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ABSTRACT

We present efficient support for generalized arrays of parallel data driven objects. Array

elements are regular C++ objects, and are scattered across the parallel machine. An individual

element is addressed by its "index", which can be an arbitrary object rather than a simple integer.

For example, an array index can be a series of numbers, supporting multidimensional sparse

arrays; a bit vector, supporting collections of quadtree nodes; or a string. Methods can be

invoked on any individual array element from any processor, and the elements can participate in

reductions and broadcasts. Individual elements can be created or deleted dynamically at any

time. Most importantly, the elements can migrate from processor to processor at any time. The

paper discusses support for message delivery and collective operations in face of such dynamic

behavior. The migration capabilities of array elements have proven extremely useful, for

example, in implementing flexible load balancing strategies and for exploiting workstation

clusters adaptively.

Additional Keywords: parallel runtime, object migration, parallel hashtable.

1 INTRODUCTION

A perennial problem in computer programming is naming−− if we want something, how do we

ask for it? Where do we look for it? This problem is especially important on a parallel machine,

because communicating with remote processors is slow.

The situation is akin to the (physical) postal system. We wish to deliver a message to a person−−

how can we get the message to them? The imperfect solution adopted by the postal system is to

use physical addressing−− we somehow obtain, and then specify, the exact physical location

where the person can be found. The problem, of course, is that when a person moves, their mail

will either be forwarded (which is slow and duplicates delivery effort), misdelivered (delivered

to the current occupant of that address), or lost (returned to the sender or dropped completely).

MPI also uses physical addressing−− messages in MPI are sent to a particular process number

and tag. Like the postal service, if the computational entity the message is destined for moves,

the message will either have to be manually forwarded or (more likely) will be misdelivered or

lost. This means computational entities in MPI programs either never move, or can only be

moved after a great deal of intricate, error−prone work.



While it is obviously easy to deliver messages to a physical address, it is evident that moving

objects are quite difficult to support with this approach.  We present a solution to this problem−−

a layer of indirection between objects and physical addresses.

Our framework allows an object to be referenced by a globally unique, problem−domain, user−

assigned logical address called an "array index". All communication is via the array index,

which allows the object to be migrated in a completely general and user−transparent way.

In this paper, we show how to support message delivery, creation, deletion, and migration

scalably and efficiently using this logical addressing scheme. We present a solution to the

problem of broadcasts and reductions in the presence of ongoing migrations. Finally, we present

performance data from several actual applications built using this system.

1.1 Partition Decomposition

Many of today’s emerging high−end parallel applications are characterized by irregular and

dynamic computational structure. Techniques such a latency hiding and dynamic load balancing

are needed to efficiently parallelize these applications. However, incorporating these techniques

into a parallel program written using the prevalent processor−centric programming model,

exemplified by MPI, requires significant programming effort.

An alternative approach abandons the processor−centric model for an object−centric model. The

computational work is divided into a large number of parallel objects. Parallel objects resemble

processors in that they are self−contained, and can send and receive messages. Unlike

processors, however, they can logically addressed, created or deleted, scheduled dynamically,

and migrated at run−time to improve load balance.

This approach, which we call multi−partition decomposition, separates the task of specifying

parallelism from the issues of load balancing, and efficient execution in general. The

programmer then specifies which actions are to be computed in parallel, leaving the system to

decide when and where these actions execute. 

Our parallel construct that supports this approach called a dynamic parallel object array, built on

Charm++[1]. Individual objects are called array elements, and can send and receive messages,

participate in broadcasts and reductions, and migrate as needed. Each element of the array is

identified by a unique array index, which may be variable−length. Because elements can be

individually scheduled and migrated, an "object array" is quite distinct from the "array objects"

found in HPF, POOMA[13], P++[14], Global Arrays[12] and elsewhere. In our construct, each

element of the array is a relatively coarse−grained1 C++ object, with full support for remote

method invocation. Our work is quite similar to pC++[8], but adds migration and reductions.

Unlike Concurrent Aggregates[9], Linda[7], or Orca[10], there is no duplication or replication−−

message sends address exactly one array element across the entire machine. This work is

complemented by fast collective communication libraries such as [11]; but not dependent on them.

For example, a large dynamic structural simulation modeled using the finite element method

may include 10 million elements in an unstructured mesh. Using our method, the application

1 The ideal method execution time varies from hundreds of microseconds to a few dozen
milliseconds of work.



programmer may decide to partition this mesh into 5,000 chunks using a mesh partitioner such

as METIS[16] or Chaco[17]. Each chunk is then implemented as a data−driven[1] array element,

making a 5,000 element object array. Elements communicate among one another without

worrying about which processor they reside on.

This approach, which we have been exploring for the past several years, has several advantages:

� As the number of elements is typically much larger than the number of processors, each

processor houses several objects. This leads to an adaptive overlap of computation and

communication−− while one object is waiting for its data, another object can complete its

execution. Scheduling is done dynamically depending on which message arrives first, so this

latency hiding requires no additional effort by the programmer.

� Each element’s data is small, so because of cache effects our approach often improves

performance even on a single processor.

Most important, however, is the logical addressing scheme presented used to deliver messages.

