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ABSTRACT
In this paper we present a platform independent analysis of
the dynamic profiles of Java programs when executing on
the Java Virtual Machine. The Java programs selected are
taken from the Java Grande Forum benchmark suite, and
five different Java-to-bytecode compilers are analysed. The
results presented describe the dynamic instruction usage fre-
quencies, as well as the sizes of the local variable, parameter
and operand stacks during execution on the JVM.

These results, presenting a picture of the actual (rather than
presumed) behaviour of the JVM, have implications both for
the coverage aspects of the Java Grande benchmark suites,
for the performance of the Java-to-bytecode compilers, and
for the design of the JVM.
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1. INTRODUCTION
The Java paradigm for executing programs is a two stage
process. Firstly the source is converted into a platform inde-
pendent intermediate representation, consisting of bytecode
and other information stored in class files [11]. The second
stage of the process involves hardware specific conversions,
perhaps by a JIT compiler for the particular hardware in
question, followed by the execution of the code. The prob-
lem addressed by this research is that while there exist static
tools such as class file viewers to look at this intermediate
representation (e.g. [7]), there is currently no easy way of
studying the dynamic behaviour at this point in the pro-
gram. This research therefore sets out to perform dynamic
analysis at the platform independent level and investigate
whether or not useful results can be gained. In order to test
the technique, the Java Grande Forum’s Benchmark suite

An earlier version of this paper appeared in the proceed-
ings of the ACM 2001 Java Grande/ISCOPE conference,
Palo Alto, California, June 2-4, 2001.

[5] was used.

The remainder of this paper is organised as follows. Sec-
tion 2 discusses the background to this work, including the
rationale behind bytecode-level dynamic analysis, and the
test suite used. Sections 3 and 4 summarise the profiles of
each of the Grande programs studied. In particular, section
3 presents a method-level view of the dynamic profile, while
section 4 presents a more detailed bytecode-level view. Sec-
tions 5 and 6 discuss some of the issues that can affect these
figures. Section 5 discusses the influence of compiler choice
on dynamic analysis, and describes the variations caused by
five of the most common Java compilers. Section 6 profiles
the method stack frame sizes, since the size and distribution
of data on the stack has an influence on the position-specific
bytecodes (e.g. iconst 1) used. Section 7 concludes the pa-
per.

2. BACKGROUND
The increasing prominence of internet technology, and the
widespread use of the Java programming language has given
the Java Virtual Machine (JVM) a unique position in the
study of compilers and related technologies. To date, much
of this research has concentrated in two main areas:

• Static analysis of Java class files, for purposes such as
optimisation [14] or compression [2]

• The performance of the bytecode interpreter, yielding
techniques such as Just-In-Time (JIT) (e.g. [1, 8]) and
hotspot-centered compilation (see [9] for a survey).

The platform-independent bytecode analysis presented in
this paper describes the bytecode as it is interpreted, with-
out the interference of JIT compilation or any machine-
specific issues. This type of analysis can help to clarify the
potential impact of the data gained from static analysis, can
provide information on the scope and coverage of the test
suite used, and can act as a basis for machine-dependent
studies.

The production of bytecode for the JVM is, of course, not
limited to a single Java-to-bytecode compiler. Not only is
there a variety of different Java compilers available, but
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there are also compilers for extensions and variations of the
Java programming language, as well as for other languages
such as Eiffel [6] and ML [4], all targeted on the JVM. In
previous work we have studied the impact of the choice of
source language on the dynamic profiles of programs run-
ning on the JVM [15]. The compiler comparisons presented
in this paper help to calibrate this and other such studies by
showing the effect of compiler choice on the data collected.

2.1 Dynamic Bytecode-Level Analysis
The static bytecode frequency, which is the number of times
a bytecode appears in a class file or program has been stud-
ied in [2] where a wide difference was found between the
bytecodes appearing in different class files, with each class
file using on average 25 different bytecodes. The dynamic
frequency of an instruction is the number of times it is ex-
ecuted during a program run. Dynamic bytecode analysis
is a valuable technique for studying the behaviour of Java
Programs and the design of the Java Virtual Machine. Even
though the majority of Java code executed may now be using
some form of JIT compiler, dynamic analysis of interpreted
bytecode usage, and associated dynamic analysis of stack
frame usages can provide valuable information for profiling
of programs and for the design and implementation of vir-
tual machines.

The output of a dynamic bytecode analysis will therefore be
important for the design of both Java to bytecode and Just-
In-Time bytecode to native compilers. Of particular interest
also is the instruction set used by an intermediate represen-
tation to implement platform independence. By dynami-
cally analysing the Java bytecodes, lessons may be drawn to
facilitate construction of more efficient intermediate repre-
sentations for both procedural object-oriented programming
languages like Java and programming languages from differ-
ent categories.

Speed comparisons of the Java Grande benchmark suite us-
ing different Java Platforms have been performed [5] and
differences in execution times have been found, but it has
not been known whether the resulting differences measured
have been due to the Java compiler, the JIT compiler or the
virtual machine implementation on the particular underly-
ing operating system and hardware architecture. This pa-
per shows, by means of the dynamic bytecode analysis tech-
nique, that the bytecodes executed by a particular Grande
application are very similar for a wide variety of Java com-
pilers, implying compiler choice is not the main explanation
of execution speed variations for these programs. In addi-
tion, it is possible to study how representative of Grande-size
programs the chosen benchmark suite is.

In order to study dynamic method usage it was necessary to
modify the source code of a Java Virtual Machine. Kaffe [17]
is an independent implementation of the Java Virtual Ma-
chine distributed under the GNU Public License. It comes
with its own standard class libraries, including Beans and
Abstract Window Toolkit (AWT), native libraries, and a
configurable virtual machine with a JIT compiler for en-
hanced performance. Kaffe version 1.0.6 was used for these
measurements.

2.2 Grande Programs Measured
A Grande application is one which uses large amounts of
processing, I/O, network bandwidth or memory. The Java
Grande Forum Benchmark Suite [5] is intended to be rep-
resentative of such applications, and thus to provide a basis
for measuring and comparing alternative Java execution en-
vironments. It is intended that the suite should include not
only applications in science and engineering but also, for ex-
ample, corporate databases and financial simulations. The
applications in the suite are:

• The euler benchmark solves a set of equations using a
fourth order Runge-Kutta method. This suite demon-
strates a considerable clustering of functionality in the
Tunnel class, as well as a comparatively high percent-
age of methods with very large local variable require-
ments.

• The moldyn benchmark is a translation of a Fortran
program designed to model the interaction of molec-
ular particles. Its origin as non object-oriented code
probably explains its relatively unusual profile, with a
few methods which make intensive use of fields within
the class, even for temporary and loop-control vari-
ables. This program may still represent a large num-
ber of Grande type applications that will initially run
on the JVM.

• The montecarlo benchmark is a financial simulation
using Monte Carlo techniques to price products de-
rived from the price of an underlying asset. Its use of
classical object-oriented get and set methods accounts
for the relatively high proportion of methods with no
temporary variables and 1 or 2 parameters (including
the this-reference).

