
Java Virtual Machine Support for Object Serialization

Fabian Breg
University of Illinois, Urbana-Champaign

breg@csrd.uiuc.edu

Constantine D. Polychronopoulos
University of Illinois, Urbana-Champaign

cdp@csrd.uiuc.edu

ABSTRACT
Distributed computing has become increasingly popular in
the high performance community. Java's Remote Method
Invocation (RMI) provides a simple, yet powerful method
for implementing parallel algorithms in Java. The perfor-

mance of RMI has been less than adequate, however, and ob-
ject serialization is often identi�ed as a major performance
inhibitor. We believe that object serialization is best per-
formed in the Java Virtual Machine (JVM), where informa-
tion regarding object layout and hardware communication

resources are readily available. We implement a subset of
Java's object serialization protocol in native code, using the
Java Native Interface (JNI) and JVM internals. Experi-
ments show that our approach is up to eight times faster
than Java's original object serialization protocol for array
objects. Also for linked data structures, our approach ob-

tains a moderate speedup and better scalability. Evalua-
tion of our object serialization implementation in an RMI
framework indicates that a higher throughput can be ob-
tained. Parallel applications, written using RMI, obtain bet-
ter speedups and scalability when this more eÆcient object
serialization is used.

1. INTRODUCTION
The Java [6] programming language is increasingly be-

coming a language of choice for distributed computing. The
portability o�ered by the Java Virtual Machine (JVM), its
support for secure dynamic class downloading, and powerful
networking API make it an easy-to-use, yet safe language for

intranet and internet applications.
The Java binding to the operating system's socket API

is convenient when complete control of interprocess com-
munication is needed. For a large number of distributed
applications, however, programming sockets is too complex.
Therefore, on top of the socket API, the Java runtime envi-

ronment provides a remote method invocation (RMI) facility
that allows communication between Java objects in separate
virtual machines. Java RMI hides low level communication

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

issues from the programmer, allowing the programmer to
focus on the distributed algorithm instead.
Java object serialization [9] provides persistence for regu-

lar Java objects. Object serialization captures the state of
a Java object [15] and writes it to a byte stream. Object
persistence is often used to store objects to �le or database,

but can also be used to pass objects between Java Virtual
Machines. Java RMI uses object serialization to pass pa-
rameters and return values to and from remote objects by
value. In its simplest form, serialization of an object just
requires this object to be tagged as being serializable. No
object speci�c code is needed to convert objects to and from

a bytestream, although providing such code can potentially
improve the performance of object serialization.
Java RMI and object serialization facilitate the develop-

ment of distributed Java applications by abstracting many
of the networking issues. In the end, however, deployment

of distributed applications succeed or fail with their perfor-
mance. The performance of Java RMI is generally found to
be inadequate, and often, object serialization is considered
to be an important performance inhibitor [13, 4, 7].
In this article, we introduce our implementation of ob-

ject serialization in native code. Such an implementation

has two advantages. First, if enough work is done within
native code, without invoking Java code, the overhead of
JNI should be relatively minimal, which means that the ef-
�ciency with which native code is executed can be exploited
optimally.
A second advantage is that native code can exploit the

actual layout of Java objects in memory. Instead of having
to serialize each array element of primitive arrays separately,
native code could exploit the fact that most JVMs would
layout primitive arrays in a contiguous memory area. The
object serialization implementation could directly copy the
memory area, occupied by the array object, to the network.

Disadvantages of implementing object serialization in na-
tive code include a high overhead associated with the Java
Native Interface (JNI) when serializing individual primi-
tives, like bytes and integers. A hybrid implementation
of object serialization could combine the best of both ap-

proaches.
Another disadvantage is the loss of portability, since na-

tive code needs to be compiled for every platform it is de-
ployed on. To make the problem worse, the JNI does not
provide us with all of the functionality we need from the
JVM. Instead of calling back into Java code, we chose to

directly call functions provided by the JVM, making our im-
plementation JVM dependent. We believe, however, that an

important platform for distributed high performance com-

puting are homogeneous clusters, for which portability is not
an issue. Although our implementation is based on Sun's
Java Development Kit version 1.2, our approach seems to
be applicable to other JVM implementations.
Our object serialization protocol shows an improvement

