Redback.com, {Gshoja, Emanning}@csr.UVic.ca

Abstract classified as beingoft real-time; it only requires the
The Java platform has many characteristics that make {fperating system to statistically guarantee quality of
very desirable for integrated continuous media processservice (QoS) parameters such as delay and through-
ing. Unfortunately, it lacks the necessary CPU resourcgut. There often are deadlines for various tasks; fortu-
management facility to support quality of service guar-nately, missing a particular deadline is not fatal, as long
antees for soft real-time multimedia tasks. In this paperas it is not missed by too much, and most other dead-
we present our new Java Virtual Machine, Q-JVM,lines are not missed.

which brings CPU resource management to the Java Multimedia computing is supported to varying
platform. Q-JVM is based on Sun’s JVM version 1.1.5.degrees by a number of current generation operating
It implements an enhanced version of the MTR-LSenvironments. Among these, the Java platform [1] has
algorithm in its thread scheduler. Combined withmany desirable characteristics. Java is a simple and
admission control that could be implemented in ansmall language. It is object-oriented and supports many
application-level resource manager, it is able to suppoifanguage features, such as interfaces and automatic
QoS parameters such as fairness, bandwidth partitiomaemory management, that make it a robust environ-
ing and delay bound guarantees, as well as the cumulaent for software development. It also supports multi-
tive service guarantee. Our test results show that Qthreaded programming at the language level with built-
JVM is backward compatible with the standard JVMin synchronization primitives, thus allowing a high
from Sun, has low scheduling overhead, and is able tdegree of interactivity with the end user. Moreover,

provide QoS guarantees as specified. Java has a rich collection of application programming
interfaces which support media manipulation and con-
1 Introduction tinuous media processing. Most importantly, Java was

The many-fold increase in raw processing power ofdesigned for embedded applications, and is ideal for
microprocessors and network bandwidth over the lagihe multimedia devices of the near future.

decade has made possible a wide variety of new multi- Unfortunately, Java does not have the facility to
media applications. These applications are capable support soft real-time processing. Real-time program-
handling data that represent digital continuous mediaing is a matter of managing resources, such as CPU
(CM), such as digital audio and video, using relativelybandwidth, memory and disk access, and network
inexpensive and commercially available computinglinks. A real-time programmer must start with resource
hardware. Furthermore, processing of digital continucontrol, before building an application around that
ous media can now be integrated with conventionalayer. However, Java does not provide any mechanism
applications, such as word processing, on general puwhich can be used to monitor, manage, or police the
pose computing platforms. usage of system resources.

Integrated continuous media processing poses In this paper, we present our new Java virtual
unique challenges to the underlying support environmachine, Q-JVM, based on Sun’s JVM version 1.1.5.
ment: it imposes real-time requirements on the hosThe objective for this platform is to support integrated
operating system and its subsystems, as continuou®ntinuous media processing on mobile or embedded
media data must be presented continuously in time atdevices, such as PDAs and TV set-top boxes, where
predetermined rate in order to convey meaning. Howsoft real-time guarantees must be provided with limited
ever, software that processes digital CM data is ofteisystem resources. In this implementation, a resource

1. This author was supported in part by Natural Sciences and Engineering Research Council (NSERC) of Canada, and SONY Distrib-
uted Systems Lab at San Jose, California, U.S.A. He is currently employed at Redback Networks.
2. Departments of Computer Science and Electrical & Computer Engineering.

1

management mechanism is incorporated into the thregatiorities. The scheduler rations the CPU to competing
scheduler to provide soft real-time guarantees for thentities according to their priority.
CPU resource. UNIX System V Release 4 (SVR4) incorporates
Q-JVM employs an enhanced version of the Move-such a static priority based process scheduler. By incor-
To-Rear List Scheduling algorithm. This algorithm is aporating this scheduler, SVR4 claims to provide system
general-purpose resource management algorithsupport for real-time and multimedia applications.
developed at the Bell Laboratories for providing qual-However, an extensive quantitative analysis of this pro-
ity of service guarantees to soft real-time tasks [2]. Wecess scheduler, conducted by Nieh et. al. [8], demon-
adopted it for managing the CPU resource, and havstrated that this process scheduler was largely
enhanced it to handle not only user threads, but alsmeffective. It could even produce system lockup. Their
system threads which must express their urgency usingpnclusion was that a static priority based real-time
priorities. process scheduler in no way allows a user to deal with
Our enhanced version of the MTR-LS algorithm isthe problem of CPU resource contention presented by
implemented in the thread scheduler of the new Javenultimedia applications.
virtual machine in place of the standard static priority- ~ Similarly, hard real-time scheduling algorithms,
based scheduler. It enables Q-JVM to support QoSuch as Earliest Deadline First and the Rate Monotonic
parameters such as fairness and bandwidth partitioninglgorithm, are not suitable for integrated continuous
for soft real-time tasks. media processing [8]. This class of algorithms either
Preliminary test results have shown that Q-JVMfails to achieve the desired efficiency for integrated
has low scheduling overhead, and is able to provid€éomputing environment, or requires prior analysis of
quality of service guarantees as specified. Moreover, gomputational requirements of the particular applica-
is binary compatible with the standard version distrib-tion mix. The latter is difficult, if not impossible, for
uted by Sun. dynamic systems.
The rest of this paper is organized as follows. Sec-
tion 2 discusses related research in resource and Qua:2 Resource Management Based on Fair
ity of Service management. Section 3 details ouQueuing
implementation of a new Java virtual machine that supa |arge body of work exists on fair queuing. The Start-
pOI‘tS resource management. Section 4 documenfﬁ‘ne Fair Queuing (SFQ) a|gorithm [5][6] is a notable
results of some of our experimentation on Q-JVM.example.

some concluding remarks. like Weighted Fair Queuing [3] and Self Clocked Fair
Queuing [4] by removing their requirement for prior
2 Previous Work knowledge of the computational needs of competing

There has been a lot of research in CPU resource matasks; it is also much more efficient than algorithms
agement for soft real-time applications. Some researchike Fair Queuing based on Start time [6]. Moreover, it

ers have studied existing systems that claim to suppottandles fluctuation in available bandwidth due to spo-
real-time multimedia applications, and found that staticadic interrupt processing better than other fair queuing
priority-based scheduling is not sufficient for multime- algorithms [5].

dia soft real-time applications [8]. Others like [5] have SFQ was first developed for network packet sched-
borrowed from link scheduling, or have proposed newuling in [6], and was successfully adopted for CPU

algorithms [2] for managing the CPU resource. At thescheduling later in [5]. Unfortunately, its delay bound

same time, researchers have realized the potential dfcreases linearly with the number of threads in the
the Java platform for embedded real-time processingystem [10], thus making it undesirable for complex
and have proposed extensions to the base platform [94nd dynamic systems.

