
An Annotation-aware Java Virtual Machine Implementation

Ana Azevedo�, Alex Nicolau Joe Hummel

University of California, Irvine University of Illinois, Chicago

aazevedo, nicolau@ics.uci.edu jhummel@eecs.uic.edu

Abstract

The Java bytecode language lacks expressiveness for traditional compiler optimizations, making this

portable, secure software distribution format ine�cient as a program representation for high performance.

This ine�ciency results from the underlying stack model, as well as the fact that many bytecode oper-

ations intrinsically include sub-operations (e.g., iaload includes the address computation, array bounds

checks and the actual load of the array element). The stack model, with no operand registers and limiting

access to the top of the stack, prevents the reuse of values and bytecode reordering. In addition, the

language has no mechanism to indicate which sub-operations in the Java bytecode stream are redundant

or subsumed by previous ones. As a consequence, the Java bytecode language inhibits the expression of

important compiler optimizations, including register allocation and instruction scheduling.

The Java bytecode stream generated by a Java bytecode compiler is a signi�cantly under-optimized

program representation. The most common solution to overcome this ine�ciency is the use of a Just-in-

Time (JIT) compiler to not only generate native code, but perform optimization as well. However, the

latter is a time consuming operation in an already time-constrained translation process. In this paper

we present an alternative to an optimizing JIT compiler that makes use of code annotations generated

by a Java bytecode compiler. These annotations carry information concerning compiler optimizations.

During the translation process, an annotation-aware Java Virtual Machine (JVM) system then uses

this information to produce high performance native code without performing much of the necessary

analyses or transformations. We describe the implementation of a prototype of an annotation-aware JVM

consisting of an annotation-aware JIT compilation system. We conclude the paper showing performance

results comparing our system with other JVMs running on SPARC architecture.

1 Introduction

The Java bytecode language is emerging as a software distribution language for both its portability and

safety features. The portability property of the language is ensured by the platform-independent stack

machine model targeted by Java compilers. On the target machine, this intermediate code representation

is either interpreted [16], or compiled into native code using traditional ahead-of-time [14] or just-in-time

�This work supported in part by CAPES.

1

compilers [1, 2, 4, 13, 17, 26, 27]. The safety features of the language are based on the security violation

checks performed at load and run time [19]. Such checks include enforcement of method and variable

access modi�ers, strict type-checking and array bounds checking. Many of these checks are implicit in the

bytecodes, forcing the JVM to perform them unless it can prove at load-time (via analysis) that the checks

are unnecessary.

In the design of the Java bytecode language, a great deal of e�ort was spent to make it secure and

portable. However, in order to be widely accepted, the language must also yield e�cient execution on a

wide range of machine architectures. Unfortunately this is the weakest aspect of Java and is currently the

focus of much research. The ine�cient execution of Java bytecode programs lies with the de�nition of the

bytecodes themselves. The language is poor for conveying the result of many common and important compiler

optimizations that are traditionally expressed in the native code generated by optimizing compilers. The

direct translation of a bytecode stream generated by a compiler front-end into target machine code results

in low-quality code.

The �rst limitation in expressing compiler optimization is the stack model that the Java bytecode language

implements. This model provides no registers and restricts access to only the top element of the stack.

Restricting access to the top of the stack prevents the reordering of bytecodes, a necessary transformation

during instruction scheduling. And without registers to hold values, the stack model serializes computation

and prevents the reuse of values (since again, only the top is accessible). Obviously, the lack of registers also

prevents the expression of register allocation, a critical and potentially time-consuming optimization.

The second limitation of the Java bytecode language as a program representation is the fact that many

bytecodes intrinsically encapsulate many machine sub-operations (e.g., iaload includes the address com-

putation, array bounds checks and the actual load of the array element). The Java bytecode compiler can

detect when sub-operations are redundant or subsumed by preceding sub-operations, and can try to ap-

ply traditional code-improving transformations in order to eliminate these sub-operations. However, the

compiler is still limited by the stack-based nature of the language, in which sub-operations cannot easily

be separated, eliminated or rearranged. Furthermore, there is no mechanism in the language to disable

sub-operations when deemed unnecessary. For this reason, straightforward compiler optimizations such as

common sub-expression elimination, array bounds check elimination and loop-invariant code removal have

limited expressiveness in Java bytecode.