factor of 8 over standard Java object serialization for se-

rialization of double arrays. Reading doubles from a byte
stream shows an improvement factor of 6 over Java respec-
tively. Serialization and deserialization of linked structures
show an improvement of 3 and 1.5 respectively. However,
our experiments also show that our native code implementa-
tion is still slower than deploying custom serialization rou-

tines.
When used in an RMI framework, our object serialization

protocol obtains a higher throughput in byte array ping-
pong tests than Java RMI, but still performs worse than
KaRMI. For double arrays, the throughput of LuchatRMI
and native object serialization is a factor 3 higher than the

other implementations. Performance evaluation of an RMI
based parallel algorithm shows that standard Java RMI is
not capable of obtaining any signi�cant speedups over the
sequential algorithm. Using LuchatRMI with our improved
native object serialization protocol shows a speedup of 6 on
9 hosts.

This paper is organized as follows. Section 2 describes
some problems with the standard object serialization, and
some existing approaches to object serialization performance
improvement. Section 3 describes our implementation of
object serialization. Section 4 evaluates the performance

of our approach, comparing it to other object serialization
implementations. In Section 5, we present some conclusions.

2. RELATED WORK
The process of copying abstract data types has been de-

scribed by Herlihy and Liskov [8]. Their approach di�ers
from Java's object serialization approach in that they re-
quire each object to include marshaling and unmarshaling
operations. Their approach for detecting multiple references

to a single object and correctly handling circular structures
is similar to our approach.
One expensive aspect of Java object serialization involves

the automatic discovery of the structure of the data to be
serialized. Obtaining information about �elds contained
within objects is done in Java through Java's reection fa-

cilities, which require expensive interaction with the virtual
machine.
A general approach to improving Java object serialization

performance, therefore, involves requiring the programmer
to provide explicit object serialization routines, usually on

a per class basis [4, 7]. Instead of using the JVM's reec-
tion mechanism to obtain the internal state of an object,
these routines directly write an object's internal state to
the stream. This approach requires considerable e�ort from
the programmer, although these routines could potentially
be generated by a compiler.

Another aspect that potentially decreases performance is
the fact that Java object serialization provides a single algo-
rithm that can handle all kinds of objects. Some objects re-
quire a less complex, and therefore less expensive object se-
rialization implementation. The object serialization frame-
work of NexusRMI [4] allows implementing the object se-

rialization protocol explicitly on a per class basis. If it is

known that a particular object does not contain reference

cycles or even reference sharing, a simple protocol that does
not check for these cases can be written, allowing a more
eÆcient serialization implementation.
To reduce the communication overhead of RMI, the size

of the data streams generated by object serialization can be
compressed, for instance by using gzip [5] or by recognizing

class names that share a common pre�x [12]. This com-
mon pre�x is inserted only once in the bytestream. When
needed, a reference is included for all other occurrences. Al-
though these approaches reduce the amount of data to be
transferred, it introduces some computation overhead.
The XStream object serialization implementation, which

is described in [7] and [14], exploits the fact that, when
used in distributed computing, the generated byte stream
does not need to contain all the information needed for gen-
eral object persistence. In addition, a more aggressive type
caching scheme is employed. Finally, a more eÆcient bu�er-
ing scheme is o�ered for use in explicit serialization routines.

Some of the optimizations described above are also ex-
ploited in our object serialization approach. Our imple-
mentation only generates necessary information for use in
distributed computing. Instead of using the standard Java
bu�er streams, which would involve additional overhead by
invoking Java methods from native code, we handle bu�er-

ing inside our object serialization protocol, although in a
very general way.
Manta [11] is another implementation of RMI. Manta com-

piles a Java RMI application to native code, which can be
executed without the need of a Java Virtual Machine. In

contrast, our approach could be used to extend the func-
tionality of the JVM, without sacri�cing portability of Java.

3. OBJECT SERIALIZATION IMPLEMEN-
TATION

Like the standard object serialization implementation, our
implementation of object serialization consists of the classes
edu.uiuc.csrd.ObjectOutputStream, for writing objects to

a stream, and edu.uiuc.csrd.ObjectInputStream class for
reading objects from a stream. These classes provide most
of the functionality provided by their Java counterparts in
package java.io. In the remainder of this section, we will
not include the package name when referring to our imple-
mentation. In addition we will refer to generic stream types

instead of speci�cally denoting speci�c input and output
streams.
The ObjectOutputStream and ObjectInputStream classes

extend java.io.OutputStream and java.io.InputStream,
respectively, like any other stream in Java. In addition, these

classes implement the interfaces java.io.ObjectOutput and
java.io.ObjectInput, respectively. However, because we
do not provide full functionality of these interfaces, our im-
plementation cannot be used in Java RMI. Instead, we have
used our object serialization with LuchatRMI and present
some results in Section 4. LuchatRMI is described in [3].