• The raytracer measures the performance of a 3D ray
tracer rendering a scene containing 64 spheres. It
is represented using a fairly shallow inheritance tree,
with functionality (as measured in methods) fairly well
distributed throughout the classes.

• The search benchmark solves a game of connect-4 on
a 6×7 board using alpha-beta pruning. Intended to be
memory and numerically intensive, this is also the only
application to demonstrate an inheritance hierarchy of
depth greater than 2.

Version 2.0 of the benchmark suite (Size A) was used. The
default Kaffe maximum heap size of 64M was sufficient for
all programs except mon which needed a maximum heap size
of 128M. The ray application failed its validation test when
interpreted, but as the failure was by a small amount, it
was included in the measurements. All of the applications
discussed in sections 3 and 4 were compiled using SUN’s
javac compiler, Standard Edition (JDK build 1.3.0-C).

3. DYNAMIC METHOD EXECUTION FRE-
QUENCIES

In this section we present our dynamic profile of the Grande
programs studied. Here we partition the execution profiles
based on methods, since these provide both a logical source
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Program Total API % API
methods native %

eul 3.34e+07 58.0 12.6
mol 5.49e+05 22.7 19.9
mon 8.07e+07 98.7 37.4
ray 4.58e+08 3.1 1.6
sea 7.12e+07 0.0 0.0
ave 1.29e+08 36.5 14.3

Table 1: Measurements of total number of method
calls including native calls by Grande applications,
compiled using SUN’s javac compiler. Also shown is
the percentage of the total which are in the API,
and percentage of total which are both in the API
and are native methods.

Program Java method calls bytecodes executed
number % in API number % in API

eul 2.92e+07 51.9 1.46e+10 0.5
mol 4.40e+05 3.4 7.60e+09 0.0
mon 5.05e+07 97.9 2.63e+09 38.0
ray 4.50e+08 1.5 1.18e+10 0.1
sea 7.12e+07 0.0 7.10e+09 0.0
ave 1.20e+08 30.9 8.75e+09 7.7

Table 2: Measurements of Java method calls exclud-
ing native calls made by Grande applications compiled
using SUN’s javac compiler.

Package eul mol mon ray sea ave
io 2.4 2.9 0.0 0.0 3.0 1.7
lang 97.6 82.3 2.3 100.0 80.2 72.5
net 0.0 0.8 0.0 0.0 1.1 0.4
text 0.0 0.3 0.0 0.0 0.0 0.1
util 0.0 13.7 97.6 0.0 15.7 25.4

Table 3: Breakdown of Java (non-native) API
method dynamic usage percentages by package for
Grande applications compiled using SUN’s javac
compiler. The percentages show the number of non-
native API method calls directed to methods in each
package used.

Package eul mol mon ray sea ave
io 7.6 1.2 0.3 0.0 1.2 2.1
lang 92.2 69.5 2.0 99.3 69.6 66.5
net 0.0 1.1 0.0 0.0 1.3 0.5
text 0.0 0.6 0.0 0.0 0.0 0.1
util 0.1 27.6 97.7 0.7 28.0 30.8

Table 4: Breakdown of Java (non-native) API byte-
code percentages by package for Grande applications
compiled using SUN’s javac compiler. The percent-
ages show the proportion of (non-native) API byte-
codes executed from each package.

of modularity at source-code level, as well as a likely unit of
granularity for hotspot analysis [3]. It should be noted that
these figures are not the usual time-based analysis such as
found in e.g. [5] for the Java Grande suite, or [13] for the
SPEC98 suite. Rather, the figures are based on the more
platform-independent method frequency and bytecode usage
analyses. It should be noted that all measurements in this
paper were made with the Kaffe API library, which may
differ from other Java API libraries.

Table 1 shows measurements of the total number of method
calls including native calls by Grande applications. For the
programs studied, on average 14.3% of methods are API
methods which are implemented by native code. As the
benchmark suite is written in Java it is possible to conclude
that any native methods are in the API. This paper is con-
fined to studying how the Java methods execute. Table 1
must be interpreted carefully as it is a method frequency
table, without reference to bytecode usage, and so may not
correlate with eventual running times. For example, there
is no guarantee that API methods have the same bytecode
frequencies or execution times as non-API methods.

The figures on the left of Table 2 show measurements of the
Java method calls excluding native calls. A more detailed
view is given by the figures on the right of Table 2 which
show the number of bytecodes executed for each application.
While nearly 70% of method calls are directed to non-API
methods, Java method execution is even more focused (92%
on average) in the non-API bytecodes of the programs. This
is a significant difference from traditional Java applications
such as applets or compiler type tools which spend most of
the time in the API [16]. Mixed compiled interpreted sys-
tems which precompile the API methods to some native for-
mat will therefore not be as effective at speeding up Grande
applications like these. The finding that API usage is very
low may imply that the benchmark suite may not be fully
representative of a broad range of Grande applications. It is
interesting to observe that while 98% of Java methods are
API for the mon benchmark, these account for only 38%
of the bytecodes executed. Again, this point highlights the
greater information provided by a bytecode level analysis.

Table 3 shows dynamic measurements of the Java API pack-
age method call percentages and Table 4 shows API bytecode
percentages. The figures in these two tables are broadly sim-
ilar, implying the API methods each execute the same num-
ber of bytecodes. As would be expected for the programs
considered, the applet and awt packages are not used at all
as graphics have been removed from the benchmarks. A
Grande application should use large amounts of processing,
I/O, network bandwidth or memory, yet it is interesting to
note how little of the API packages are dynamically used by
this benchmark suite.

Table 5 and Table 6 present two contrasting analyses of
method usage. Table 5 ranks methods based on the fre-
quency with which they are called at run-time. Table 6 on
the other hand ranks methods based on the proportion of
total executed bytecodes that they account for. The figures
in Table 5 are related to the method reuse factor as described
in [13], proposed as an indication of the benefits obtained
from JIT compilation. However, we suggest that the differ-
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Figure 1: Average Dynamic bytecode percentages for
the 10 hottest methods for the Grande applications
compiled using SUN’s javac compiler.

ence in rankings between Table 5 and Table 6 shows that the
method-call figures do not give a full picture of where the
program is spending its time. The difference is most striking
in mol, where Table 5 seems to show an equal distribution of
effort between four methods, yet Table 6 clearly shows that
just one method, particle.force(), accounts for the majority
of the bytecodes executed. In fact, particle.force() contains
a significant loop, while the other three methods do not con-
tain any loop at all.

Figure 1 shows that, on average, for the Grande programs
studied 66% of the execution time, as measured by bytecode
use, is spent in the top two methods.

4. DYNAMIC BYTECODE EXECUTION
FREQUENCIES

In this section we present a more detailed view of the dy-
namic profiles of the Grande programs studied by consider-
ing the frequencies of the different bytecodes used. These
figures help to provide a detailed description of the nature
of the operations being performed by each program, and
thus give a picture of the aspects of the JVM actually be-
ing tested by the suite. This also provides an alternative to
typical time-based analysis, which, while useful for efficiency
analysis, can be considerably influenced by the underlying
architecture’s proficiency in dealing with different types of
bytecode instructions.