With this approach, the run−time system is free to migrate objects across the parallel machine as

it pleases, without affecting the semantics of the user program.

The run−time system can use this freedom to effect measurement−based load balancing, for

example. During the computation, it can measure the load presented by each element, along with

the element communication patterns. It can then remap the objects so as to minimize load

imbalance and communication overheads. Even for dynamic applications, such measurement−

based load balancing works effectively when load patterns change either slowly or infrequently. 

If the parallel program is using idle desktop workstations, the run−time system can "vacate" the

processors when their owners start using them, as described in [2]. Time−shared clusters can

also be supported efficiently, by shrinking or expanding jobs to the available set of processors[5]

using object migration.

Our research group has been engaged in developing this approach. The general, automatic

measurement−based load balancing framework has been described in [2]. In the current paper,

we confine our attention to the underlying array construct and its implementation.

Our approach is implemented in Charm++[1], a parallel library for C++. However, due to the

popularity of MPI, and to allow existing MPI codes to use the load balancing and other facilities

of Charm++, we have implemented AMPI [6], an adaptive implementation of MPI atop

Charm++. In AMPI, an MPI process is virtualized as a migratable thread running in an array

element. The system thus simulates multiple MPI processors on each real processor, allowing

latency hiding and migration−based load balancing. 

Thus this research is applicable to the wide of class of parallel applications written using MPI as

well. For more details on this process, with several significant independently developed

scientific simulation codes written in Fortran 90 and C++, see [6].



2 MOTIVATING EXAMPLES

2.1 Quadtree

Consider a simple heat flow simulation application which discretizes its domain with an adaptive

2D mesh. The mesh is implemented as a quadtree, as in Figure 1. Using a separate array element

for each leaf of the quadtree would likely result in a tiny grain size and poor performance; so

each array element is the root of a small subtree of the mesh. 

A quadtree admits a natural indexing scheme−− the directions taken at each level of the tree

from the root. Concatenating a binary representation of these directions results in a variable−

length bit string which uniquely identifies a leaf of the tree. For example, the element labeled

"10;11" in Figure 1 can be reached from the outer box by moving to the lower−left (10) subbox,

then to that box’s lower−right (11) subbox. For addressing messages to these array elements, the

variable−length index supported by this work is ideal.
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Figure 1. Adaptive 2D quadtree mesh with seven elements, showing element ar ray index
and subtrees (in gray).

While running the program, the runtime load balancer[2] will collect the object communication

graph shown in Figure 2.
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Figure 2. Communication graph for  example ar ray.



As the computation proceeds, elements will send each other messages to exchange temperatures

with their neighbors. They will perform local calculations to propagate heat around their part of

the mesh. In a steady−state problem, elements will occasionally contribute their local error

values to a reduction to determine whether the convergence criteria have been satisfied. Once the

convergence criteria have been met, the program will broadcast a "report results" message to all

elements.

The program may decide to create new array elements to refine an existing region. The program

may delete array elements when coarsening a region. During the computation, the Charm++ run−

time load balancer will migrate elements to improve the load balance. Clearly, the ongoing

messaging, broadcasts, and reductions must continue to work even in the face of these

migrations, creations, and deletions.

2.2 Document Indexing System

Consider a parallel document indexing system. Each processor accesses a document and parses

out a list of words found in the document. The document should then be linked into the

document list for each word. In this case, the word itself can be used as the array index, with the

referenced parallel object storing the word’s document list. The same word−indexed structure

could be used to respond to queries.

New words (and hence array elements) will occasionally be encountered and created during the

course of the computation. Over time, rarely−used words or misspellings could be deleted from

the array. For load balance or better storage utilization, words could be dynamically migrated

between processors. Occasionally, summary statistical information such as the average

document list length or number of answered queries could be reduced over the entire array.

2.3 Collision Detection

Consider a "bucket−based" contact detection algorithm. Such a computation consists of a group

of objects scattered across space, some of which may overlap. The problem is to determine

which pairs of objects are in contact. A slow algorithm is to simply consider all pairs of objects.

A natural optimization is to first map objects into disjoint regions of space−−buckets−−and only

consider pairs of objects that fall in the same bucket. Of course, a large object may cover

several buckets.

If the buckets have a natural indexing (for example, if they form a quadtree or regular grid), then

this can be used as the array index for the bucket. Then the collision detection algorithm is to

send each object to the appropriate bucket, collide the objects in each bucket independently, and

then collect the colliding objects across the array.  

Once again, we find dynamic creation (when objects enter new regions of space), deletion (when

no objects lie in a region), migration (for load balance), broadcasts (to begin the collision

computation) and reductions (to collect the collisions) are all useful, and must all work together.



3 API

Array elements are implemented as ordinary C++ classes defined by the user. An array whose

elements are of type A is referenced from other processors via a small, automatically generated

C++ object of type CProxy_A. 

Like CORBA, Charm++ reads an IDL−like interface file which describes the object’s remotely

accessible methods. This interface file is used to build the proxy, which contains caller−side

stubs and callee skeleton C++ code. The proxy is compiled and linked along with the regular

user code. The details of this process are quite similar to CORBA, and described in more detail

in [4]. Charm++ can thus be viewed as a parallel library for C++.