The constructor of ObjectOutputStream takes one argu-
ment of class java.io.OutputStream. However, we do re-
quire, that the stream passed to this constructor is actu-
ally an instance of class java.io.FileOutputStream. We
do not handle more generic streams, because our implemen-
tation writes directly to the �ledescriptor that is speci�c to

�le streams. For network communication, socket streams

are used, which extend �le streams. Similarly, the con-

structor of ObjectInputStream takes one argument of class
java.io.FileInputStream.
Our implementation provides native methods for reading

and writing primitive types and generic objects. In addition,
we provide native implementations for close(), flush()

and reset(). Our object serialization protocol follows the

approach described in [8, 2]. The following sections describe
our implementation in detail.

3.1 Wire Protocol
Each object in the bytestream consists of a zero byte,

acting as a delimiter, followed by the internal state of that
object. Alternatively, the delimiter may contain a one byte,

indicating a reset token. Reset tokens are inserted in the
stream by invoking reset() on ObjectOutputStream. We
will describe the e�ect of a reset below. The internal state
of a primitive object consists of the individual bytes making
up the primitive object.
The internal state of a reference consists of a byte, identi-

fying what kind of object is written, followed by the object's
bytestream representation. A 'zero' byte indicates a null
reference, which carries no additional information. A byte
value of two indicates the object has previously been written
to this stream after the last reset(). The bytestream rep-
resentation for such objects consists of an integer as will be

explained in Section 3.2. Other byte values identify speci�c
array objects or a non array reference.
Serialization of primitive array types exploit the fact that

these objects are laid out in a consecutive memory area in
the JVM. The byte value indicates the primitive component
type of the array and the bytestream representation is a

direct copy of the memory area occupied. This approach
is more eÆcient than the standard serialization of primitive
arrays, but is inherently non portable.
The bytestream representation of arrays of references con-

sists of the length of the array, followed by the name of the

component class from the array declaration, followed by the
internal state of all objects in the array. The bytestream rep-
resentation of class names consists of the length, followed by
the name as a C char pointer.
Finally, the bytestream representation of a non array ob-

ject consists of the class name of the object, followed by all

non-transient instance �elds. The �elds of the most generic
serializable superclass are written �rst, followed by the �elds
of the subclasses of this class, down to the original class. At
the receiving side, the object is recreated by invoking the
no argument constructor of the most specialized non serial-
izable class in the hierarchy, after which all �elds are copied

from the bytestream to the object.
If, during serialization, a class is encountered that is not

serializable, an abort token is written to the stream. Both
sides will consequently report an error.

3.2 Shared References
The object serialization protocol recursively writes all ob-

jects directly or indirectly referenced by the object that is
written. This assures that an exact copy of the object is cre-
ated at the receiving side. For instance, when writing the
root of a tree structure, the complete tree will be written and
recreated at the receiving side. This causes a problem when
two references are written that reference the same object. In

a naive approach, two instances of the object instead of one

will be created at the receiving side. This will also cause the

serialization process to loop inde�nitely when encountering
cyclic data structures. A solution to this problem has been
described in [8] and our implementation follows a similar
approach, that we describe next.
The �rst time an object is serialized, the reference to the

object is stored in a table together with an index number,

where the �rst object serialized is assigned index 1, the next
object is assigned index 2, and so on. Whenever an object
to be serialized is found in this table, its assigned index
number is written to the stream instead of its internal state.
A reset causes this table to be emptied and the current index
number to be reset to 1.

The receiving side encounters all objects in the same order
and can therefore build a similar table. Whenever an index
is encountered when an object is expected, the receiving side
can use the index to assign a reference to a previously dese-
rialized object. To ensure that the indices at the receiving
side match those of the sending side, the receiving side has

to store an object after it has been allocated, but before
its internal state is deserialized. Since its internal state is
not actually used while deserializing, storing an uninitialized
object causes no problems.
At the sending side, we use a hashtable to store object

references and their indices. Hashing on the object refer-

ence allows the protocol to eÆciently determine if an object
has been previously written. For eÆciency, we implemented
our own hashtable in native code. The receiving side adds
objects to a dynamically expanding array. This allow fast
retrieval of a previously seen object using its index number.