Table 7 shows total (API and non-API) dynamic bytecode
usage frequencies by Grande applications. The JVM in-
struction set has special efficient load and store instructions
for the first four local variable array entries, and less efficient
generic instructions for higher local variable array positions.
The first thing that stands out from Table 7 is that for mol,
sea and eul the highest frequency instruction is a generic
load, rather than an efficient load from one of the first four
elements of the local variable array. For mol one third of
instructions are a single load of this type.

Methods from eul %
java.lang.Math.abs 28.1
java.lang.Object.<init> 22.4
Statevector.<init> 22.4
Statevector.svect 22.0
Vector2.dot 2.1
Vector2.magnitude 1.6
java.io.StreamTokenizer.lookup 0.3
java.io.StreamTokenizer.chrRead 0.2

Methods from mol %
particle.velavg 23.3
particle.mkekin 23.3
particle.force 23.3
particle.domove 23.3
random.update 1.8
java.lang.String.indexOf 1.2
random.seed 0.7
java.lang.Object.<init> 0.7

Methods from mon %
java.util.Random.next 50.4
java.util.Random.nextDouble 25.2
java.util.Random.nextGaussian 19.8
java.lang.StringBuffer.append 0.6
java.lang.Object.<init> 0.4
PathId.get dTime 0.2
java.lang.Math.abs 0.2
java.lang.Character.forDigit 0.2

Methods from ray %
Vec.dot 47.7
Vec.sub2 23.6
Sphere.intersect 23.1
java.lang.Object.<init> 1.3
Vec.<init> 0.8
Vec.normalize 0.6
Isect.<init> 0.6
RayTracer.intersect 0.4

Methods from sea %
Game.wins 46.5
SearchGame.ab 10.3
Game.makemove 10.3
Game.backmove 10.3
TransGame.hash 9.3
TransGame.transpose 5.3
TransGame.transtore 4.0
TransGame.transput 4.0

Table 5: Dynamic method execution frequencies for
the most frequently called methods for the Grande ap-
plications, compiled using SUN’s javac compiler. The
percentage represents the proportion of the total
number of (non-native) method calls that were calls
to this method during the program’s execution.
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Methods from eul %
Tunnel.calculateR 51.3
Tunnel.calculateDamping 16.0
Tunnel.doIteration 8.7
Tunnel.calculateG 6.6
Tunnel.calculateF 6.6
Tunnel.calculateStateVar 4.1
Tunnel.calculateDeltaT 3.3
Statevector.svect 1.5

Methods from mol %
particle.force 99.6
particle.mkekin 0.1
particle.domove 0.1
md.runiters 0.1
random.update 0.0
random.seed 0.0
random.<init> 0.0
particle.velavg 0.0

Methods from mon %
ReturnPath.computeVariance 19.0
java.util.Random.next 17.4
java.util.Random.nextGaussian 12.4
ReturnPath.computeMean 10.6
MonteCarloPath.computeFluctuationsGaussian 10.3
MonteCarloPath.computePathValue 8.0
RatePath.getReturnCompounded 7.6
java.util.Random.nextDouble 7.3

Methods from ray %
Vec.dot 32.8
Sphere.intersect 29.5
Vec.sub2 19.8
RayTracer.intersect 14.0
Vec.normalize 1.0
RayTracer.shade 1.0
Vec.<init> 0.3
Vec.comb 0.3

Methods from sea %
Game.wins 32.6
SearchGame.ab 30.7
TransGame.hash 8.2
Game.makemove 8.1
Game.backmove 7.9
TransGame.transpose 7.3
TransGame.transput 3.8
TransGame.transtore 0.6

Table 6: Dynamic method bytecode percentages for
the Grande applications, compiled using SUN’s javac
compiler. The percentages in this table represent
the proportion of the total number of bytecodes exe-
cuted by the program that belonged to this method.

Although the Java to bytecode compiler does not have access
to dynamic execution data, it should be able to put the most
heavily used local variables into one of the efficient slots
most of the time (see also Table 11). Alternatively, if the
compiler just assigns the local variables in the order they are
declared, the application programmer might be able to alter
the sequence to increase efficiency in some cases, but not if
the compiler always puts the parameters first and there are
a large number of these. This is further highlighted later in
this paper under dynamic stack frame analysis (Table 16).

The mol benchmark has the same number of getfield as
getstatic instructions, uses a much smaller set of instruc-
tion than the other benchmarks, and does not have method
invocations in its high frequency instructions, suggesting
it may not have been designed in an object-oriented fash-
ion. The comparison instruction dcmpg is also at very high
frequency in mol relative to the other benchmarks, sug-
gesting something different is happening in the structure
of the code involving a high number of dynamic decisions.
invokevirtual does not appear at all in the high frequency
instructions for eul or mol, and is under 2% for the other
three applications, suggesting that worries about the in-
efficiencies of virtual method invocation in the Java lan-
guage may have been overstated for Grande applications.
Of course, the execution time for the invokevirtual in-
struction will be much higher than for ordinary instructions
on any hardware platform. ray and mon seem to be the
most object-oriented program, using getfield and aload 0

to access the this-reference as their most frequent instruc-
tions.

In order to study overall bytecode usages across the pro-
grams, it is possible to calculate the average bytecode fre-
quency

fi =
1

n

n∑
k=1

100× cik∑256
i=1 cik

where cik is the number of times bytecode i is executed
during the execution of program k and n is the number
of programs averaged over. fi is an approximation of that
bytecode’s usage for a typical Grande program.