To demonstrate these limitations, consider the example in Figure 1. This example assumes that a RISC-

like, three address code Intermediate Representation (IR) 1 is used in the Java bytecode compiler. The

leftmost column shows the unoptimized intermediate code 2 corresponding to the Java code at the top of

Figure 1. The middle column shows the result of performing some simple optimizations, such as loop invariant

removal of expression offset1 + offset2 and the array size reference. After optimizing this intermediate

1This example is based on the Java IR we designed. More details on the Java IR can be found in the Appendix Section 7.

2Array bound checks have been omitted.

2

code, the compiler is then able to produce the optimized bytecode stream shown in the last column. However,

additional optimizations are possible that cannot be expressed in the �nal bytecode stream. For example,

the sub-operations comprising array element accesses represent common sub-expressions and thus could be

eliminated (the index is the same for accessing the integer arrays a and b and therefore the array index

computation in lines 6-7 and 12-13 in the leftmost column are redundant). Likewise, given the bounds on

the loop, all implicit array bounds checks involving a are unnecessary (and those involving b could be reduced

to a single check before the loop starts). Clearly, the resulting bytecode has room for improvement.

Java Code
public static void foo(int a[], int b[], int offset1, int offset2){
 for (int i=0; i<a.length; i++)
 a[i] = b[i] + offset1 + offset2;
}

IR Optimized IR Optimized Bytecode

 1 : smovi 0, i
 2 : aadd a, "arraySizeOffset", T1
 3 : ild (T1), T2
 4 : icmpge i, T2, T3
 5 : br T3 (18)
 6 : ishl i, "ishift", T5
 7 : iadd T5, "arraySizeOffset", T6
 8 : aadd b, T6, T7
 9 : ild (T7), T4
10 : iadd T4, offset1, T8
11 : iadd T8, offset2, T9
12 : ishl i, "ishift", T10
13 : iadd T10, "arraySizeOffset", T11
14 : aadd a, T11, T12
15 : ist T9, (T12)
16 : iadd i, 1 , i
17 : jmp (2)
18 : return

 1 : iadd offset1, offset2, T1
 2 : smovi 0 , i
 3 : aadd a, "arraySizeOffset", T2
 4 : ild (T2), T3
 5 : icmpge i, T3, T4
 6 : br T4 (16)
 7 : ishl i, "ishift", T6
 8 : iadd T6, "arraySizeOffset", T7
 9 : aadd b, T7, T8
10 : ild (T8), T5
11 : iadd T5, T1, T9
12 : aadd a, T7, T10
13 : ist T9, (T10)
14 : iadd i, 1 , i
15 : jmp (5)
16 : return

 0 iload_2
 1 iload_3
 2 iadd
 3 istore 5
 5 aload_0
 6 arraylength
 7 istore 6
 9 iconst_0
 10 istore 4
 12 goto 29
 15 aload_0
 16 iload 4
 18 aload_1
 19 iload 4
 21 iaload
 22 iload 5
 24 iadd
 25 iastore
 26 iinc 4 1
 29 iload 4
 31 iload 6
 33 if_icmplt 15
 36 return

Figure 1: Java bytecode as a language for program representation

The implication is that even though the Java bytecode compiler can compile a program into a clean and

optimized sequence of bytecodes, a JIT compiler will still need to perform signi�cant optimization in order

to generate high-quality native code. This in turn implies that a JIT compiler will have to perform bytecode

analysis to extract information about the program for the purposes of optimization. This introduces a poten-

tially signi�cant overhead in an already time-constrained JIT system. In this paper we present an alternative

to the traditional optimizing JIT compiler based on bytecode annotations. In our Annotation-aware JIT

(AJIT) compilation system, the translation of bytecodes into high-performance native code is accomplished

with the help of extra analysis information carried along with the bytecodes in the form of annotations.