3.3 Buffering
Bu�ering is handled internally in our object streams. The

ObjectOutputStream writes all data to a memory bu�er.
The contents are written to the �ledescriptor when the bu�er
is full, the stream is closed, or the stream is ushed. The
ObjectInputStream reads all available data on the �ledescrip-

tor in a memory bu�er and consequently reads from this
bu�er. This bu�ering scheme drastically improves the per-
formance of our object serialization.

3.4 Elimination of recursion
Serializing linked list structures involves a recursive func-

tion call for every consecutive element. The maximum length

of a list that can be (de)serialized is therefore limited by
available stack space. Recursion elimination could therefore
potentially allow larger linked structures to be (de)serialized.
We eliminated recursion from both the writeObject()

and readObject() methods by replacing the recursive func-
tion call with a jump to the beginning of the function. This

approach potentially overwrites local variables that may be
needed after calling the recursive function. We save these
variables on a separate stack, located on the heap.
Experiments indicate that recursion elimination can in-

crease the length of the longest path in a graph of objects

by a factor of 6. Eventually, size of serializable objects will
be limited by the amount of JNI local references available
in the JVM.

3.5 Class introspection
Our implementation of object serialization relies heav-

ily on class introspection facilities o�ered by the JVM. In-

trospection is used to obtain the superclass of serializable

classes as well as to obtain read and write access to all �elds

of an object. Since not all of these features are o�ered by
JNI, we either had to invoke Java methods from native code
to obtain class meta information, or call functions exported
by the JVM directly. For eÆciency reasons, we chose the
latter approach, sacri�cing additional portability.
A disadvantage of using class introspection is its high

overhead. As mentioned in Section 2, replacing class in-
trospection by explicit marshaling routines can signi�cantly
improve object serialization performance. In our implemen-
tation, such custom serialization routines should be imple-
mented in native code, which is too complex for program-
mers not familiar with C.

To relieve some of the overhead introduced by class in-
trospection, we decided to store the result of two relative
expensive functions in a hashtable. The �rst function re-
turns a list of all �elds of a certain class. The second func-
tion result that we store returns a JNI �eld identi�er for
a certain java.lang.reflect.Field object. Especially for

homogeneous linked structures, this improved performance
signi�cantly.

4. PERFORMANCE COMPARISON
In this section, we evaluate and discuss the performance of

our object serialization protocol. Section 4.1 writes objects

to �les and consequently reads the same objects from �le.
Section 4.2 evaluates its performance within LuchatRMI.

4.1 Object Serialization Performance
In this section, we evaluate the performance of our ob-

ject serialization implementation, comparing it against both
standard Java object serialization and the XStream [7, 14]
serialization protocol. In these experiments, we serialize ob-

jects to �le and consequently read these objects from �le. To
minimize overhead introduced by disk I/O, we use a �lesys-
tem on a ramdisk device. These experiments were run a
Pentium III 500 MHz with 256 Mbytes RAM memory run-
ning Linux 2.2. We use Blackdown's Linux port (version
1.2.2FCS) of Sun's Java Development Kit 1.2 with the sun-

wjit JIT compiler.
All the performance graphs in this section use the label

java.io.ObjectOutputStream for standard Java object seri-
alization. The label java.io.XObjectOutputStream is used
for the X-Stream object serialization protocol and the la-
bel edu.uiuc.csrd.ObjectOutputStream is used for our na-

tive object serialization implementation. When we use ex-
plicit marshaling routines, the label java.io.Externalizable
is used for the performance of object serialization using the
java.io.Externalizable interface, while custom X-Stream
object serialization is labeled java.io.XSerializable. A simi-

lar labeling scheme is used for object deserialization.
Figure 1 shows the performance of serialization of primi-

tive bytes. The performance graphs for byte primitives se-
rialization mainly show the high overhead associated with a
native method invocation in our object serialization imple-
mentation. When using Java object serialization, reading

and writing a byte just involves copying it to the bu�er,
without any conversion overhead involved and is therefore
very eÆcient.
Figure 2 shows the performance of double primitive serial-

ization and deserialization. In standard object serialization,
a double is written by using a native method to convert the

oating point quantity into an eight byte representation.