For the purposes of this study, the 202 bytecodes can be split
into 22 categories as shown in Table 8. By assigning those
instructions that behave similarly into groups it is possible
to describe clearly what is happening. Table 9 is summarised
in Figure 2. As has been noted in [15] local load, push const
and local store instruction categories always account for very
close to 40% of instructions executed, a property of the Java
Virtual Machine, irrespective of compiler or compiler opti-
misations used. As can be seen in Figure 2, local load =
35.9%, push const = 5.8% and local store = 4.2%, giving a
total of 45.9% of instructions moving data between operand
stack and local variable array. It is also worth noting that, in
practice, loads are dynamically executed roughly ten times
as often as stores. There are an equal number of loads and
stores in the instruction set, although this seems to be un-
necessary dynamically.
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eul mol mon ray sea
iload 19.7 dload 33.3 aload 0 16.8 getfield 26.1 iload 13.2
aaload 18.2 iload 7.0 getfield 13.7 aload 0 16.1 aload 0 8.6
getfield 16.2 dstore 6.8 iload 1 4.8 aload 1 10.9 getfield 7.3
aload 0 8.3 dcmpg 5.5 daload 4.6 dmul 6.5 iaload 5.4
dmul 4.1 dsub 4.7 dload 4.1 dadd 4.7 istore 5.3
dadd 4.0 dmul 4.3 ldc2w 4.1 dsub 3.7 ishl 4.3
putfield 3.3 getfield 4.3 dmul 3.4 putfield 3.1 bipush 3.8
iconst 1 3.2 getstatic 4.3 dadd 3.3 aload 2 2.8 iload 1 3.6
dload 2.8 aaload 4.2 if icmplt 3.1 dload 2 1.9 iadd 3.5
daload 2.0 dcmpl 4.1 putfield 3.1 dreturn 1.9 iand 3.5
isub 2.0 dneg 4.1 iinc 3.0 invokestatic 1.9 iload 2 2.6
dup 1.7 ifge 4.1 iload 2 2.7 invokevirtual 1.9 iload 3 2.5
aload 3 1.5 ifle 4.1 bipush 2.4 iload 1.8 iconst 1 2.3
dsub 1.4 dadd 3.4 dsub 2.0 aload 1.3 ior 2.3
aload 1.3 ifgt 1.4 invokevirtual 1.9 dload 1.1 iconst 2 2.1
aload 2 1.3 if icmplt 1.4 isub 1.7 dcmpg 1.0 dup 2.0
iadd 1.1 iinc 1.4 dstore 1.6 dconst 0 1.0 iinc 1.7
iload 3 1.1 dload 1 1.0 dastore 1.5 dstore 1.0 ifeq 1.6
ldc2w 1.1 aload 0 0.1 dup 1.5 ifge 1.0 iastore 1.5
dstore 1.0 putfield 0.1 iload 3 1.5 return 1.0 iconst 4 1.4
ddiv 0.6 aastore 0.0 ladd 1.5 aaload 0.9 iconst 5 1.4
aload 1 0.4 aconst null 0.0 invokestatic 1.2 aconst null 0.9 if icmplt 1.4
dconst 0 0.4 aload 0.0 ddiv 1.1 areturn 0.9 if icmple 1.3
dload 1 0.3 aload 1 0.0 i2l 1.0 arraylength 0.9 dup2 1.0
dload 3 0.3 aload 2 0.0 iconst 1 1.0 astore 0.9 invokevirtual 1.0
if icmplt 0.3 aload 3 0.0 ireturn 1.0 dstore 2 0.9 if icmpgt 0.9
iinc 0.3 anewarray 0.0 l2i 1.0 if icmplt 0.9 isub 0.9
dastore 0.2 areturn 0.0 land 1.0 ifnull 0.9 istore 3 0.8
dstore 1 0.2 arraylength 0.0 lmul 1.0 iinc 0.9 ldc1 0.8
dstore 3 0.2 astore 0.0 lushr 1.0 dload 1 0.2 iconst 0 0.7
dcmpg 0.1 astore 0 0.0 dreturn 0.9 dcmpl 0.1 ifne 0.7
dload 0 0.1 astore 1 0.0 aload 1 0.8 ddiv 0.1 imul 0.7
dneg 0.1 astore 2 0.0 iload 0.8 dload 3 0.1 istore 1 0.7
dreturn 0.1 astore 3 0.0 dconst 1 0.7 dup 0.1 putfield 0.7
goto 0.1 athrow 0.0 dload 3 0.7 goto 0.1 aload 0.6

Table 7: Total (API and non-API) dynamic bytecode usage frequencies by Grande applications compiled using
SUN’s javac compiler. The top 35 instructions are presented for each application.

Figure 2: A summary of dynamic percentages of cat-
egory usages by the applications in the Java Grande
suite compiled using SUN’s javac compiler.

5. COMPARISONS OF DYNAMIC
BYTECODE USAGES ACROSS
DIFFERENT COMPILERS

In this section we consider the impact of the choice of Java
compiler on the dynamic bytecode frequency figures. Java
is relatively unusual (compared to, say, C or C++) in that
optimisations can be implemented in two separate phases:
first when the source program is compiled into bytecode,
and again when this bytecode is executed on a specific JVM.
We consider here those optimisations that are implemented
at the compiler level, and thus may be considered to be
platform independent, and which must be taken into account
in any study of the bytecode frequencies.

For the purposes of this study we used five different Java
compilers, from the following development environments:

kopi KOPI Java Compiler Version 1.3C
http://www.dms.at/kopi

pizza Pizza version 0.39g, 15-August-98
http://www.cis.unisa.edu.au/~pizza/

gcj The GNU Compiler for the Java Programming Lan-
guage version 2.95.2
http://sources.redhat.com/java/
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Category Number Bytecodes
misc 5 nop, iinc, athrow,

wide, breakpoint
push const 20 1-20
local load 25 21-45
array load 8 46-53
local store 25 54-78
array store 8 79-86
stack 9 87-95
arithmetic 24 96-119
logical shift 6 120-125
logical boolean 6 126-131
conversion 15 133-147
comparison 5 148-152
conditional branch 16 153-166, 198, 199
unconditional branch 2 goto, goto w
subroutine 3 jsr, ret, jsr w
table jump 2 tableswitch, lookup-

switch
method return 6 172-177
object fields 4 178-181
method invoke 4 182-185
object manage 3 new, checkcast, in-

stanceof
array manage 4 188-190, 197
monitor 2 monitorenter, moni-

torexit

Table 8: Categories of Java bytecodes.

jdk13 SUN’s javac compiler, Standard Edition (JDK build
1.3.0-C)

borl Borland Compiler 1.2.006 for Java
http://www.borland.com/

The API was not recompiled and those bytecodes have been
excluded from the dynamic comparisons in this section.

The figures for the Java compiler from 1.2 of SUN’s JDK,
as well as version 1.06 of the IBM Jikes Compiler were also
computed, but since the code produced was almost identical
to that produced by the compiler from version 1.3 of the
JDK we do not consider them further here.

Table 10 shows the percentage differences in total non-API
dynamic bytecode counts for the Grande programs using
different compilers, as compared to the JDK. While it is dif-
ficult to draw direct conclusions based on these figures, two
facts are at least apparent. First, examining each column of
Table 10, it can be seen that there are differences between
total number of bytecodes executed for a single application
between the different compilers. Second, this variance is not
consistent through all five applications, and it is clear that
a more detailed analysis is necessary to account for these
differences.

Ideally, the optimisations implemented by each compiler
should be described in the corresponding documentation;
regrettably this is not the case in reality. Also, since each of
the applications produces significantly large bytecode files,
a static analysis of the differences between these files is not
practical. Further, a bytecode-level static analysis would not
be sufficient for determining those differences which resulted
in a significant variance in the dynamic profiles.