2.1 Static Priority Based Scheduling 2.3 The MTR-LS Algorithm

The most common CPU resource managemerithe Move-To-Rear List Scheduling algorithm (MTR-
schemes employ static priority-based scheduling. IiLS) is a new resource scheduling algorithm developed
such a scheme, all execution entities are assigned fixed the Bell Laboratories. It is aimed to provide predict-

2

able service in a general purpose system with multipldava platform, and considered extensions to this envi-
resources including CPU, disk, and a network [2].ronment for real-time computing [9]. The extension
Besides the usual quality of service parameters such ggoposed by Nilsen uses a number of techniques such
fairness, bandwidth partitioning and delay bound, itas analysis of worst-case execution time, measurement
also supports a new criterion calledmulative service of representative function invocations, rate monotonic
guarantee MTR-LS guarantees that the real serviceanalysis, static cyclic scheduling, and real-time gar-
obtained by a process, given its specified service ratdage collection with possible hardware assistance [9].
on a shared server does not fall behind the ideal servicBhe proposed scheme is designed to satisfy hard real-
it would have accumulated on a dedicated server at thiime constraints, and is fairly sophisticated. Unfortu-
same service rate by more than a constant amount. nately, it is not compatible with the standard Java plat-

Scheduling using MTR-LS is based aervice form available from Sun.
fractions A service fraction is a fraction assigned to a To serve multimedia applications, however, it is
scheduling entity that represents the service rate of sufficient for a system to provide only statistical guar-
virtual server in terms of the real server. A system conantees. Soft real-time scheduling algorithms such as
stant, named theirtual time quantum [Tis used to the MTR-LS algorithm are thus better suited to this
specify the total target time of servicing each and everglass of integrated computing system. We recognize
active scheduling entity in the system exactly once. that automatic garbage collection is a major stumbling
Each scheduling entity is also assigned a timedlock for providing real-time service in Java, as it is
stamp and a quantulaft when it requests service. The difficult to regulate its resource consumption. Never-
quantum size is calculated as the product of its servictheless, we prefer to reduce this to a resource manage-
fraction andT. All active scheduling entities are kept in ment problem, and leave the construction of a better
the service list L, and are sorted by their time stamps.garbage collector to other specialists.
Entities with earlier time stamps appear closer to the
front of the list. The MTR-LS algorithm always sched- 3 A New Java Virtual Machine

ules the first runnable entity on the service list. Our enhanced version of the Java virtual machine is
A scheduled entity is preempted when its quantunhased on version 1.1.5 of Sun’s reference implementa-
is consumed, or when some other entity whose positiofon, Although the source code obtained from Sun sup-
on the service list is ahead of it becomes runnablegorts both Windows and Solaris, we chose to base our
After the preemption, the time it has been serviced ORjirtyal machine on Solaris. As our implementation
the server is subtracted from its quantlefito yield an makes few assumptions about the support provided by

updated value ofeft. If the result is zero, then it is the underlying operating system, it is relatively easy to
assigned a new time stamp and its quantum is re-initialyort to other platforms.

ized. Its position on the service list is adjusted accord-

ing tp its new time stamp; i.e., it is moved to the rear Ofsystem scheduling entities using One-to-One, Many-to-
the list. , , _ _ One or Many-to-Many models[7]. With a 1-to-1 map-
The MTR-LS algorithm provides bandwidth parti- hing each Java thread is supported by its own schedul-
tioning and fairness guarantees for all competing enti-mg entity known to the operating system. Scheduling is
ties with respect to their service fraction allocations.ngndied by the OS; all threads have equal access to the
With admission control, it is also able to provide delayykernel at the same time. Thus, this model is able to
bounds and cumulative service guarantees [2]. Moreaypoit any hardware parallelism that may be available.

over, it is very efficient: even with a straightforward With them-to-1 model, all Java threads are mapped
|r?ple_$ent_atc|)oln, the chomput_at[[?]nal corgpleﬁlty ?f theonto a single scheduling entity supported by the OS;
aigorithm 1S (_n(n)) wherenis the number of entries -, 4 scheduling of Java threads is handled by a user-
n '_[he service list [2]. Thesg properties persuadgd us t%vel threads library. Only one scheduling entity is
bwld_ on the M:’R-LfS a;gorlt?lqrn todprowde quality of known to the operating system, and only one thread can
Service guarantees for Java threads. access the kernel at any given time. This model does
. . not exploit hardware parallelism; however, it has the
2.4 Real-time Extensions to Java advantage that the OS kernel is not required to support
Other researchers have also realized the potential of thaultithreading. Moreover, it is also very efficient, as all

Java threads may be mapped to native operating

3

scheduling decisions and context switches can be han- limesiicer laier

dled in user space, without kernel intervention. This iS ¢jockHandler User Threads VMSuspended

a considerable advantage in uni-processor environ- Threads

ments, where the additional heavy context switches to \‘ / \ ’/

and from the kernel does not yield any benefit in terms Higher Lower

of increased parallelism. It is thus ideal for mobile and prigrities Priorities

embedded devices that do not have multiple proces-

sors, and where CPU bandwidth is at a premium. o f k\ /4 ? \
Them-to-n mapping model is the most elaborate. It "M°MeS 15 43 10 ... 1 o 4

uses a user-level threads library in conjunction with a
OS kernel that supports multi-threading: Java threads _
are mapped onto a pool of scheduling entities known tgnost of the time and wakes up only when an alarm
the kernel. The threads library manages the pool ofXPires or when one is registered or removed. When it
scheduling resources and the mapping between JaV#kes up, it notifies all threads whose alarms have
threads and kernel threads, while the kernel schedulé&Pired. It then scans all the currently active alarms to
only the entities known to it. calculate the next time out period. After registering an
On Solaris, one has the option of using either the?/2rm with the operating system to deliver a signal to it
Many-to-Many model with the Solaris native thread&fter the time out period, it suspends itself again. Run-
library, or the Many-to-One model with the Green ning at priority 12, theClockHandlerthread is the