Each byte of this representation is than written separately

to the destination bytestream. In our implementation a byte
is written in a native method that obtains a pointer to the
oating point value in the JVM and than directly copies the
bytes to the bu�er.
The performance of byte array and double array serializa-

tion is depicted in Figure 3 and 4 respectively. Java object

serialization serializes both primitive and object arrays by
serializing each element of the array separately. For each
element, the corresponding serialization method is invoked.
As described earlier, serialization of byte primitives is rela-
tively cheap, whereas doubles need to be converted to eight
separate bytes.

Our implementation of object serialization exploits the
fact that arrays occupy a contiguous block of memory in
the JVM that we are using. Array serialization is performed
by obtaining a pointer to the array and directly copying this
memory block to the serialization bu�er. Although this par-
ticular method of array layout is not guaranteed to be used

by di�erent JVM implementations, it is the most obvious
layout to use for arrays.
Object serialization of byte arrays in Java is done eÆ-

ciently by copying the byte array directly to the serialization
bu�er. Our approach, therefore, does not obtain a signi�-
cant speedup, and is even slower for writing byte arrays than

the X-Stream object serialization. Our approach does ob-
tain a factor of eight for double array serialization and dese-
rialization. Distributed scienti�c applications using oating
point matrices could bene�t signi�cantly from our object
serialization protocol.

Figure 5 shows the performance of serialization of a binary
tree object. Each node in the binary tree is a Java object
containing a reference of type java.lang.Object and two
references to binary tree nodes. The objects we store in the
tree contain a �eld for each primitive type. These objects
thus contain eight �elds and have a total size of 30 bytes.

The tree is serialized by invoking writeObject(), passing
the root node as argument.
Since we have the source code for both the binary tree

and the data objects, we included the serialization perfor-
mance obtained by adding custom object serialization meth-
ods from the java.io.Externalizable interface. Since nei-

ther of these objects have serializable superclasses, all the
writeExternal() and readExternal() methods do is write
and read each �eld. In addition, we included the perfor-
mance obtained with custom serialization methods added
for the X-Stream serialization method.
In this particular test, explicit serialization routines using

the Externalizable interface do not show a signi�cant im-
provement over Java's default object serialization protocol.
The explicit serialization routines that use the X-Stream
serialization protocol, however, show a factor of four perfor-
mance improvement for writing and a factor of more than

two for reading, and outperforms native code object serial-
ization. Without explicit serialization routines, native ob-
ject serialization outperforms both standard Java object se-
rialization and X-Stream object serialization by more than
a factor of two for writing and a factor of 1.5 for reading.
Finally, Figure 6 shows the performance of the serializa-

tion of java.util.Vector objects. The internal state of a
Vector consists mainly of a array of Object references. Se-
rialization of a Vector does not rely on any explicit serial-
ization code, like for instance java.util.Hashtable does,

0

200

400

600

800

1000

1200

250000 500000 750000 1e+06

tim
e

(m
se

c)

size

Byte primitive serialization

java.io.ObjectOutputStream
java.io.XObjectOutputStream
edu.uiuc.csrd.ObjectOutputStream

(a) ObjectOutput

0

200

400

600

800

1000

1200

1400

250000 500000 750000 1e+06

tim
e

(m
se

c)

size

Byte primitive deserialization

java.io.ObjectInputStream
java.io.XObjectInputStream
edu.uiuc.csrd.ObjectInputStream

(b) ObjectInput

Figure 1: Serialization and deserialization of byte primitives

0

50

100

150

200

250

300

350

400

0 50000 100000 150000 200000 250000

tim
e

(m
se

c)

size

Double primitive serialization

java.io.ObjectOutputStream
java.io.XObjectOutputStream
edu.uiuc.csrd.ObjectOutputStream

(a) ObjectOutput

0

500

1000

1500

2000

2500

0 50000 100000 150000 200000 250000

tim
e

(m
se

c)

size

Double primitive deserialization

java.io.ObjectInputStream
java.io.XObjectInputStream
edu.uiuc.csrd.ObjectInputStream

(b) ObjectInput

Figure 2: Serialization and deserialization of double primitives

0

10

20

30

40

50

60

70

80

90

500000 1e+06 1.5e+06 2e+06

tim
e

(m
se

c)

size

Byte array serialization

java.io.ObjectOutputStream
java.io.XObjectOutputStream
edu.uiuc.csrd.ObjectOutputStream