Category eul mol mon ray sea ave
local load 37.1 41.4 33.2 36.2 31.4 35.9
object fields 19.5 8.7 16.8 29.2 8.3 16.5
arithmetic 13.3 16.5 14.0 15.0 5.8 12.9
array load 20.2 4.2 4.6 0.9 5.8 7.1
push const 4.7 0.0 8.4 2.1 13.7 5.8
conditional branch 0.6 11.0 3.8 2.9 6.9 5.0
local store 1.4 6.8 2.0 2.8 7.5 4.1
comparison 0.1 9.6 0.2 1.1 0.1 2.2
method invoke 0.3 0.0 3.1 3.9 1.0 1.7
misc 0.3 1.4 3.0 0.9 1.7 1.5
stack 1.7 0.0 1.9 0.1 3.5 1.4
method return 0.2 0.0 1.9 3.8 1.0 1.4
logical boolean 0.0 0.0 1.0 0.0 6.1 1.4
logical shift 0.0 0.0 1.5 0.0 4.7 1.2
conversion 0.0 0.0 2.5 0.0 0.4 0.6
array store 0.2 0.0 1.5 0.0 1.5 0.6
array manage 0.0 0.0 0.4 0.9 0.1 0.3
unconditional branch 0.1 0.0 0.0 0.1 0.5 0.1
table jump 0.0 0.0 0.0 0.0 0.0 0.0
subroutine 0.0 0.0 0.0 0.0 0.0 0.0
object manage 0.0 0.0 0.0 0.1 0.0 0.0
monitor 0.0 0.0 0.0 0.0 0.0 0.0

Table 9: Dynamic percentages of category usages by
the applications in the Java Grande suite compiled
using SUN’s javac compiler.

Compiler eul mol mon ray sea ave
jdk13 0.0 0.0 0.0 0.0 0.0 0.0
pizza 0.3 1.4 4.9 1.8 2.9 2.3
borl 0.3 1.4 4.9 1.8 3.1 2.3
kopi 8.1 0.0 1.2 0.0 3.6 2.6
gcj 8.7 1.4 6.1 0.9 6.0 4.6

Table 10: Percentage differences for total non-API
dynamic bytecode usage, relative to SUN’s javac com-
piler, for Grande Applications. In each case the fig-
ures represent the percentage increase in the total
number of bytecodes executed compared with jdk13.
For gcj, a minor alteration to the sea program source
was needed to get it to compile.
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Instruction borl gcj kopi pizza jdk13 ave
aaload 18.2 19.8 19.9 18.2 18.3 18.9
iload 19.8 7.8 21.3 19.8 19.8 17.7
getfield 16.2 16.6 16.5 16.2 16.2 16.3
aload 0 8.3 9.4 9.2 8.3 8.3 8.7
dmul 4.1 3.8 3.8 4.1 4.1 4.0
dadd 4.0 3.7 3.7 4.0 4.0 3.9
putfield 3.3 3.0 3.0 3.3 3.3 3.2
iconst 1 3.2 3.0 3.0 3.2 3.2 3.1
dload 2.8 3.0 2.6 2.8 2.8 2.8
iload 3 1.1 6.1 1.0 1.1 1.1 2.1
isub 2.0 1.9 1.9 2.0 2.0 2.0
daload 2.0 1.8 1.8 2.0 2.0 1.9
aload 3 1.5 1.6 1.3 1.5 1.5 1.5
iload 2 0.0 7.2 0.0 0.0 0.0 1.4
dsub 1.4 1.3 1.3 1.4 1.5 1.4
aload 1.4 1.0 1.3 1.4 1.4 1.3
aload 2 1.3 1.2 1.2 1.3 1.3 1.3
ldc2w 1.1 0.9 1.1 1.1 1.2 1.1
dstore 1.0 1.3 1.0 1.0 1.0 1.1
iadd 1.1 1.0 1.1 1.1 1.1 1.1
dup 1.7 0.0 0.0 1.7 1.7 1.0
ddiv 0.6 0.6 0.6 0.6 0.6 0.6
dconst 0 0.4 0.3 0.3 0.4 0.4 0.4
aload 1 0.4 0.4 0.4 0.4 0.4 0.4
iinc 0.3 0.3 0.3 0.3 0.3 0.3
if icmpge 0.4 0.4 0.1 0.4 0.1 0.3
goto 0.4 0.4 0.1 0.4 0.1 0.3
iload 1 0.0 1.1 0.0 0.0 0.0 0.2
dload 1 0.3 0.0 0.2 0.3 0.3 0.2
dload 3 0.3 0.0 0.3 0.3 0.3 0.2
dstore 1 0.2 0.0 0.2 0.2 0.2 0.2
dstore 3 0.2 0.0 0.2 0.2 0.2 0.2
dastore 0.2 0.2 0.2 0.2 0.2 0.2
dneg 0.1 0.1 0.1 0.1 0.1 0.1
if icmplt 0.0 0.0 0.3 0.0 0.3 0.1

Table 11: Non-API dynamic bytecode usage frequen-
cies for eul using different compilers. The top 35
instructions are presented.

Instead, a detailed analysis of the dynamic bytecode exe-
cuted frequencies was carried out. The raw statistics are
presented in Table 11 through Table 15 which show the top
35 most executed instructions for each application. In order
to analyse these tables, the differences in each row were se-
lected, and the relevant sections of the corresponding source
code were then examined.

It is notable that the different applications, in exercising
different areas of the instruction set, reflected compiler dif-
ferences to varying degrees. In particular, the figures for mol
are virtually identical across all compilers, and gcj seems to
exhibit the greatest variations across applications. Below we
summarise the main differences exhibited in these tables.

5.1 Main Compiler Differences
There were three main differences between the optimisations
implemented by the compilers:

5.1.1 Loop Structure
The figures show a difference in the use of comparison and
jump instructions between the compilers. For each usage
of the if cmplt instruction by kopi and jdk13 there is a
corresponding usage of goto and if cmpge by pizza, gcj
and borland. This can be explained by the implementa-

Instruction borl gcj kopi pizza jdk13 ave
dload 32.8 32.8 33.3 32.8 33.3 33.0
iload 6.9 6.9 7.0 6.9 7.0 6.9
dstore 6.7 6.7 6.8 6.7 6.8 6.7
dcmpl 4.1 4.1 9.7 4.1 4.1 5.2
dsub 4.7 4.7 4.7 4.7 4.7 4.7
dmul 4.3 4.3 4.3 4.3 4.3 4.3
dcmpg 5.4 5.4 0.0 5.4 5.5 4.3
aaload 4.2 4.2 4.2 4.2 4.2 4.2
getstatic 4.2 4.2 4.3 4.2 4.3 4.2
getfield 4.2 4.2 4.3 4.2 4.3 4.2
dneg 4.1 4.1 4.1 4.1 4.1 4.1
ifge 4.1 4.1 4.1 4.1 4.1 4.1
ifle 4.1 4.1 4.1 4.1 4.1 4.1
dadd 3.4 3.4 3.4 3.4 3.4 3.4
iinc 1.4 1.4 1.4 1.4 1.4 1.4
ifgt 1.4 1.4 1.4 1.4 1.4 1.4
dload 1 1.0 1.0 1.0 1.0 1.0 1.0
if icmpge 1.4 1.4 0.0 1.4 0.0 0.8
goto 1.4 1.4 0.0 1.4 0.0 0.8
if icmplt 0.0 0.0 1.4 0.0 1.4 0.6
aload 0 0.1 0.1 0.1 0.1 0.1 0.1
putfield 0.1 0.1 0.1 0.1 0.1 0.1
nop 0.0 0.0 0.0 0.0 0.0 0.0
aconst null 0.0 0.0 0.0 0.0 0.0 0.0
iconst m1 0.0 0.0 0.0 0.0 0.0 0.0
iconst 0 0.0 0.0 0.0 0.0 0.0 0.0
iconst 1 0.0 0.0 0.0 0.0 0.0 0.0
iconst 2 0.0 0.0 0.0 0.0 0.0 0.0
iconst 3 0.0 0.0 0.0 0.0 0.0 0.0
iconst 4 0.0 0.0 0.0 0.0 0.0 0.0
iconst 5 0.0 0.0 0.0 0.0 0.0 0.0
lconst 0 0.0 0.0 0.0 0.0 0.0 0.0
lconst 1 0.0 0.0 0.0 0.0 0.0 0.0
fconst 0 0.0 0.0 0.0 0.0 0.0 0.0
fconst 1 0.0 0.0 0.0 0.0 0.0 0.0