The proxy ckNew method is used to create a new array:

CProxy_A ap=CProxy_A::ckNew();

The proxy insert call is then used to add array elements:

ap[7].insert(parameters);

This creates an array element at index 7 on some processor; the version

insert(parameters,processor) can be used to explicitly specify the initial processor. 

The proxy destroy method deletes elements:

ap[7].destroy();

Elements may be created or destroyed at any time.

User−defined2 element methods may be invoked as:

ap[7].foo(parameters);

Like an ordinary C++ method invocation, this call passes the given parameters to the given

element method. Unlike C++, the target element need not reside on the same processor, or even

in the same address space. Of course, the method may be inherited or dynamically dispatched in

the usual C++ fashion.

The array broadcast syntax resembles the method syntax, but omits the index:

ap.foo(parameters);

This call executes the given method on every array element. An element may also call

contribute to pass a value to a reduction; or migrate to move to another processor. See

the example program in section 10.

3.1 Indexing

For convenience, the system predefines 1D, 2D, and 3D index types. 2D and 3D types are

indexed as:

int x, y, z;

ap2(x,y).foo(parameters);

ap3(x,y,z).foo(parameters);

The more appealing square−bracket ‘[x,y]’ syntax cannot be used, because Charm++ inherits

C++’s unfortunate comma operator.

2 Unlike system names, user−defined names are displayed here in italic type.



By inheriting from a system index type, a program may define custom array index types. 

class myIndex : public CkArrayIndex
{

...index data...
    public:

myIndex(...) {nInts=2;...}
};

The interpretation of the index data is left to the application, which allows the system to support

contiguous 1D, sparse 5D, or tree−structured computations uniformly. 

Once defined, a user−defined array index type may be used as:

apT[myIndex(...)].foo(parameters);

3.2 Terminology and Philosophy

As with Smalltalk, we refer to remote C++ method invocation as "sending an object a message."

The interface file determines whether the remote call is synchronous, for ordinary blocking

function call semantics; or asynchronous, for message semantics. As usual, remote message

delivery order is not guaranteed. 

Unlike many systems, methods are asynchronous by default in Charm++. Asynchronous methods

violate the basic function call semantics; but they make concurrency extremely easy to express.

For example, to begin some computation on three array elements i, j, and k, we can simply

execute:

ap[i].go();  ap[j].go();  ap[k].go();

The three method invocations will begin executing concurrently. Data can be returned, and

control "joined", if the called methods execute some "return method" of the caller. Of course

synchronous methods, where the caller simply blocks until each method has finished executing,

are also supported.

Also unusual is that Charm++ is nonpreemptive−− messages that arrive for a busy processor are

queued until the currently executing method finishes or explicitly blocks. Further, an object is

considered to reside on a individual processor of an SMP machine; not a node. These features

improve cache utilization, but more importantly enable the runtime system and user code to use

very few locks, which dramatically simplifies development and slightly speeds execution.

An example of the syntax and philosophy is shown in the "Simple Example" appendix, section

10.

4 MESSAGE DELIVERY

A scalable implementation of this API is rather subtle. In particular, the user may create an

element at index 42 on some processor C, then send a message to it from processor A. A must be

able to deliver the message despite the fact that A may never have communicated with C. Worse,

42 may migrate to some new processor D while the message is in transit.

Non−scalable location determination schema are easy to imagine3. Processors could be required

to broadcast the location of all new or migrated elements. This solution, however, would waste

3 And frequently implemented in real code!



bandwidth and require every processor to keep track of every array element, which requires a

non−scalable amount of storage. Alternately, a central registry could maintain the locations of all

array elements. This conserves bandwidth, but still may have enormous non−distributed storage

requirements and also presents a serial bottleneck. Our solution conserves bandwidth, has

modest storage requirements, and is well distributed.

4.1 Scalable Location Determination

To solve the location problem scalably, the system can map any array index to a home4, a

processor that always knows where the corresponding element can be reached. The default index

to home function simply returns the hashed array index modulo the number of processors; but

user−defined functions are also supported. An element need not reside at its home processor, but

must keep its home informed of its current location. In the example above, A will map the index

42 to its home processor B, which will know that 42 is currently living on processor C. 

Thus, A sends its message to 42’s home B, who then forwards the message to C. Since this

forwarding is inefficient, C sends a (short circuit) routing update back to A, advising it to send

future messages for 42 directly to C.

C B

A

2.Message
Forwarded

3.Routing
  Update

1.Message
Send

Figure 3. Message forwarding among processors: 
A, the source; B, the home; and C, the destination

Since elements and homes are scattered across the machine, most forwarded messages must

cross the machine twice, wasting cross−section bandwidth. The forward−free alternative−− A

asks B where to send, B replies, A sends directly to C−− may use less total bandwidth for large

messages, but requires an additional hop in the critical path. Forwarding also generalizes more

smoothly to the migration case. Finally, the forwarding approach works quite well when the

element actually lives at home. With either approach, the common case of repeated

communication quickly settles to 1 hop−− that is, zero added communication overhead.