(a) ObjectOutput

0

10

20

30

40

50

60

70

80

90

100

500000 1e+06 1.5e+06 2e+06

tim
e

(m
se

c)

size

Byte array deserialization

java.io.ObjectInputStream
java.io.XObjectInputStream
edu.uiuc.csrd.ObjectInputStream

(b) ObjectInput

Figure 3: Serialization and deserialization of byte arrays

0

50

100

150

200

250

300

350

400

0 50000 100000 150000 200000 250000

tim
e

(m
se

c)

size

Double array serialization

java.io.ObjectOutputStream
java.io.XObjectOutputStream
edu.uiuc.csrd.ObjectOutputStream

(a) ObjectOutput

0

50

100

150

200

250

300

350

400

0 50000 100000 150000 200000 250000

tim
e

(m
se

c)

size

Double array deserialization

java.io.ObjectInputStream
java.io.XObjectInputStream
edu.uiuc.csrd.ObjectInputStream

(b) ObjectInput

Figure 4: Serialization and deserialization of double arrays

0

500

1000

1500

2000

2500

4000 8000 12000 16000

tim
e

(m
se

c)

size

Binary tree serialization

java.io.ObjectOutputStream
java.io.Externalizable
java.io.XObjectOutputStream
java.io.XSerializable
edu.uiuc.csrd.ObjectOutputStream

(a) ObjectOutput

0

200

400

600

800

1000

1200

1400

1600

1800

2000

4000 8000 12000 16000

tim
e

(m
se

c)

size

Binary tree deserialization

java.io.ObjectInputStream
java.io.Externalizable
java.io.XObjectInputStream
java.io.XSerializable
edu.uiuc.csrd.ObjectInputStream

(b) ObjectInput

Figure 5: Serialization and deserialization of binary trees

0

50

100

150

200

250

300

350

400

500 1000 1500 2000 2500 3000 3500 4000 4500

tim
e

(m
se

c)

size

Vector serialization

java.io.ObjectOutputStream
java.io.XObjectOutputStream
edu.uiuc.csrd.ObjectOutputStream

(a) ObjectOutput

0

50

100

150

200

250

300

350

500 1000 1500 2000 2500 3000 3500 4000 4500

tim
e

(m
se

c)

size

Vector deserialization

java.io.ObjectInputStream
java.io.XObjectInputStream
edu.uiuc.csrd.ObjectInputStream

(b) ObjectInput

Figure 6: Serialization and deserialization of Vectors

RMI version latency (ms)

JavaRMI / ObjectOutput 17
LuchatRMI / ObjectOutput 25

LuchatRMI / native object serialization 21
KaRMI / X-Stream serialization 8

Table 1: RMI latency

and can therefore be directly serialized using our implemen-
tation.
Since the individual objects in an object array do not

typically occupy a contiguous block of memory, our imple-

mentation, too, has to iterate over all objects, serializing
each one separately. Still, native object serialization shows
a factor of 2.5 performance improvement for writing vectors
and a factor of more than 1.5 for reading vectors.

4.2 RMI performance
Encouraged by results obtained in the previous section,

we now evaluate the performance of our object serializa-
tion protocol within an RMI framework. We will use our

own implementation of RMI, called LuchatRMI. The per-
formance of LuchatRMI with native object serialization is
compared with both Java RMI, using standard Java object
serialization and LuchatRMI using standard Java object se-
rialization.

The experiments in this section were run on the Dis-
tributed ASCI Supercomputer [1]. In our experiments we
only use the DAS cluster located in Leiden. Every node
in this cluster consists of a Pentium Pro 200MHz with 128
Mbytes internal RAM, running Linux 2.2, and the Linux
port (version 1.2.2, release candidate 4) of the Sun JDK

1.2.2 from Blackdown with the sunwjit JIT compiler. Since
we do not have access to a TCP/IP implementation on top
of Myrinet, our experiments use the 100Mbps Fast Ethernet
interconnect.
First, we will use a simple ping-pong application to de-

termine the latency and throughput of LuchatRMI. The la-

tency is determined by measuring the invocation time for
a parameterless remote method, that returns no value. Al-
though no parameters and return values are transmitted,
object serialization is still used to communicate RMI inter-
nal data, consisting of a few primitive typed data. Table 1
lists the latencies measured. KaRMI obtains the lowest la-

tency. The latency for LuchatRMI, in general, is higher than
the latency of JavaRMI. The latency of LuchatRMI with na-
tive object serialization is slightly lower than the latency of
LuchatRMI with default Java object serialization. This is
surprising, since we found earlier that native code serial-

ization of primitive types is as expensive as or even more
expensive than serializing those types with the standard ob-
ject serialization. We attribute the di�erence to the fact that
setting up the serialization streams in our implementation
does not involve communication, while in standard object
serialization, a header is communicated.