Thread library. As it is not common to have true hard-higheSt p_riority_thread in the system. _ _
ware parallelism on embedded personal devices which "€ TimeSlicerthread runs at priority 11. Like the
we target, and to ensure easy portability and schedulin lockHandlerthread, it lies dormant most of the time.

behaviour consistency, we decided to base our changdénen it wakes up, it registers an alarm that expires at
on Green Thread using theto-1 model. the end of the next preemption interval, and then goes

Our approach was to build the resource managei-nto sleep again. Since it has a higher priority than any

ment facility into the lowest level of the Java virtual other threads in the system, except MleckHandler

machine, in this case, the Green Thread library, so thzﬂ'read’ it will be scheduled as soon as it is runnable,

resource consumption by all threads, including thd-S when its a_Iarr_n expires. By waking up and going
Into sleep again, it preempts the current user thread,

threads spawned by the JVM and its native libraries, d all i heduler t hedul thread
can be managed effectively. and allows the scheduler to schedule a new threa
according to its scheduling policy.

The use of this time slicing mechanism is optional
3.1 Green Thrgad N o in Sun’s implementation of Green Thread for the Java
Green Thread is a traditional priority-based threads;irtyal machine. By default, this thread is not loaded.
package. _It relies on three system threads for_ its Opergn this case, threads may be blocked only when they
tion; and it uses a stateless s,cheduler fl_mctlon WthBerform some system operations such as performing I/
integrated with the Java virtual machine. enable time slicing and set the quantum size via com-

Scheduling in Green Thread is based on prioritymand line switches to the JVM.

Priorities are represented by integer values, where Running at priority 0, thedler thread is the lowest
larger integers represent higher priority. Although thepriority thread in the system. Hence, it is scheduled
basic architecture does not limit the range of prioritiesomy when there are no other runnable threads. When-
user threads use only ten values: integers from 10 {0 byer it is scheduled, thieller thread will reclaim mem.-
Java threads use only these priority values as well ory occupied by the stacks of terminated threads, and

There are three system threads in Green Threaghen yield the CPU to the operating system.
that use priorities outside of the range for user threads. |n addition to the three system threads, Green
These three threads are téockHandlerthread, the Thread also maintains two other user threads in its sys-
TimeSlicerthread, and thigler thread (Figure 1). tem space: th&Cthread, and th€inalizerthread. The

The ClockHandlerthread is responsible for main- GC thread runs the garbage collection routines in the
taining alarms for all other threads. It lies dormantJVM, while the Finalizer thread runs thdfinal-

Figure 1: Priorities of Green Threads

4

ize() routines of discarded Java objects. Both ofture to include fields for a time stamp, a service frac-
these two threads run at the lowest priority of usettion specification, and the time left in a thread’s current
threads, priority 1. However, when ti@&C thread runs, quantum, i.e., thdeft value. The service fraction is

it runs to completion and thus is non-preemptable. Furspecified by the user, and may be changed at any time.
thermore, when a low memory situation is detected, thét is used to calculate a thread’s quantum, in conjunc-
Java virtual machine may suspend all user threads arttbn with the virtual time quantum. The time stamp is
run the garbage collection routines on its own behalf. used to determine the position of a thread in the service

Green Thread manages threads using priorityist L: threads having earlier time stamps appear at
queues that are implemented as linked lists. All runnanearer the head df than threads with later ones. When
ble threads are kept in thennable queuelJava moni- a thread finishes a quantum, it is assigned a new (later)
tors also use queues to manage threads. Every monitife stamp and thus moved to the rear of the list.
has await queuefor threads that are waiting to enter it, ~ However, we implemented the time stamp not as a
and acondition variable wait queutor threads that are reading of the clock, but as a 64 bit long integer, where
waiting for some conditions to become true. Threads idarger integer values represent earlier time. The earliest
these queues are sorted in the order of their prioritiegime stamp is the largest 64 bit positive integer value.
In addition, there is aactive queuehat links together When a thread is assigned a new time stamp, it is given
all threads that have been created but not yet term@ 64 bit integer that is smaller than all assigned time
nated. This queue is not sorted in any particular orderstamp values in the system.

Green Thread’s scheduler is a function that runs on T his decision stems from the realization that there
the stack of the last scheduled thread. It is invoked byS & Parallel between time stamps and priorities: threads
the context switching code every time the current¥ith €arlier time stamps are closer to the front of the
thread vields or is blocked or preempted. Greerservice list than threads with later time stamps; they
Thread’s scheduling policy is implemented in theN€ed to be serviced before other threads. In effect,
queues. Higher priority threads are inserted into thdn€se threads have a higher effective priority than other
front of the queues before all lower priority threads;thréads. In the original Green Thread library, larger
equal priority threads are inserted in the order of theifNt€ger values represent higher priority. Using a mono-
arrival. When invoked, the scheduler function alwaystonically decreasing integer in place of a real time
schedules the first thread it finds on the runnable queug!amMp Permits one to re-use most of the Green Thread
As the Idler thread never blocks, the scheduler isliPrary, which assume a priority-based threads model,
always able to find at least one thread to schedule. ~With minimum modification.