Table 12: Non-API dynamic bytecode usage frequen-
cies for mol using different compilers. The top 35
instructions are presented.

tion of loop structures. For example, a loop of the form:
while (expr ) { stats }

is implemented by the different compilers as follows:

kopi/jdk13 pizza/gcj/borland

goto end
beg: stats
end: expr

if cmplt beg

beg: expr
if cmpge end
stats
goto beg

end:

A simple static analysis would regard these as similar im-
plementations, but the dynamic analysis clearly shows the
savings resulting from the kopi/jdk13 approach.

5.1.2 Specialisedload Instructions
Table 11 and Table 15 highlight an important difference be-
tween the compilers in their treatment of specialised iload

instructions. gcj gives a significantly lower usage of the
generic iload instruction relative to all other compilers, and
a corresponding increase in the more specific iload 2 and
iload 3 instructions showing that this compiler is attempt-
ing to optimise the programs for integer usage.

However, it is interesting to note that this is not significant
for the other three applications. This can be explained di-
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Instruction borl gcj kopi pizza jdk13 ave
aload 0 17.1 19.8 20.7 17.1 17.9 18.5
getfield 17.0 17.4 18.2 17.0 17.8 17.5
daload 7.0 6.9 7.3 7.0 7.3 7.1
iload 1 5.9 5.8 6.1 5.9 6.1 6.0
dload 4.7 4.6 4.8 4.7 4.9 4.7
dadd 4.7 4.6 4.8 4.7 4.9 4.7
iinc 4.7 4.6 4.8 4.7 4.9 4.7
iload 2 4.1 4.6 4.8 4.1 4.3 4.4
dmul 2.9 2.9 3.0 2.9 3.1 3.0
if icmpge 4.7 4.6 0.0 4.7 0.0 2.8
goto 4.7 4.6 0.0 4.7 0.0 2.8
iload 3 2.3 2.3 2.4 2.3 2.5 2.4
dastore 2.3 2.3 2.4 2.3 2.5 2.4
dsub 2.3 2.3 2.4 2.3 2.5 2.4
putfield 2.4 2.4 2.5 2.4 2.5 2.4
if icmplt 0.0 0.0 4.8 0.0 4.9 1.9
dstore 1.8 1.7 1.8 1.8 1.8 1.8
dup 2.3 0.0 0.0 2.3 2.5 1.4
iconst 1 1.2 1.2 1.2 1.2 1.2 1.2
iload 1.2 1.2 1.2 1.2 1.2 1.2
aload 1 1.2 1.2 1.2 1.2 1.2 1.2
isub 1.2 1.2 1.2 1.2 1.2 1.2
invokestatic 1.2 1.2 1.2 1.2 1.2 1.2
aload 3 0.6 0.6 0.6 0.6 0.6 0.6
ddiv 0.6 0.6 0.6 0.6 0.6 0.6
invokevirtual 0.6 0.6 0.7 0.6 0.7 0.6
arraylength 0.6 0.6 0.6 0.6 0.6 0.6
dup2 0.6 0.0 0.0 0.6 0.6 0.4
nop 0.0 0.0 0.0 0.0 0.0 0.0
aconst null 0.0 0.0 0.0 0.0 0.0 0.0
iconst m1 0.0 0.0 0.0 0.0 0.0 0.0
iconst 0 0.0 0.0 0.0 0.0 0.0 0.0
iconst 2 0.0 0.0 0.0 0.0 0.0 0.0
iconst 3 0.0 0.0 0.0 0.0 0.0 0.0
iconst 4 0.0 0.0 0.0 0.0 0.0 0.0

Table 13: Non-API dynamic bytecode usage frequen-
cies for mon using different compilers. The top 35
instructions are presented.

rectly by the nature of the programs involved - mol, mon
and ray make greater use of doubles and objects, and gcj
does not appear to optimise the stack positions for these
types.

5.1.3 Usage of thedup Instruction
There is a dramatic difference in the use of dup instructions
shown in Table 11 and, to a lesser extent, in Table 15, with
kopi and gcj having a much lower usage than the other com-
pilers. (dup instructions do not account for a significant pro-
portion of bytecode usage in the other applications). This
can be explained by the usage of the shorthand arithmetic
instructions (such as +=) in the source Java code. For ex-
ample, the eul suite contains lines of the form:

r[i][j].a += ...

A simple translation of this line to the longer form
r[i][j].a = r[i][j].a + ...

results in code which references the expression r[i][j].a

twice.

The pizza, jdk13 and borland compilers optimise for the first
form by duplicating the value of the expressions. The other
two compilers do not, and show a corresponding increase in
the usages of aload, aaload and getfield instructions.