A simple generalization of this scheme is to use k separate mappings to assign k homes to each

element. Several homes allow messages to be forwarded via any5 home, saving bandwidth, but

also requires elements to inform k processors when they are created or moved. With k=p, every

processor knows the location of every element, eliminating forwarding; but creations,

migrations, and deletions all require a broadcast. The best value of k depends on the relative

frequency of message forwarding and creations, migrations, and deletions.

4 This exact concept is used in many DSM implementations.
5 Typically the home the fewest hops away, or the least loaded.



4.2 Creation

To create an element, the system need only inform the element’s home and call the element

constructor. If no processor is explicitly specified, the element is created by default at its home

processor, which eliminates later message forwarding. It is an error to attempt to create two

elements at the same index.

A message may arrive for an element before the element has been created. Some applications,

such as the quadtree example, explicitly create all their elements. In this case, the system buffers

these early messages until the element is finally created. 

For other applications, a message that arrives for a nonexistent element should result in the

creation of the element. For example, in a document indexing system, a document containing a

new word which has no corresponding array element will send a "link to me" message using that

word as an index. Since no processor has any record of an array element at that index, the

message will be forwarded to the home processor for that index, which will recognize that the

corresponding element does not exist. Thus a new array element is created at that index to handle

the message. The new element could be created on any processor. However, it is often most

efficient to create the element either at the home processor, where future messages from other

processors will be directed; or on the sending processor, which may have other messages for the

element. 

The application specifies which early−arrival semantics is desired on a per−method basis in the

interface file. 

4.3 Deletion

To delete an element, the system invokes the object’s destructor and informs the element’s home

processor. No other processors are informed. Any routing cache entries on other processors will

remain unused until they eventually expire and are deleted.

Alternative, more complex methods to reclaim deleted element routing cache entries could be

used. When deleting an element, a processor could broadcast a funeral notice. Elements could

keep track of which processors may have cached their location and send a funeral notice to each.

A systolic body wagon could propagate through the system at a low priority. These alternatives

are all reasonable, but all use network bandwidth; simple expiration can be completely local and

quite efficient.

It is an error for a message to arrive for a deleted element6. However, a new element is allowed

to reuse an array index vacated by a deleted element.

6 It is the user’s responsibility to ensure this never occurs. The parallel global garbage collector
of [15] would be a substantial improvement.
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Figure 4. Delivery may require several hops
dur ing an element migration. 

4.4 Migration

Migration is always under user control−− either explicitly, via a "migrate" call; or implicitly, by

enabling run−time load balancing. To migrate an element, the system stops the object, packs it

into a message, and sends it to its new location. Once the element arrives it is unpacked and the

element’s home processor is informed of the element’s new location. 

A message that arrives for a departed element is forwarded to its last known location, with the

usual short circuit routing update once it arrives. If an element migrates rapidly and repeatedly,

messages may be forwarded an arbitrary number of times (see Figure 4). Of course, migration is

normally infrequent, so this pathological case is rare.

Processors which may have cached a migrator’s old location are not informed of the migration.

Any stale routing cache entries will be updated upon the next message sent. This lazy update

prevents unnecessary traffic and keeps migrations fast. The alternative, to actively inform all

others of your current location, saves time on the first message at the cost of significantly more

expensive migration.

Of course, for the common case of repeated communication with stationary elements, the system

quickly settles to 1 hop.



4.5 Protocol Diagram

Each processor must keep track of each array’s local elements, the locations of its home

elements, and maintain a routing cache of "last−seen" locations. All this information can

efficiently be kept in a per−processor, per−array hashtable, keyed by the array index. 

Cache Expiration

Creation
Creation

Early Message Arrival

Migrate Arrival

Migrate Departure

Routing Update

Remote Local

Buffering

None

Figure 5. Finite state machine for  element information

To deliver a message addressed to an array index, the system looks the index up in its hashtable.

The represented element will be in one of these states:

� Local: the element is on this processor. Messages are delivered directly to the element.

� Remote: the element was last seen on another processor; i.e., we have a routing cache entry.

Messages for the element are forwarded to that processor. Non−home remote pointers expire

if they remain unused for too long.

� None: this processor has no idea where the element is located−− the element is not listed in

the hashtable. Messages for such elements will be sent to their home7; or if this is the home,

buffered. 

� Buffer ing: this processor has messages queued for the element, but the element has not yet

been created8. This state is only used on an element’s home processor.

The element state can change according to the transitions of the finite state machine of Figure 5.

5 COLLECTIVE OPERATIONS

In addition to communicating point−to−point, array elements often need to participate in global

operations such as broadcasts and reductions. 

5.1 Broadcasts

The semantics of a broadcast are that every existing array element will receive each broadcast

message exactly once. Since processors have no shared clock, "existing" means created but not

destroyed at the instant the broadcast is received on that processor. Array broadcasts are thus

7 As calculated by mapping the array index in the usual way.
8 This is a rare and short−lived state, but needed because messages may arrive out of order.



first sent to each processor, then delivered to each processor’s current local elements. However,

this is not enough if there are ongoing migrations.