The throughput for the di�erent RMI implementations is
determined using a similar ping-pong test, which passes dif-
ferent sized arrays back and forth. The results are shown
in Figure 7. KaRMI obtains the highest throughput when
transferring byte arrays. LuchatRMI with native object se-
rialization still performs better than the default object se-

rialization protocol. When transferring double arrays, our

native object serialization protocol obtains an improvement

of factor 3 over the other implementations.
Finally, we evaluate the performance of a parallel matrix

multiply, implemented using RMI. The distributed version
of matrix multiply uses 1 master process and a number of
worker processes on di�erent hosts. Each of the worker pro-
cesses executes part of the iteration space of the outer loop

of a standard matrix multiply algorithm.
When multiplying matrices A and B to produce matrix C,

matrices A and C need to be distributed among all worker
processes according to the iterations this worker is assigned
to. Matrix B, however, needs to be sent in its entirety to all
worker processes. In this experiment, we use matrices with

elements of primitive type double.
The �rst step of our algorithm involves sending matrix B

to all workers, using a remote method that takes the double
matrix and its size as an integer and returns no value. Next,
a worker is started by invoking a remote method, passing
parts of A and B as double matrices and a set of integers,

indicating the worker's loop iteration space. An integer job
id is returned by this method. The master waits for each
worker by invoking a blocking remote method, passing the
job id as parameter. The result matrix is returned by invok-
ing a remote method, passing the job id. Finally, the job is
deleted from the worker by invoking a remote method that

takes the integer job id as parameter. This method returns
no value.
We measured the performance of our distributed matrix

multiply algorithm with 1, 2, 4, and 8 worker hosts for dif-
ferent matrix sizes. The client was run on a separate host,

thus the total number of hosts used is one more than the
X-axis shows. We calculated the speedup of the distributed
algorithm relative to the original sequential algorithm. The
speedup results for matrix sizes 250� 250 and 500� 500 are
shown in Figure 8.
The speedup obtained with Java RMI, KaRMI, and with

LuchatRMI with default object serialization is just below 2
when using 4 worker hosts and drops when using 8 worker
hosts. When using native object serialization, a speedup of
almost 4:5 on 8 worker hosts is obtained. When calculating
the product of arrays of size 500 � 500 elements our object
serialization implementation obtains a speedup of 6 with 8

worker hosts. These results show that object serialization
is a signi�cant factor in RMI performance. Improving the
performance of object serialization can signi�cantly improve
the performance of RMI in parallel applications.

5. CONCLUSION
In this paper, we have shown that Java RMI is not ef-

�cient enough to be used e�ectively in distributed parallel

programming. We have described problems with object se-
rialization that cause the performance of Remote Method
Invocation to be poor.
We have discussed a native code implementation of the ob-

ject serialization protocol, that is especially targeted for dis-
tributed computing on homogeneous cluster architectures.

Performance improvements on such architectures are ob-
tained by exploiting the speci�c layout of certain data struc-
tures in the JVM. Additional performance is obtained by
providing less information in the generated bytestreams, in-
stead relying on this information to be present on all nodes
beforehand.

Performing object serialization at the JVM level poten-

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80

th
ro

ug
hp

ut
 (

by
te

s/
m

s)

data size (x1000 bytes)

Java RMI
LuchatRMI (default)
LuchatRMI (native)

KaRMI

(a) byte array

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80

th
ro

ug
hp

ut
 (

by
te

s/
m

s)

data size (x1000 bytes)

Java RMI
LuchatRMI (default)
LuchatRMI (native)

KaRMI

(b) double array

Figure 7: RMI throughput on the DAS

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

sp
ee

du
p

number of servers

Java RMI
LuchatRMI (default)
LuchatRMI (native)

KaRMI

(a) matrix size = 250 x 250

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

sp
ee

du
p

number of servers

Java RMI
LuchatRMI (default)
LuchatRMI (native)