Each Green thread also has a block of private infor- The key to implementing the MTR-LS algorithm is

mation that helps to facilitate its management. Thisthe service lisL. Itis supposed to be an ordered list of

includes its priority, its state, the lists of monitors it hasaII active threads in the system, sorted by their time

entered or is waiting on, and information about its Stamps. However, the order of threads is S|gn_|f|cant
stack memory and machine context. only when they are scheduled. Therefore, our imple-

mentation only keeps theunnable queuesorted; the
. active queuds left unsorted.
3.2 Extensions to Green Thread The new runnable queue is a priority queue with
Our purpose is to support soft real-time scheduling othe time stamp as priority. The original runnable queue
Green threads (and in turn, Java threads) through thig Green Thread is implemented as a linked list. Such a
addition of a resource management algorithm to thejata structure is quite inefficient for priority queues.
Green Thread library. In our final implementation, we developed a new priority queue based on the heap
Green Thread's original system threads and the moniata structure. The time complexity of this queue is in
tor infrastructure were largely unchanged. Howeverihe order of0(In(n)). This new queue abstract data type
the thread private data structure, the queues and tHADT) enabled us to realize the full potential of the
scheduler function were extended to accommodate th@TR-LS scheduling algorithm in terms of efficiency.
new scheduling policy. The preemption and contexiOther parts of the Green Thread library, such as the
switching mechanisms were also modified to trackmonitor code which uses priority queues to manage
CPU resource consumption by individual threads. threads, are also modified accordingly to take advan-
The first change is to extend the thread data struaage of this ADT.

5

A pair of in-line functions is added to Green accommodate the new scheduling algorithm. The
Thread’s context switching code to monitor resourcelimeSlicerthread is now loaded automatically during
consumption by individual threads. The first in-line system initialization and enters suspension immedi-
function is inserted just before the place where controately. When the scheduler runs, it sets an alarm for
is transferred to a newly scheduled thread. This funcTimeSlicetthat expires afteAt time units, whefd is
tion saves the system hardware clock reading in a varihe smaller of a preemption interval and tleét value
able private to the scheduler. The second in-lingf the thread being scheduled. When this alarm expires,
function is inserted immediately following the place TimeSlicerbecomes runnable. It will preempt the cur-
where context is switched away from a thread. It takesent thread, and cause a rescheduling. If the current
another reading of the system clock, and subtracts froffhread is blocked for other reasons before this timer

it the last reading of clock taken when the currentexpires, the scheduler will cancel the alarm and set a
thread was scheduled. The difference is the time thaiew one when the next thread is scheduled.

the last scheduled thread has run on the CPU. This dif-
ference is then subtracted from tedt value of the last 3.3 Extension to the MTR-LS Algorithm
scheduled thread.

The context switching code is executed wheneve
control of the CPU changes hands. Thus, this pair of in
line functions is able to track CPU usage of all thread

The MTR-LS algorithm is used in our new Java virtual
Machine to schedule not only user threads but also the
system threads that must express their urgency using
, riorities. For example, the thread scheduler must rec-
managed b_y Lhe Gre((ejn Thrtel?ddllbrary. However(,:;h gnize that th€€lockHandlerthread must be scheduled
context switching code itself does consume Uss soon as it is runnable and thitter thread should

resource that is not fully accounted for. Fortunately,OnIy be scheduled when there are no other runnable
these routines are simple and short; and their invocathreads

tions are statistically predictable. Hence, their resource Unfortunately, the MTR-LS algorithm is based on

consumption is expected to be a constant but negIIgIIOIgervice fractions and CPU resource consumption. It

amount. The small discrepancy can be dealt with by . .
. X : does not have an inherent notion of urgency as may be
reserving a small portion of the CPU that is not allo- . —
cated to any threads. expressed with priorities.
Our solution is to extend the MTR-LS algorithm to

The basic _schedpler funcho_q from_ the original handle the system threads as a special case. We took
Green Thread library is also modified to implement the

MTR-LS algorithm. It still the stack of the | tadvantage of our earlier realization that MTR-LS
-L> aigorithm. 1t Suff runs on the stack othe fast g.peqyles threads according to their positions on the
scheduled thread; it is still invoked by the context

o . . service listL, and that the time stamps which determine
switching code every time the current thread yields Ohe positions of threads dncan serve as effective pri-
is blocked or preempted; however, it now assumeyities

extra dut|e§. Under the MTR-LS algorithm, a thread will not be

~ When invoked, the scheduler fetches the threadcheqyled if there are other threads ahead of it on the
with the earliest time stamp from the runnable queuggice Jist. Hence, if high priority system threads are
and checks itdeft value. If this value is less than or y5ceq at the beginning of the list, i.e., ahead of all user
equal to zero, it moves this thread to the rear of the lis hreads, then as soon as they become runnable they will
by assigning it a new time stamp and reinserting it into,o scheduled. Similarly, if the low priority system
the runnable queue. Theft of this thread is re-initiated reads are placed at the rear of the list, i.e., after all
to be o 0T + left, wherea is the service fraction of yser threads, then they will not be scheduled until there
this thread(is the virtual time quantum, ardftis this are no other threads that are runnable.
thread's lasteft value. The scheduler function repeats A map of positions of the system threads and user
this operation until it finds a thread with a positiledt threads on the service liktis shown in Figure 2. The
value. It then invokes the context switching code toc|ockHandler thread and theTimeSlicerthread are
record the start time of this quantum and transfer thssigned the two earliest (largest) time stamps. This
control of CPU to the scheduled thread. puts them at the beginning of the service list. At the

Finally, time slicing is enabled by default in the same time, thadler thread is assigned an atrtificially

new JVM; however, the mechanism is modified tolate (small) time stamp which puts it near the end of the

6

L ClockHandler ~ US€"'™®&S peserved space the system to remain suspended until it completes the
work. With such a garbage collector, we then could
assign a CPU fraction (e.g. 5%) to tleC thread, and
manage its resource consumption just like any ordinary
thread.
Front \ / Rear Finally we note that the rest of the Java VM threads
TimeSlicer Idler such asFinalizer are treated as user threads as well.
Figure 2: Positions of the System Threads and User Threads on They are subjected to the same resource consumption
the Service List. accounting as any regular user threads. They are
service list. assigned small service fractions (e.g. 1%) that may be

Moreover, all system threads are tagged so tha(fhanged by a user-level resource manager to suit appli-

when context is switched away from them, thift ~ Calion requirements.