For example, consider the case where a migrating element leaves processor A before the

broadcast is delivered, and arrives on processor B where the broadcast has already been

delivered. The migrator may miss the broadcast. Or, reversing the situation, an element may

receive a broadcast on processor C, then migrate to D where the broadcast has not yet arrived.

When the broadcast reaches D, the migrator may erroneously receive the broadcast again (Figure

6).

A B

CD

Broadcast
Delivered

Miss

Double

Figure 6. Broadcast delivery problems. Processors A and D have not received the
broadcast; processors B and C have.

To solve these problems, the broadcasts are serialized9, and processors and elements each

maintain a broadcast count. When an element is created, it takes the local processor’s broadcast

count. 

To prevent duplicate delivery, when a broadcast arrives the system compares its count with each

element’s broadcast count. The system delivers the broadcast only if the count indicates the

element has not yet received that broadcast.

To prevent missed broadcasts, the system maintains a buffer of past broadcasts. When an

element arrives from migration, the system again compares its broadcast count with the

element’s. If the element missed any broadcasts while migrating, the element count will be too

low, and the element is brought up to date from the broadcast buffer. The broadcast buffer is

periodically garbage collected on each processor, removing broadcasts older than any plausible

migration delivery time.

Broadcast semantics are easy to enforce when an element is deleted−− simply stop delivering

broadcasts to the deleted element. When an element is created, it should receive all broadcasts

that arrive at its birthplace after its creation; so a new element’s broadcast count is initialized

with the local processor’s broadcast count.

5.2 Reductions

A reduction combines many values scattered across a parallel machine into a single value. A

reduction function defines what "value" means and performs the combination. The semantics of

9 A broadcast, by definition, must reach every node. Serializing the broadcasts via a single node
thus involves little additional cost.



a reduction are that each existing element will contribute exactly one value, and the reduction

function will be applied to these values in an unspecified order10. As before, "existing" means

created but not deleted at the time the local reduction completes. Of course, other work may

proceed during the reduction.

Reductions can be implemented efficiently by first reducing the values within each processor

(the local reduction), then reducing these values across processors. As with broadcasts, in the

presence of migration this simple algorithm is not enough.

Local
ReductionLocal

Reduction

BA

Late
Contribution

Migration

Figure 7. Timeline: reduction skips a migrator . We must ensure the migrator ’s
contr ibution is included.

The problem is that during the time a migrating element is in transit, it belongs to no processor11.

That is, the source processor cannot wait for the migrator’s contribution because it already left;

while the destination processor cannot know it is on the way (Figure 7). Thus the source and

destination processors might both complete their local reductions, missing the migrator.

However, the reduction must wait until all elements, even migrators, have contributed.

One sensible solution is to count the number of contributed values as the reduction data is

collected, and not allow the reduction to complete until the number of values matches the

number of elements. Unfortunately, the total number of elements is not available on any

processor; and a simple sum of the local element counts will still miss migrating elements.

The approach we use is to sum the net births−− the total number of elements created on a

processor minus the total destroyed on that processor12. Because of migration, this number may

be negative if elements often migrate in and are destroyed (e.g., on "graveyard" processors). 

Since for each processor i, the net births ni is defined as:

ni
� ci

� di

Thus summed across all processors:
�

ni
� �

ci
� di

� �
ci

�
�

di
� ctotal

� dtotal

Summed across all processors, then, we have the total number of elements created but not yet

deleted, which is the global element count. 

10 If the order matters, one can use the list−making reduction function to collect the data onto one
processor first.

11 A non−blocking control handoff without an in−between period is impossible−− it is an n−way
handshake problem.

12 Measured at the instant the local reduction completes.



Thus the reduction algorithm actually used is:

� At each processor, collect contributed values from local elements until all current local

elements have contributed13. At that point, apply the reduction function to the collected

values and add the result, contribution count, and the current net births to the across−

processor reduction.

� Reduce the values, contribution count, and current net births across all processors to the root

processor.

� As migrators make their late contributions, send their values directly to the root. Once the

contribution count equals the total net births, return the reduced value to the user.

The reduction semantics are also slightly more difficult to enforce in the presence of creations

and deletions. Element creations are relatively easy−− the net births counter is incremented and

the element receives the reduction count of the local processor. 

If an element is deleted that has not yet contributed to the current reduction, we simply

decrement the net births counter. If the element has contributed, we must ensure it is included in

the net births count for this reduction; but for future reductions it is not included. This is easy to

implement with a simple "delayed update" net births adjustment. 

6 PERFORMANCE

We have extensively analyzed the performance of the array support, as summarized below.

6.1 Theoretical

Notation:

p the number of processors on the parallel machine

n the total number of array elements

l i the number of local array elements on processor i

r i the number of remote elements recently referenced by processor i

hi the number of elements with processor i as their home

Element creation and deletion, since they only involve the current processor and the element’s

home, require O(1) time and 1 message. Migration requires O(1) time and 2 messages14.

Message delivery may require an unbounded number of messages, but only if the element

migrates as fast as the message travels. Repeated messages to stationary elements take O(1) time

and 1 message.