The presence of the line in what is evidently a program

Instruction borl gcj kopi pizza jdk13 ave
getfield 25.7 25.9 26.1 25.7 26.1 25.9
aload 0 15.8 16.1 16.2 15.8 16.1 16.0
aload 1 10.7 10.8 10.9 10.7 10.9 10.8
dmul 6.4 6.5 6.6 6.4 6.6 6.5
dadd 4.6 4.7 4.7 4.6 4.7 4.7
dsub 3.6 3.6 3.7 3.6 3.7 3.6
putfield 3.0 3.1 3.1 3.0 3.1 3.1
aload 2 2.7 2.8 2.8 2.7 2.8 2.8
invokevirtual 1.8 1.9 1.9 1.8 1.9 1.9
invokestatic 1.9 1.9 1.9 1.9 1.9 1.9
iload 1.8 1.8 1.8 1.8 1.8 1.8
dreturn 1.8 1.8 1.8 1.8 1.8 1.8
dload 1.1 2.9 1.1 1.1 1.1 1.5
dload 2 1.8 0.0 1.9 1.8 1.9 1.5
aload 1.3 1.2 1.3 1.3 1.3 1.3
aconst null 1.7 0.9 0.9 1.7 0.9 1.2
dstore 1.0 1.8 1.0 1.0 1.0 1.2
dconst 0 0.9 1.0 1.0 0.9 1.0 1.0
ifge 1.0 1.0 1.0 1.0 1.0 1.0
return 0.9 1.0 1.0 0.9 1.0 1.0
aaload 0.9 0.9 0.9 0.9 0.9 0.9
astore 0.9 0.9 0.9 0.9 0.9 0.9
iinc 0.9 0.9 0.9 0.9 0.9 0.9
areturn 0.9 0.9 0.9 0.9 0.9 0.9
arraylength 0.9 0.9 0.9 0.9 0.9 0.9
dcmpg 1.0 1.0 0.0 1.0 1.0 0.8
dstore 2 0.9 0.0 0.9 0.9 0.9 0.7
goto 0.9 0.9 0.1 0.9 0.1 0.6
if icmpge 0.9 0.9 0.0 0.9 0.0 0.5
ifnull 0.0 0.9 0.9 0.0 0.9 0.5
if icmplt 0.0 0.0 0.9 0.0 0.9 0.4
if acmpeq 0.9 0.0 0.0 0.9 0.0 0.4
dcmpl 0.1 0.1 1.1 0.1 0.1 0.3
dload 1 0.2 0.2 0.2 0.2 0.2 0.2
iconst 0 0.1 0.1 0.1 0.1 0.1 0.1

Table 14: Non-API dynamic bytecode usage frequen-
cies for ray using different compilers. The top 35
instructions are presented.

hotspot gives particular relevance to this compiler optimi-
sation in this case.

5.2 Minor compiler differences
Some minor differences between the frequencies can also be
noted as follows:

5.2.1 Comparisons with 0 andnull
As well as generic comparison instructions for each type,
Java bytecode has two specialised instructions for compari-
son with zero: ifeq and ifne. As can be seen from Table
15, the frequencies for these instructions for both the pizza
and borland compilers is lower than the other compilers, and
a price is paid in a correspondingly higher use of iconst 0

and if icmpeq instructions.

As before, this variance is shown to differing degrees depen-
dent on the application: none of the other four programs
rate this difference as significant. However, Java bytecode
also has a specialised instruction for comparing object ref-
erences with null, ifnull. The object-intensive program
ray (Table 14) exhibits the results of the pizza and borland
compilers not using this instruction, with a corresponding
increase in aconst null and if acmpeq instructions.
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Instruction borl gcj kopi pizza jdk13 ave
iload 12.8 12.4 13.5 12.9 13.2 13.0
aload 0 8.3 8.9 9.6 8.3 8.6 8.7
getfield 7.1 7.6 8.0 7.1 7.3 7.4
iaload 5.2 5.1 5.2 5.2 5.4 5.2
istore 5.2 5.2 5.2 5.2 5.4 5.2
ishl 4.2 4.1 4.2 4.2 4.3 4.2
bipush 3.6 4.3 3.6 3.7 3.8 3.8
iadd 3.4 4.1 4.2 3.4 3.5 3.7
iand 3.4 4.1 3.4 3.4 3.5 3.6
iload 1 3.5 2.8 3.8 3.5 3.6 3.4
iload 2 2.5 3.3 2.5 2.6 2.6 2.7
iload 3 2.5 3.3 2.7 2.5 2.5 2.7
ior 2.3 2.2 2.2 2.3 2.3 2.3
iconst 1 2.2 2.0 2.0 2.2 2.3 2.1
iconst 2 2.0 2.0 2.0 2.0 2.1 2.0
dup 1.9 1.8 1.5 1.9 2.0 1.8
iinc 1.7 1.6 1.7 1.7 1.7 1.7
iconst 5 1.4 1.7 1.8 1.4 1.4 1.5
iconst 0 2.6 0.7 0.7 2.5 0.7 1.4
iconst 4 1.4 1.4 1.4 1.4 1.4 1.4
iastore 1.4 1.4 1.4 1.4 1.5 1.4
if icmpgt 1.7 1.4 0.9 1.7 0.9 1.3
goto 1.5 1.5 0.4 1.5 0.5 1.1
ifeq 0.1 1.9 1.2 0.1 1.6 1.0
invokevirtual 1.0 0.9 1.0 1.0 1.0 1.0
isub 0.9 0.8 0.9 0.9 0.9 0.9
if icmple 0.6 0.8 1.3 0.6 1.3 0.9
ldc1 0.9 0.8 0.8 0.8 0.8 0.8
istore 3 0.8 0.8 0.8 0.8 0.8 0.8
if icmpeq 1.7 0.2 0.2 1.7 0.2 0.8
if icmplt 0.5 0.5 1.3 0.5 1.4 0.8
dup2 1.0 0.3 0.1 1.0 1.0 0.7
imul 0.7 0.6 0.6 0.7 0.7 0.7
if icmpge 1.1 0.9 0.1 1.1 0.1 0.7
putfield 0.7 0.7 0.7 0.7 0.7 0.7

Table 15: Non-API dynamic bytecode usage frequen-
cies for sea using different compilers. The top 35
instructions are presented.

5.2.2 The Decrement Instruction
There are two approaches to decrementing an integer value.
Either you can push minus 1 and add (iconst m1, iadd),
or push 1 and subtract (iconst 1, isub). Only the kopi
and gcj compilers choose the former, and so Table 15 shows
an increase in the use of iadd instructions, along with a
corresponding drop in the use of iconst 1 instructions.

5.2.3 Constant Propagation
The gcj compiler does not do as much constant propagation
as the other compilers and this is evidenced in Table 11. The
eul application has a number of constant fields, and this is
reflected by a drop in ldc2w instructions, and a correspond-
ing increase in the number of getfield instructions.

5.2.4 Comparison operations
A minor variation is shown in Table 12 for the usages of
dcmpl and dcmpg instructions, with the kopi compiler show-
ing a strong preference for the former; the dependent state-
ment blocks in the corresponding if-statements are reorgan-
ised accordingly.

Local variable array size
Size eul mol mon ray sea ave
0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.7 0.1 7.5 0.2 0.0 1.7
2 0.4 0.0 47.2 32.8 0.0 16.1
3 1.5 0.1 7.8 21.0 8.0 7.7
4 0.1 0.0 14.5 0.4 0.8 3.2
5 8.7 0.1 0.1 0.0 12.2 4.2
6 0.0 0.0 0.1 0.3 48.5 9.8
7 0.0 0.0 0.1 14.3 0.0 2.9
8 0.0 0.0 0.0 0.2 0.0 0.0
>8 88.6 99.7 22.8 30.7 30.5 54.5

Parameter size
0 0.0 0.0 0.0 0.0 0.0 0.0
1 64.2 0.1 57.3 1.3 24.4 29.5
2 2.0 0.0 17.7 62.4 8.1 18.0
3 16.0 0.2 24.5 20.0 34.9 19.1
4 17.8 0.0 0.3 14.3 32.5 13.0
5 0.0 0.0 0.0 0.4 0.0 0.1
6 0.0 0.0 0.0 0.3 0.0 0.1
7 0.0 99.6 0.0 0.3 0.0 20.0
8 0.0 0.0 0.0 1.0 0.0 0.2
>8 0.0 0.0 0.0 0.0 0.0 0.0