values are not updated. As a result, they will never be

moved to the rear of the list. In other words, their posi-3.4 Resource Consumption Accounting

tions onL are stationary. An interesting problem arises when our new JVM is
This approach takes full advantage of the naturaéxecuted on top of a multi-programming environment

ordering of threads on the service list and the parallesuch as Solaris. The operating system may preempt the

between time stamps and priorities. It provides a simJava VM runtime environment and give the CPU to

ple and straightforward solution for the problem of another program. This could cause resource accounting

using the MTR-LS algorithm in a root scheduler whichto be disrupted.

must allow system threads to express their urgency. For example, assume at tinh@ threadT is sched-

We observe that the system threads do consumeled, and at time + At, the JVM is preempted by the
CPU resource, but their resource consumption can bgperating system. Green Thread's context switching
bounded. Both high priority system threads are spomechanism is not invoked as this preemption is trans-
radic; their invocations are statistically predictable.parent to the user program. At timer At +At, the

Moreover, as they perform very simple and dedicatedy,\ regains control of the CPU arifl continues its
functions, their resource consumption is expected to be . . .
. o gxecution. At timet + At, + At, + At; |, threadl is pre-
small and remain statistically constant. To account for .
. . empted by Green Thread. The resource accounting
this amount, the allocated CPU bandwidth counter call hanism would record thal has executed for
be set to a very small number, e.g. 1%, when the thread _ _
library initializes, before any other threads are created®t + At +Atg time units. However, because of the
The resource consumption by the other systerR€€mption by the operating systef,has only had
thread,Idler, is negligible. This thread is only sched- Ati + Atz time units of CPU tlme. The other pasf,
uled when there are no other runnable threads, i.evas taken away by the operating system to execute sys-
when there is no resource contention. It is preempted g6m functions and other user programs.

soon as another thread requests access to the CPU. Our experiments on Solaris have shown that the
The GC thread, on the other hand, does consuméffect of such operating system preemption is signifi-
considerable amount of CPU resource. However, as o@@nt even when the system is sparsely loaded with only
expertise is not in real-time garbage collection algothe standard mix of daemons.
rithms, we must assume the availability of a garbage The solution to this problem is found partially out-
collector that is able to work currently with other side the scope of our modification to the Java VM.
threads in the system. In particular, it must not requireMost modern operating systems like Solaris and Win-
all other threads in the system be suspended before diows NT have a so called “real-time” scheduling facil-
can proceed; and it must not require all other threads iity. It is designed for programs that require maximum
T —— dfor imol _ control over their own scheduling. Using such a facil-
i 2 few postions obare reserved for mplementng &, iy, a user program may be arranged to have a higher
before the garbage collector is invoked. The original imple- priority than any other tasks in the system including the
mentation sets the priorities of all user threads to -1. Our operating system kernel; it will preempt even system

implementation moves the user threads to a positiot. on -) .
that is behind thaller thread. activities such as paging when it becomes runnable.

This is a dangerous facility to use, as not leaving The QThreadGroup class implements a simple
enough CPU time for system tasks will result in theiradmission control policy: the aggregate bandwidth
starvation and produce system deadlocks. allotment of all child threads of ThreadGroup

Our solution is to take advantage of this facility but must not exceed the allotment to @& hreadGroup
at the same time create a new VM thread, named thiéself. However, as we do not wish to impose any
OS thread that does nothing but yield the CPU to the resource management policies on user applications, the
operating system. This thread is just another usewse of this facility is optional. In other words, a
thread, and is allocated a service fraction. The runtim&Thread is not forced to be a member of any
environment is thus able to regulate its CPU resourc@ThreadGroup . It would be, of course, a member of
consumption, and in turn, control the CPU bandwidthsome instances gdva.lang.ThreadGroup
consumed by the operating system and other concur- Furthermore, both thejava.lang.Thread
rent user programs. The service fraction allotment foclass and th¢ava.lang.ThreadGroup class are
the OS threadcan be set via a command line switch tore-implemented to provide compatibility for existing
the Java virtual machine. It is adjustable according tdJava programs. ThEhread class is implemented as a

system load using a resource management API. subclass ofQThread . The thread control methods are
mapped directly. However, the thread creation and pri-
3.5 High Level API ority manipulation methods are mapped to the thread

The enhanced capabilities of the new Java virtuaFreation and service fraction manipulation methods of

machine are made available to the application layer viéh? QThread clags with a .S|mple formula to convert
a high level application programming interface. ThigPriorities tq services fractions. ThéhreadGroup .
APl is encapsulated into two Java classes: thglass_ remains un_changed for the most_parts. Only its
QThread class and th@ThreadGroup class. These priority manlpulatlon methods are modified to return
two classes supersede thava.lang.Thread some suitable defaults.
class and thejava.lang.ThreadGroup class,
respectively. 4 Experimental Results
TheQThread class provides resource and, in turn, To verify the viability of Q-JVM, we developed a test
quality of service management to Java threads. It sugBuite to measure its performance. Tests were designed
ports all normal threads operations such as thread créo instrument the effect of using Solaris’ “real-time”
ation, termination and communication. At the samescheduling facility and the scheduling overhead of the
time, it supports specification of resource requirement§ew JVM. We showed that the new platform is able to
in terms of service fraction reservations. provide predictable resource allocation and resource
Security for thread control can be immememedparti?ipning.Asimilar test suite was executed on an un-
using the standard Java convention: an optional “Secunodified Java VM with Green Thread; the results were
rity Manager” may be installed to regulate access t¢ompared to those gathered on the enhanced platform.

particular threads. The default Security Managef® number of standard test suites are also executed
allows access within the same thread group. without modifications on the enhanced Java VM to ver-

ify its compatibility with the standard JVM available

The QThreadGroup class provides support for
Q P P PP from Sun.