The local, element−wise operations during reductions and broadcasts require time in O(l i) on

processor i . Without migration, the cross−processor phase of a broadcast or reduction tree

requires p−1 messages and completes in logb p hops, with b the tree branching factor (typically

2 to 16).

13 As with broadcasts, we use a per−element and per−processor reduction count to determine who
still needs to contribute.

14 One message transports the element, one updates the home processor’s routing table.



The storage consumed by the element hashtable on processor i is O(l i+r i+hi). If each element

communicates with a bounded number of other elements, r i∈O(l i). If elements and home

processors are distributed relatively uniformly, l i and hi will both be near n/p. Subject to these

assumptions, each processor’s hashtable requires storage in O(n/p). In the worst case, l i, r i and hi

are all bounded by n, so the storage is still in O(n).

6.2 Single−Processor

The system was implemented on Charm++ [1], which also includes non−indexable, non−

migratable parallel objects called chares. Table 1 compares the single−processor software

overhead for preparing, scheduling, and receiving a message using these non−migratable objects

and the array elements described in this paper.

Table 1. Compar ison of software overhead with non−arrays

Type Linux PC15 Cray T3E16 IBM SP317

"Chares" 0.92 µs 2.03 µs 1.62 µs

Array Elements 1.85 µs 9.64 µs18 4.33 µs

The migration layer adds a few microseconds of overhead to each message. For grain sizes over

a few hundred microseconds, array elements add negligible overhead.

6.3 Multiple−Processor

Below, we plot the total time taken for various array operations for varying numbers of

processors. In these plots, "broadcast/reduction" means a small broadcast to every array element

followed by a reduction across all array elements. "Migration" means the time for a small array

element to be packed, shipped across the network, unpacked, and the home processor informed.

"Message" means the time to send a short message from one array element to another across

processors. 

The array elements are distributed in 1D with 16 elements per processor, scaling up with

processors. The operations run on every element across the machine simultaneously, and are

repeated several thousand times to factor out startup overhead and include any induced non−

critical−path load. For migration and messaging, the time reported is the wall clock time for one

element to send one message or migrate once. For broadcast/reduction the time reported is wall−

clock for one broadcast/reduction cycle. The first data point is with two processors so migration

is meaningful.

15 400 MHz AMD K6−3, Linux 2.4.0t10, egcs−2.91.66 −O3
16 450 MHz DEC Alpha, UNICOS 2.0.5.44, Cray C++ 3.3.0 −O
17 375 MHz IBM Power3, AIX 4.3.3, VisualAge C++ 5 −O
18 The Cray C++ compiler does not support templated member functions, so this version is

implemented using function pointers, which cannot be inlined and are significantly slower.



Table 2. Cross−processor  per formance for  2−32 processors

Type Cray T3E IBM SP3

Short Message 43−56 µs 31−43 µs

Object Migration 151−161 µs 55−77 µs
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Figure 8. Time per  broadcast/reduction operation

The system is indeed highly scalable. Theoretically, we expect the broadcast/reduction time

curve to be logarithmic in the number of processors; the system meets our expectation.

6.4 Application Performance

We present results from only two of the many applications built using arrays. 

The first result comes from an explicit finite−element code. Here, each array element represents

a partition of the finite element mesh. At each timestep, each array element loops over the

triangles in its mesh partition, adding forces to its local nodes. Next, we exchange forces for the

nodes which are shared across processors−− the partition boundary nodes−− by sending

messages to our neighboring partitions. Finally, the nodes are moved based on the net forces.

Thus each timestep consists of some serial work (looping over triangles), some communication

(exchanging forces), and some additional serial work (moving nodes). 

The mesh consists of some 600,000 triangles and 300,000 nodes. Since the mesh is large, on a

single processor the computation is memory−bandwidth bound, and each timestep takes

approximately one second. Figure 9 shows the speedup obtained on an SGI Origin200019.
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Figure 9. Speedup for  an ar ray−based finite−element code. 

19 250 MHz MIPS R10000, IRIX64 6.5, MIPSpro C++ 7.3.1.2m



As expected, speedup for this problem is superlinear because for a given problem size, cache

performance improves significantly as processors are added, and the problem shifts from

memory−bandwidth bound to compute−bound. The parallel efficiency peaks at 163% on 24

processors; the efficiency at 128 processors is 139% (for a speedup of 178). On 128 processors,

each timestep takes 3.5 milliseconds.

The second result comes from a collision detection algorithm. The basic approach is voxel−

based, as outlined in section 2.3 and described in more detail in [19]. This particular

implementation begins with a "start step" broadcast, sends object lists to voxels, synchronizes,

independently collides the object lists, the reduces over the resulting collision list.

We present the results from a scaling benchmark, with a fixed 65,000 triangles per processor, on

the ASCI Red machine. The time shown is the wall−clock time per collision.
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Figure 10. Time per  collision for  a scaling collision problem

The parallel efficiency on 1,500 processors is 65% (mostly synchronization overhead), for a

speedup of 980. The dataset used for this run was almost 100 million polygons.