Temporary variable size
0 1.1 0.3 25.4 54.0 0.6 16.3
1 1.5 0.0 43.8 0.2 0.0 9.1
2 0.1 0.1 7.7 1.0 43.6 10.5
3 0.0 0.0 0.1 14.2 0.8 3.0
4 8.7 0.0 0.1 0.0 16.5 5.1
5 0.0 0.0 0.0 0.0 7.9 1.6
6 4.1 0.0 0.0 0.0 0.0 0.8
7 0.0 0.0 0.0 29.5 0.0 5.9
8 0.0 0.0 12.5 0.0 0.0 2.5
>8 84.4 99.6 10.3 1.2 30.5 45.2

Table 16: Bytecode based dynamic percentages of local
variable array sizes, as well as temporary and param-
eter sizes for Grande programs compiled using SUN’s
javac compiler. The local variable array and param-
eter sizes include the this-reference for non-static
methods.

6. DYNAMIC STACK FRAME USAGE
ANALYSIS

Each Java method that executes is allocated a stack frame
which contains (at least) an array holding the actual param-
eters and the variables declared in that method. Instance
methods will also have a slot for the this-pointer in the first
position of the array. This array is referred to as the local
variable array, and those variables declared inside a method
are called temporary variables. In this section we dynami-
cally examine the size of this array, its division into parame-
ters and temporary variables, along with the maximum size
of the operand stack during the method’s execution. As well
as having an impact on the overall memory usage of a Java
program, this size also has implications for the possible us-
age of specialised load and store instructions, which exist
for the first four slots of the array.

Table 16 shows dynamic percentages of local variable array
sizes, and further divides this into parameter sizes and tem-
porary variable array sizes. One finding that stands out is
the absence of zero parameter size methods across all appli-
cations. All the Grande applications have some zero param-
eter methods, but these appear as zero in the percentages
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Operand stack size based on method calls
Size eul mol mon ray sea ave
0 22.4 0.7 0.4 1.3 0.0 5.0
1 0.3 0.2 0.4 0.6 0.0 0.3
2 0.5 0.4 1.3 0.1 5.3 1.5
3 22.6 2.1 1.0 0.8 46.5 14.6
>3 54.3 96.6 96.9 97.3 48.2 78.6

Operand stack size based on bytecodes executed
Size eul mol mon ray sea ave
0 0.0 0.0 0.0 0.1 0.0 0.0
1 0.0 0.0 0.0 0.1 0.0 0.0
2 0.0 0.0 0.2 0.1 7.3 1.5
3 0.7 0.0 0.3 0.4 32.5 6.8
>3 99.8 100 99.5 99.3 60.2 91.7

Table 17: dynamic percentages of maximum operand
stack sizes for the methods in the Java Grande pro-
grams, compiled using SUN’s javac compiler. The
first table presents percentages calculated based on
proportions of methods called, while the second
measures the proportion of total bytecodes exe-
cuted.

as they are swamped by those methods with high bytecode
counts in the Grande applications which have non-zero pa-
rameter sizes.

An interesting point here is the percentages of methods with
local variable array sizes of less than 4, since these methods
should be able to exclusively use the specialised versions of
load and store operations dealing with these array loca-
tions. These figures are:

eul mol mon ray sea
2.6% 0.2% 62.5% 54.0% 8.0%

Indeed, these figures are an under-estimation of the possi-
bility of using specialised load and store operations, since
register allocation techniques can reduce these stack sizes
further. As already noted, the overall figures for specialised
load instructions eul presented in Table 11 do not seem to
reflect the high proportion (97.5%) of the methods which
would facilitate this.

Table 17 presents two perspectives on the dynamic percent-
ages for the operand stack sizes; these figures are determined
by the complexity of expressions evaluated at run-time, as
well as the need to push parameters onto the operand stack
before calling a method. Looking at the figures based on
numbers of method calls, we see that a significant number
of methods called have low operand stack sizes, reflecting
the number of trivial constructors, as well as simple get and
set methods. However, the figures based on the number of
bytecodes executed show that while calls to methods with
low operand stack sizes may be common, they typically in-
volve very little internal computation. We suggest that both
method-call and bytecode level analyses are necessary in or-
der to present a complete picture of operand stack usage.

7. CONCLUSIONS
This paper set out to investigate platform independent dy-
namic Java Virtual Machine analysis using the Java Grande
Forum benchmark suite as a test case. This type of analy-
sis, of course, does not look in any way at hardware specific
issues, such as JIT compilers, interpreter design, memory

effects or garbage collection which may all have significant
impacts on the eventual running time of a Java program,
and is limited in this respect. It has been shown above
however that useful information about a Java program can
be extracted at the intermediate representation level, which
can be partly used to understand their ultimate behaviour
on a specific hardware platform.

For Grande applications Java method execution time is shown
to be predominantly in the non-API bytecodes of the pro-
grams (92% average). This is a significant difference from
traditional Java applications such as applets or compiler
type tools which spend most of the time in the API. Since
a Grande application should use large amounts of process-
ing, I/O, network bandwidth or memory, it is interesting to
note how little of the API packages are dynamically used by
this benchmark suite. Precompiling the API to some native
representation therefore will not yield significant speedup.

A constant theme of this paper is that useful information can
be gained from a platform-independent study of bytecode
level data. We believe that this is borne out in particular
in the analysis of methods presented in Table 5 and Table
6, where the bytecode counts help to present a different pic-
ture of where the interpreter is spending its time. Table 17
also demonstrates the additional perspective gained from a
bytecode-level analysis.

Overall, this study raises questions about the balance of
optimisation work between Java compilers and the inter-
preter component of the JVM. One possibility is that com-
piler writers are trying to produce as closely as possible the
bytecodes produced by the original SUN compiler so as to
avoid incompatibility with the runtime bytecode verifier, or
platform specific JIT compilers. If this is so, it may explain
why various standard efficiency improvements have not been
used by different compilers.

Although the Java to bytecode compiler does not have access
to dynamic execution data, it should be able to put the most
heavily used local variable into one of the efficient slots most
of the time following algorithms such as those in [10, 12], yet
only the gcj compiler seems to make a significant attempt at
this. A more common optimisation was in the translation
of loop constructs, where each successful iteration involves
executing two branching instructions, a potential branch if
the condition is false and a backward goto (unconditional
branch) at the end of the loop for the pizza, gcj and bor-
land compilers, whereas the other compilers combine both
of these into a single conditional branch at the end of the
loop.

Clearly, run-time optimisation techniques will always be es-
sential within the JVM, because of both the potential in-
efficiency of the compiler, and the extra information about
the run-time architecture available to the JVM. However, it
is not obvious that Java compilers are putting much effort
into generating efficient bytecode, and it is arguable that the
JVM may be bearing an unreasonable part of the burden of
performing these optimisations.
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