CPU bandwidth partitioning for groups of threads. It is
structured as a subclass of the standard Java thread

group classjava.lang.ThreadGroup . It aug- 4.1 Test Setup
ments the original thread group class with resourcéerformance evaluation was done on a Sun SPARC-
management capabilities. server 20 with a 60MHz Ultra-SPARC CPU and 64

TheQThreadGroup class inherits all methods of MB of main memory running Solaris 2.4. All experi-
its superclass. It is able to support most managemetients were conducted in multi-user mode with the
functions found on the original Java platform. How- standard complement of daemons like, sendmail
ever, priority manipulation methods of the standardNFS and a very lightly loade#TTP server. Moreover,
Java ThreadGroup class are overwritten. In their all experiments were conducted when there was no
place, QThreadGroup provides methods for CPU interactive user activities.
bandwidth partitioning. Most of our experiments were carried out using the

RaceTestest suite. This test suite is a multithreaded

Java program that simulates a CPU intensive applica- 1Runner | 4Runners | 10Runners
tion. It is modeled after the well knowhrystone Aggregate Aver- | 602,797 | 602,084 601,040
benchmark. When the application starts, it spawns a | age Throughput| (L.L.) (L.L) (L.L)
number of threads, calledinners each of which exe- (loops per sec- | 268,221 | 303,672 333,136
cutes an arithmetic calculation repeatedly in a loop. ond) (H.L) (H.L) (H.L)
The number of loops completed in a given time by one | average Standard 2.52% 22.05% 26.04%
or morerunnersis used as the performance metric. Deviation (L.L.) (L.L.) (L.L.)
Two versions of the test suite were constructed. | (% of throughput)| 10.53% | 27.70% | 33.97%
The first one runs on the enhanced JVM and allows an (HL) (HL) (H.L)

operator to specify the number ninnersto start and Table 1: The Baseline Performance

the service fraction for eaatunner The other version put samples is calculated; it is reported as a percentage
runs on the standard JVM. Instead of service fractionsyf the average throughput. When there are more than
it allows an operator to specify priorities for then- e rynner the average of the standard deviation fig-

ners. Otherwise, the two versions are identical. A stany, s from allrunnersis reported. This figure gives an
dard Java virtual machine was built from un'mOd'f'ed'ndication of how much jitter a thread experiences
JVM source from Sun to run the standard version 01! '

. Small values represent less jitter and better quality of
RaceTestIt was configured to use Green Thread as P : a y

well service.

Besides the basic test application, a shell script Two figures are reported in each cell in Table 1.
namedGenLoadwas developed to generate a greedyThe first number, tagged by (L.L.), is the result of run-
system load for simulation of CPU resource contentioriing the test suite on lightly loadedsystem with only
in a general purpose computing environment. Thighe standard complement of daemon processes but no
script usedar andgzipto archive a large directory tree interactive user activity. The other number, tagged by
repeatedly. When executed alone, it results in a steadyd.L.), is the result of running the test suite on a
system load average around 1 on our SPARC servdreavily loadedsystem. The extra system load is gener-
test hardware. This script is executed when we need tated byGenlLoad

simulate a busy system for the experiments. From the data given in Table 1, we observe the fol-

. lowing. When the system is lightly loaded, the aggre-
4.2 The Baseline Performance gate average throughput decreases with the increase of
Before testing our enhanced JVM, we first ran the testhe number ofrunners This may be attributed to the
suite on the standard platform to establish baseline pegcheduling overhead of the JVM. However, under
formance. In order to create an environment that igieayy load, when there is competition for the CPU
closest to the new platform, the standard Java virtuglesoyrce from other activities in the system, the aggre-
machine was started with time slicing enabled and @40 average throughput increases with the number of
quantum size of 20 milliseconds. The performancg,ners This phenomenon is attributed to the fact that

humbers are listed in Table 1. the JVM is competing more aggressively with other

The RaceTesapplication was run with one, four, 5qpjications when it has more threads activity.
and terrunnerthreads. Allrunnerswere started at pri-

ority 5. The first row in Table 1 reports the aggregate ~ Finally we note that the jitter increased signifi-
average throughput of atlnnersin loops completed cantly, from 2.52% to 10.53% in the case where there
per second. This figure is arrived at as follows. Onds only onerunner, when another application started to
thousand throughput samples are taken for gacher ~ compete for CPU with the JVM. This is expected, as
If there is only one thread, the average is reportedthe time slicing mechanism is affected by the multi-
When there are more than onener, the sum of their programming operating system. The lower figure,
averages is reported. 2.52%, may be viewed as tmoise levelas there is no

The second row in Table 1 measures how muchiesource contention in this scenario. It is also apparent
variance there is in the throughput data. When there ifom data in Table 1 that the jitter increases with the
only one thread, the standard deviation of the throughaumber of threads.

9

4.3 Effect of the RT Scheduling Class may be high. To evaluate this overhead, we compared
We have discussed in Section 3.4 that a multi-programth€ aggregate average throughput achieved birdee
m|ng Operating System may steal CPU Cyc|es from ouﬂ-estapplication on the enhanced platform to the stan-
resource manager. To remedy this pr0b|em1 we Sugjard JVM. The results are presented in Table 3 on the
gested that theeal-time scheduling facility available Neéxt page.

on Solaris should be utilized. This facility permits Q- In order to ensure that the collected data are
JVM to run without interruption until it is ready to directly comparable, both the enhanced platform and
release the CPU. This will result in more accuratethe standard JVM are started under tirae-sharing
resource accounting and better quality of service. Wacheduling class. All tests are done on a lightly loaded
designed a series of tests using RaceTessuite to system with no interactive user activity.

experimentally validate this claim. From Table 3, we can observe that the throughput
Average Standard differences among aII'fig_ures are very small: t_he
Throughput Deviation throughput of the application running on Q-JVM is
(loops per sec- | (% of throughput) only 0.19% to 0.36% lower than the same application
ond) running on the standard JVM. As the application is

CPU intensive, and does not involve any I/O or kernel
service call, this result indicates that the additional
scheduling overhead of Q-JVM is very small compared

Lightly Loaded 601,582 2.76%
System, TS class

Busy System 815,971 16.44% to the standard Java virtual machine.
TS Class
Lightly Loaded 521,247 1.84% 1Runner | 4Runners | 10Runners
System, RT class
Standard JVM 602,797 602,084 601,040
Busy System, 507,638 2.65%
RT class Q-JVM 601,399 599,860 599,714
- Configurationl
Table 2: Effect of the RT Scheduling Class
Q-JVM 601,582 600,939 599,882