7 APPLICATIONS

In an application, an array element may:

� Represent a single data item. This approach may appear attractive and general, but is usually

much too fine−grained for reasonable performance. For example, in a graphics manipulation

program, each pixel of an image could be implemented as a separate array element. But

because almost any conceivable processing on a single pixel will happen in just a few

microseconds; the program’s run time would be dominated by messaging (dozens of

microseconds) and runtime overhead (several more microseconds).

� Represent a group of data items. This is the canonical usage of array elements, as it leads to

good performance. Choose the number of items to aggregate so the array element grain size

is reasonable. For example, in a graphics manipulation program, an element could represent

a 32x32 patch of pixels. If the per−step processing needed by this patch takes a millisecond

or more, this system will have good parallel efficiency.

� Represent a thread, processor, or other object. This approach is often taken in simulators,

emulators, and run−time support systems.



7.1 Programs

The array support has been used by a number of highly scalable Charm++ libraries and

programs. 

� AMPI [6] virtualizes MPI processors as array elements, implementing MPI calls as array

method invocations, broadcasts, and reductions. Thus legacy MPI programs, written in C or

Fortran, with minor modifications can take advantage of automatic load balancing. As

described in [6], a large multiphysics solid rocket simulation code has been run on AMPI

with minimal effort and excellent performance.

� The Charm++ finite−element method framework[20] represents partitions of a finite element

mesh as array elements. The framework includes Fortran 90 bindings, which are used by

several significant engineering applications. Crackprop, a 3D pressure−driven crack

propagation code, is a classic finite element structures code. A 3D adaptive mesh dendritic

growth metal solidification simulation also uses the framework.

� POSE, a discrete event simulation framework, uses array elements as objects in a discrete

event simulation. The objects participate in a global virtual time algorithm. Objects

checkpoint their state, attempt to optimistically advance in time, and potentially roll back if

they advanced too far.

� A simulator for Blue Gene, an advanced parallel machine from IBM, simulates Blue Gene

microprocessor chips as array elements [18]. Using 96 physical processors, we were able to

simulate a machine with 8 million simultaneous threads distributed over 40,000 array

elements with good efficiency.

8 CONCLUSIONS

We have presented efficient support for a general logical addressing scheme for parallel objects.

The array index is a user−defined structure, supporting multidimensional, sparse arrays as well

as structures such as trees. Objects may be efficiently created, deleted, or migrated at any time;

and even in the face of these operations, the system supports array−wide broadcasts and

reductions efficiently.

This system has proved a robust and useful foundation for several significant applications.

Future work on this system will include: further optimization of the implementation;

implementing the k−homes approach described in section 3.1; more work in optimizing

communication via message aggregation; and more optimization of the collective operations.
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10 SIMPLE EXAMPLE

This simple example program implements a stencil−on−regular−grid computation, such as a

Jacobi relaxation or SOR. The numerical details are hidden in the Serial class, which represents a

compact area of the problem domain. Each Serial is contained in a corresponding Jacobi array

element, which does all the parallel communication required for border sharing and an

occasional global error reduction.

10.1 Inter face (ci) File
mai nmodul e j acobi  {

r eadonl y i nt  Xsi ze;
r eadonl y i nt  Ysi ze;
r eadonl y CPr oxy_Jacobi  Jpr oxy;
mai nchar e Mai n {  ent r y Mai n( ) ;  } ;
ar r ay [ 2D]  Jacobi
{

ent r y Jacobi ( ) ;
ent r y voi d sendBor der s( voi d) ;
ent r y voi d r ecvBor der ( Di r  di r , i nt  bs, doubl e bor der [ bs] ) ;

} ;
} ;

10.2 Ser ial Inter face File (C++) 
#def i ne STEPS_PER_I TER 16
t ypedef  enum {  UP=0, DOWN=1, LEFT=2, RI GHT=3 }  Di r ;
c l ass Ser i al  {

i nt  s t epCount ;
i nt  hei ght ,  wi dt h;
doubl e * t emper at ur es;

publ i c :
voi d i ni t ( i nt  x , i nt  y) ;
voi d pup( PUP: : er  &p) ;
i nt  get St ep( voi d)  const ;
i nt  bor der Si ze( Di r  t o)  const ;
voi d ext r act Bor der ( doubl e * a, Di r  di r )  const ;
voi d i nser t Bor der ( const  doubl e * d, Di r  di r ) ;
voi d comput e( voi d) ;
doubl e get Local Er r or ( voi d)  const ;

} ;  

10.3 Parallel Implementation File (C++)
#i ncl ude " j acobi . decl . h"   / * Get  gener at ed code f or  pr oxy* /
#i nc l ude " j acobi . def . h"
#i nc l ude " ut i l . h"    / * Get  Ser i al  and Di r  t ypes* /

i nt  Xsi ze, Ysi ze;  / /  Di ment i ons of  obj ect  gr i d
CPr oxy_Jacobi  Jpr oxy;  / /  Mai n par al l el  ar r ay

/ * Thi s r out i ne i s  cal l ed on when a gl obal  er r or  r educt i on compl et es* /
voi d i t er at i onDone( voi d * user Par am, i nt  dat aLen, voi d * dat a)
{

st at i c  i nt  i t er at i onCount =0;
doubl e t ot al Er r or =* ( doubl e * ) dat a;
CkPr i nt f ( " Tot al  er r or =%g at  %d\ n" ,

t ot al Er r or , ++i t er at i onCount ) ;
i f  ( t ot al Er r or <1. 0e−3)  