KaRMI

(b) matrix size = 500 x 500

Figure 8: Distributed matrix multiply speedup

tially allows more eÆcient implementations for, for instance,

serialization of arrays of primitive types. Instead of serializ-
ing each primitive separately, we copy the contiguous mem-
ory area containing the array directly to the �ledescriptor
associated with the output stream. Current research into
multidimensional arrays for Java [10] holds promises for very
eÆcient serialization of such data structures using our frame-

work.
Our experiments showed a factor of almost 8 performance

improvement for reading and writing double arrays. For
simpler primitive types, there is still a performance improve-
ment, although a moderate one. Reading and writing linked
structures like binary trees show a factor of 1:5 and 2, re-

spectively. Using our object serialization protocol in an RMI
framework shows a higher throughput for byte arrays, and
better speedup and scalability for a distributed matrix mul-
tiply of double matrices.
Future research in this project consists of comparing our

object serialization implementation with implementations

from more recent Java Development Kit versions. Initial
tests that we did run seem to suggest that the object seri-
alization performance in the JDK 1.3.1 from Sun has sig-
ni�cantly improved. Although our native implementation
also obtains a higher throughput in later JDK versions, the
performance improvement over Sun's object serialization im-

plementation is signi�cantly smaller.
One possible approach to improving our object serializa-

tion implementation would be to exploit even more knowl-
edge of the actual layout of data structures in the Java Vir-
tual Machine. The development of our own Java Virtual Ma-

chine implementation will provide an excellent framework to
experiment with this.

6. REFERENCES
[1] H.E. Bal et al. The distributed ASCI supercomputer

project. ACM SIGOPS Operating Systems Review,
34(4):76{96, oct 2000.

[2] A. Birrell, G. Nelson, S.S. Owicki, and E. Wobber.
Network Objects. Software: Practice and Experience,
25(S4):87{130, Dec 1995.

[3] F. Breg. Java and High Performance Computing. PhD

thesis, Leiden University, November 2001. in progress.

[4] F. Breg and D Gannon. A Customizable
Implementation of RMI for High Performance
Computing. In Proc. of Workshop on Java for Parallel

and Distributed Computing of IPPS/SPDP99, pages
733{747, Apr 1999.

[5] S. Campadello, O. Koskimies, K. Raatikainen, and
H. Helin. Wireless Java RMI. In The 4th International

Enterprise Distributed Object Computing Conference,
pages 114{123, Makuhari, JAPAN, Sep 2000. IEEE
Computer Society.

[6] J. Gosling, B. Joy, and G. Steele. The Java Language

Speci�cation. The Java Series. Addison-Wesley
Developers Press, 1996.

[7] B. Haumacher and M. Philippsen. More eÆcient
object serialization. In International Workshop on

Java for Parallel and Distributed Computing, Apr
1999.

[8] M. Herlihy and B. Liskov. A Value Transmission
Method for Abstract Data Types. ACM Transactions

on Programming Languages and Systems,

4(4):527{551, Oct 1982.

[9] Sun Microsystems Inc. Javatm Object Serialization
Speci�cation, Nov 1998. revision 1.43.

[10] J.E. Moreira, S.P. Midki�, and M. Gupta. A

Comparison of Three Approaches to Language,
Compiler, and Library Support for Multidimensional
Arrays in Java. In Proc. of the Joint ACM Java

Grande - ISCOPE 2001 Conference, pages 116{125,
Palo Alto, CA, June 2001.

[11] R. van Nieuwpoort, J. Maassen, H.E. Bal, T. Kielman,
and R. Veldema. Wide-area parallel computing in
java. In ACM 1999 Java Grande Conference, jun 1999.

[12] L. Opyrchal and A Prakash. EÆcient Object
Serialization in Java. In ICDCS 99 Workshop on

Middleware, jun 1999.

[13] M. Philippsen and B. Haumacher. Bandwidth,

Latency, and other Problems of RMI and
Serialization. JavaGrande report, May 1998.

[14] M. Philippsen and B. Haumacher. More EÆcient
Serialization and RMI for Java. Concurrency: Practice

and Experience, 12(7):495{518, May 2000.

[15] R. Riggs, J. Waldo, and A. Wollrath. Pickling State in
the Java(tm) System. In USENIX 1996 Conference on

Object-Oriented Technologies, Toronto, Ontario,

Canada, Jun 1996.