First, we ran the test suite on a lightly loaded sys-| configuration2
tem in thetime sharingTS) class. Then, we loaded the
test application into theeal-timgRT) class with a ser-

Table 3: Effect of Scheduling Overhead on Thread Throughput
All reported figures aré\ggregate Average Throughp(ih

vice fraction of 15% allocated to th8S thread Next, loops per second). On the standard JVM, all threads-(
we started theGenLoadscript and ran the test suite ners)are started with priority 5. On the Q-JVM, all threads
again in theTSclass. Finally, with th&senLoadscript are assigned 1.5% of total CPU bandwidth in configuration
still running, we loaded th&®aceTesapplication into 1. In configuration 2, all threads are assigned equal service

fractions totaling 80%. For example, when there are 10
threads, each is assigned a service fraction of 8%.

the RT scheduling class with 15% of the CPU assigned
to the OS thread In all cases, only oneunner was
started inRaceTestwith a service fraction assignment We can further observe the following: 1) The
equal to 80% of total CPU bandwidth. scheduling overhead increases with the number of

The results are given in Table 2. We can observé@ctive threads, although the increase is not significant.
that the enhanced JVM running in the RT scheduling?) The scheduling overhead is smaller when the total
class on a busy system achieves approximately 85% @flocated service fraction is closer to 100%; however,
throughput compared to when it is running in the TSthere is a point of diminishing return where this saving
class on a lightly loaded system. Moreover, it providedn overhead is eventually overpowered by the increase
better quality of service (less jitter) when running in thein overhead caused by having more threads to sched-
RT class, even under heavy load. ule.

4.4 Scheduling Overhead 4.5 Predictable Resource Allocation

A major concern in using a complex resource manageWe have argued that one major benefit of Q-JVM will
ment scheme, such as the one built into our enhancdak predictable resource allocation. In particular, it will
Java virtual machine, is that the scheduling overheadive equal access to the CPU to threads with equal ser-

10

vice fraction assignments. This is not possible on thdying virtual machine enforce the allocation.
Stancard platform: ihere is no provision to spequ .CPU The experiment is conducted on Q-JVM running in
resource allocation. One may assign equal priorities t

competing threads and hope that they gain equ e time sharing class qf Solgris. quunnerg are
access. We predicted that one will still see a degree oftarted on each run; their service fraction assignments
unfairness in such an arrangement. are varied each time. The experiments successfully
To validate this claim, we compared averagedemonstrated that the throughput achieved by each
throughput of 10runner threads on both Q-JVM and runner satisfies its service fraction allotment as we
the standard JVM. Eactunneris allocated 9% of the argue below. Data from one of the test runs is presented
CPU on Q-JVM. They are also assigned equal prioriin Table 4.
ties (5) when running on the standard JVM. The stan-

dard JVM @s started vv_it_h time slicing enabled, with a Service Fraction | Average Throughput
guantum size of 20 milliseconds. In order to get com- Assighment (loops / second)
parable results, all tests are conducted intitme shar-
. . Runner 1 70% 442728
ing class of Solaris.
Runner 2 20% 158,069
O Standard JVM W Enhanced JVM
Table 4: Resource Partitioning
60600
60400 - I [In this case, the twounnersare assigned service
g 60200 A fractions of 70% and 20% of total CPU bandwidth,
2 60000 | respectively. If we take the throughput of the standard
5 59800 JVM running a singleunneron a lightly-loaded sys-
Q 1 .
9 tem, as reported in row 2, column 2 of Table 1, to be a
§ 59600 4 close approximation to the full capacity of the system,
E 59400 4 then the tworunnersin this test case have achieved
2 59200 - 73% and 26% of the maximum throughput, respec-
2 59000 tively. This is evidence that bottunnersreceived more
£ 58800 1 than sufficient bandwidth to satisfy their respective res-
1 2 3 4 5 6 7 8 9 10 ervations.

Thread Number

)) _) 4.7 Compatibility
Figure 3: Fairness comparison between the standard it
time slicingand the enhanced JVM In addition to the quantitative tests described in the pre-
The results are presented in Figure 3. It is evidenY!0US sub.sec.tlons, we also ran a .number of stano!ard
that the throughput Wh|Ch theunners are able to Java apphca'[lons WI'[hOU'[m0d|f|Cat|On on the new vir-
achieve is more uniform on the enhanced JVM than ofdual machine.
the standard one. Upon close examination, we find that

the differences of throughput amomgnnerson the . . .
new JVM are all within 0.1% of the average. However,VM' CaffeineMarkis a popular benchmark suite for the

the differences on the standard platform are around 10%ava p!atfgrm. It analyses 'Java §ystem per.formance n
of the average. This is equal to one decimal order ofireas like integer and floating point calculations, loops,
magnitude improvement in predictability and fairess. |09ic operations, string manipulation, method invoca-
tions, graphics operations, and common GUI opera-
4.6 Resource Partitioning tions. It gives an indication of the overall performance
Another major benefit of the new JVM is its support for ©f & Java platform. Being able to run it successfully
resource partitioning. We again set up tRaceTest also indicates, to a degree, the compatibility of the new
suite to verify that one is able to assign portions ofplatform with respect to the standard one. Our new Java
CPU bandwidth to specific threads, and have the undelM is able to complete this benchmark suite without

First, we ran theCaffeineMarksuite on the new

11

any incident. The results are given in Table 5. Yet, our JVM is compatible with the standard JVM dis-
tributed by Sun. It is able to support many existing Java

Q-JVM Q-JVM Standard applications, including theCaffeineMark suite, the
(TS Class) | (RT Class) JVM HotJavabrowser, and the Java Media Framework, suc-
Scores 137 148 144 cessfully without any modifications.