{ CkPr i nt f ( " Conver ged. \ n" ) ; CkExi t ( ) ; }
i f  ( i t er at i onCount >=50)

{ CkPr i nt f ( " I nf .  l oop! \ n" ) ; CkExi t ( ) ; }
Jpr oxy. sendBor der s( ) ; / / Br oadcast  send,  t o begi n t he next  i t er at i on

}
/ / Mai n obj ect  begi ns t he comput at i on
class Main :  publ i c  Char e {
publ i c :

Mai n( CkAr gMsg * m)  
{  

i f  ( m−>ar gc! =3)  
  { CkPr i nt f ( " Use j acobi  x  y \ n" ) ; CkExi t ( ) ; }
Xsi ze = at oi ( m−>ar gv[ 1] ) ;  Ysi ze = at oi ( m−>ar gv[ 2] ) ;
del et e m;
/ / Bui l d t he ar r ay and popul at e t he el ement  gr i d
Jpr oxy. ckNew( ) ;  
f or  ( i nt  x=0; x<Xsi ze; x++)  
  f or  ( i nt  y=0; y<Ysi ze; y++)

Jpr oxy( x, y) . i nser t ( ) ;
Jpr oxy. doneI nser t i ng( ) ;
Jpr oxy. set Reduct i onCl i ent ( i t er at i onDone) ;

}
} ;



class Jacobi :  publ i c  Ar r ayEl ement 2D {
i nt  Xnbor ( Di r  i n)  {  / / Ret ur n x i ndex of  nei ghbor  i n gi ven di r ect i on

swi t ch( i n)  {
case up:  case down:  r et ur n t hi s I ndex. x;
case r i ght :  r et ur n ( t hi s I ndex. x+1) %Xsi ze;
case l ef t :   r et ur n ( t hi s I ndex. x−1+Xsi ze) %Xsi ze;
}

}
i nt  Ynbor ( Di r  i n)  {  / / Ret ur n y i ndex of  nei ghbor  i n gi ven di r ect i on

swi t ch( i n)  {
case r i ght :  case l ef t :  r et ur n t hi s I ndex. y;
case down:  r et ur n ( t hi s I ndex. y+1) %Ysi ze;
case up:   r et ur n ( t hi s I ndex. y−1+Ysi ze) %Ysi ze;
}

}
enum { Nnbor =4} ; / / Number  of  nei ghbor s

Ser i al  ser i al ;  / / The ser i al  al gor i t hm
i nt  bor der Count ;  / / Number  of  bor der s we’ ve r ecei ved so f ar

publ i c :
Jacobi ( voi d)
{

ser i al . i ni t ( t hi s I ndex. x, t hi s I ndex. y) ;
bor der Count =0;

}

voi d sendBor der s( voi d)
{ / / Send bor der  val ues t o nei ghbor s

Di r  d[ Nnbor ] ={ UP, DOWN, LEFT, RI GHT} ;
f or  ( i nt  i =0; i <Nnbor ; i ++)  
{ / / Pack up and send our  bor der  t o our  i ’ t h nei ghbor

i nt  bs=ser i al . bor der Si ze( d[ i ] ) ;
doubl e * bor der =new doubl e[ bs] ;
ser i al . ext r act Bor der ( d[ i ] , bor der ) ;
Jpr oxy( Xnbor ( d[ i ] ) , Ynbor ( d[ i ] ) ) . r ecvBor der ( d[ i ] , bs, bor der ) ;
del et e[ ]  bor der ;

}
}
voi d r ecvBor der ( Di r  f or Di r , i nt  bs, doubl e * bor der )
{ / / Add t hi s  bor der  pat ch

ser i al . i nser t Bor der ( f or Di r , bor der ) ;
bor der Count ++;
i f  ( bor der Count ==Nnbor )  

bor der sDone( ) ;
}
voi d bor der sDone( voi d)
{  / / We now have al l  t he bor der  pat ches−− do a ser i al  t i mest ep

ser i al . comput e( ) ;
bor der Count =0;
i f  ( ( ser i al . get St ep( ) %STEPS_PER_I TER) ==0)
{ / / Sum up l ocal  er r or s v i a a r educt i on

doubl e l ocal Er r =ser i al . get Local Er r or ( ) ;
cont r i but e( s i zeof ( l ocal Er r ) , &l ocal Er r ,

CkReduct i on: : sum_doubl e) ;
}
el se / / Just  s t ar t  next  s t ep

sendBor der s( ) ;
}

/ / To suppor t  mi gr at i on ( & t hus l oad bal anci ng)
Jacobi ( CkMi gr at eMessage * m)  
{  }
v i r t ual  voi d pup( PUP: : er  &p)  
{ / / Pack/ UnPack dat a t o/ f r om net wor k,  di sk,  et c

Ar r ayEl ement 2D: : pup( p) ;
ser i al . pup( p) ;
p( bor der Count ) ;

}
} ;