Table 5: CaffeineMarkScores

5.1 Future Work

We then successfully tested titptJavabrowser There are still much work to be done to transform the
on Q-JVM. HotJavais a full featured web browser Java platform completely into a quality of service ori-
developed by Sun. It is a complex application and isented platform suitable for continuous media process-
100% pure Java. Being able to run it without incident ising_

a strong indication that Q-JVM is binary compatible The most immediate work involves examining the
with the standard JVM. We testeldotJava version ¢jass libraries that come with the JVM package, such
1.1.4 extensively with no ill effect. as the Abstract Windowing Toolkit API, and Swing to

Finally, we tested Q-JVM using the Java Mediatake advantage of the CPU resource management capa-
Framework (JMF) version 1.0 from Sun. This test waspjlities of the new JVM. Extension APIs such as the
not exhaustive; it was targeted at verifying compatibil-Java Media Framework must be examined as well, in

ity with the standard platform. We were able to run allorder for them to take full advantage of the new plat-
the sample applications shipped with the JMF packaggorm.

Furthermore, we were able to use the included media \ye must also examine the management of other

player applet to playback pre-recorded movie andesources in the system such as disks and network
sound tracks in various formats with satisfactory perqjnks. A platform will not be able to fully support real-

formance. time applications and provide guaranteed QoS without
managing these resources in addition to managing the
5 Summary CPU resource. While our particular approach of imple-

In this paper, we have presented our work on supportnenting the MTR-LS within JVM may not extend to
ing soft real-time tasks on the Java platform. We develthese resources, the MTR-LS algorithm itself was
oped a new Java virtual machine that is able to supporotended as a general purpose resource management
resource allocation and consumption regulation for the@lgorithm. It would be an interesting subject of future
CPU resource. This in turn provides quality of serviceresearch to develop a JVM that provides a complete
(QoS) guarantees for Java threads. resource management solution.

We extended a service fraction-based resource Another direction to take would be application and
management algorithm, the Move-to-Rear List-Schedmiddleware development. Using Q-JVM, it is possible
uling algorithm developed at Bell Laboratories, to han-to develop a multimedia middleware based on the Java
dle system threads that must express their urgencl/ledia Framework with resource management capabili-
which is normally expressed using priorities. We thenties. In addition to the media manipulation features
incorporated this algorithm into a new Java virtualsupported by the JMF, it could feature a general pur-
machine based on the source code of JVM versiopose and extensible resource manager and security
1.1.5 licensed from Sun. manager. However, the suitable management policies

The result of our work is a new Java platform thatfor such managers will be the subject of future
is able to support soft real-time tasks. It provides mechresearch.
anisms for resource allocation and management, as
well as guarantees for a number of Quality of Service6 References
parameters like fairness and bandwidth partitioning. [1] K. Arnold and J. Gosling. The Java Programming Lan-

Preliminary test results show that our scheme for gyage, 89 Edition. Addision-Wesley, Reading, Massa-
resource accounting and management is viable and the chusetts. 1998.
new Java VM is indeed able to provide these QoS gual2] J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz.
antees as specified. Moreover, its scheduling overhead Move-To-Rear List Scheduling: a new scheduling algo-
is very small comparing to that of the standard version. rithm for providing QoS guarantees. Rroceedings of

12

The Fifth ACM International Multimedia Conference
pp.63-73, Nov. 9-13, 1997.

[3] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm. IRroceed-
ings of ACM SIGCOMMpp. 1-12, September 1989.

[4] S.J. Golestani. A Self-Clocked Fair Queueing Scheme
for Broadband Applications. IRroceedings of the 13th
Annual Joint Conference of the IEEE Computer and
Communications Societies on Networking for Global
Communication 2:636-646, IEEE Computer Society
Press, June 1994.

[5] P. Goyal, X. Guo, and H.M. Vin. A Hierarchical CPU
Scheduler for Multimedia Operating Systems.Rro-
ceedings of the Second USENIX Symposium on Operat-
ing System Design and Implementatigup. 107-121,
October 1996.

[6] P. Goyal, H.M. Vin, and H. Cheng. Start-time Fair
Queueing: A Scheduling Algorithm for Integrated Ser-
vices Packet Switching Networks. IRroceedings of
ACM SIGCOMM’96 pp. 157-168, August 1996.

[7] JavaSoft. Multithreaded Implementation and Compari-
sons, A White PaperAvailable at http://solaris.java-
soft.com/developer/news/whitepapers/mtwp.htnitart
No.: 96168-001. JavaSoft. April 1996.

[8] J. Nieh etal., “SVR4 UNIX Scheduler Unacceptable for
Multimedia Applications”,Lecture Notes in Computer
Science Vol. 846, D. Shepherd et al. (eds.), Springer
Verlag, Heidelberg, Germany, 1994, pp. 41-53.

[9] K. Nilsen. Java for Real-Time. Ithe Journal of Real-
Time Systemd4.1(2):197-205, Number 2, 1996.

[10]1. Stoica, H. Abdel-Wahab, and K. Jeffay. A Propor-
tional Share Resource Allocation Algorithm for Real-
Time, Time-Shared Systems. IRroceedings of the
IEEE Real Time Systems SymposiDecember 1996.

13

	Providing Soft Real-time QoS Guarantees for Java Threads
	Abstract
	1 Introduction
	2 Previous Work
	2.1 Static Priority Based Scheduling
	2.2 Resource Management Based on Fair Queuing
	2.3 The MTR-LS Algorithm
	2.4 Real-time Extensions to Java

	3 A New Java Virtual Machine
	3.1 Green Thread
	Figure 1: Priorities of Green Threads

	3.2 Extensions to Green Thread
	3.3 Extension to the MTR-LS Algorithm
	Figure 2: Positions of the System Threads and User Threads on the Service List L.

	3.4 Resource Consumption Accounting
	3.5 High Level API

	4 Experimental Results
	4.1 Test Setup
	4.2 The Baseline Performance
	4.3 Effect of the RT Scheduling Class
	4.4 Scheduling Overhead
	4.5 Predictable Resource Allocation
	Figure 3: Fairness comparison between the standard JVM with time slicing and the enhanced JVM

	4.6 Resource Partitioning
	4.7 Compatibility

	5 Summary
	5.1 Future Work

	6 References