Our idea of Java bytecode annotations was �rst introduced in [15]; in this paper we present the details of

the implementation of our AJIT compilation system. In particular, we show how annotations are e�ective

in carrying information concerning register allocation, common sub-expressions and value propagation. We

also discuss the potential run-time overhead generated by our annotation scheme including an explanation

on the basic security checks that are necessary to validate untrusted annotated Java class �les. We conclude

3

the paper presenting some initial results on the performance of the code generated by our AJIT system,

demonstrating that our approach outperforms other JVM implementations on the SPARC architecture.

The format of this paper is as follows. In the next section we present the structure of our Annotation-

generating Java Bytecode Compiler (AJBC), discuss the types and formats of the annotations already im-

plemented, and give an overview of other annotations been designed in our compiler framework. We provide

details about our annotations for register allocation and present the compile-time register allocatation algo-

rithm that produces the annotations in support of dynamic register allocation. In Section 3 we discuss our

AJIT compilation system and show how it uses annotations to implement run-time register allocation and

produce native code. In this section we also talk about the sources of potential run-time overhead associated

with our annotation scheme. Section 4 presents some preliminary results on the performance of our AJIT

system. In Section 5 we discuss related work, followed by our conclusions and future work directions in

Section 6.

2 Annotation-Generating Java Bytecode Compilation System

The idea of annotating a program representation with analysis information produced by a front-end compiler

stems from the need to reduce the workload of run-time code optimizing systems. Our annotation types and

formats vary with the kind of information that needs to be conveyed to the run-time system. For example,

it may consist of high-level program information that is not expressible in the language chosen for software

distribution or compiler analysis information that is too time consuming to produce at run-time. Figure 2

gives an overview of a general annotation-generating Java bytecode compilation system with a number of

di�erent annotations that we are currently working on. During the initial Java to bytecode translation, our

annotation-generating compiler behaves as a traditional compiler. It builds a three-address code intermediate

representation exible enough to represent all the sub-operations that form each bytecode. On this IR

traditional code-improving techniques (e.g., copy propagation, common sub expression elimination, loop

invariant code removal and register allocation) are applied and an optimized IR is produced. Once this stage

has been reached, each operation (or sequence of operations) is translated into an optimized Java bytecode

stream. In this process, the annotation generator component of the compiler framework uses the optimized

IR, along with the data provided by various compiler analyses, to produce a set of annotations. Finally,

the compiler performs a mapping phase in which the IR operations and annotations are paired with the

bytecodes forming the optimized annotated class �les.

For example, in the case of the Virtual Register Allocation (VRA) annotations (to be explained shortly),

each bytecode is annotated with the source and destination registers allocated to the operands of the corre-

sponding Java IR operation (or sequence of operations). Then, the bytecode stream is copied into the code

attribute section of the class �le together with the annotations, the latter being stored as an extra code

attribute. Storing annotations in this way guarantees backward compatibility with existing JVMs, which by

4

de�nition must ignore unknown code attributes [19].

Our annotation-generating compiler was built using guavac Open Source (version 0.3.1) Java bytecode

compiler [23]. From the Java source code, this compiler generates a parse tree and produces Java bytecode.

We augmented the compiler by (a) introducing functions for building and manipulating our three-address

code IR, (b) implementing compiler optimizations for common sub-expression elimination, copy propagation

and register allocation, and (c) designing a VRA annotation generator. This paper focuses in particular on

the VRA annotations. The remaining annotations, as presented in Figure 2 represent work in progress.

Annotation-Generating Java Bytecode Compiler

Optimized
Bytecode

Annotations Generator

Source Code
(Java, C, C++...)

VRA
annotations run-time

checks
annotations

memory
reference tags
annotations

Mapping
Annotations to

Bytecode
operations

alternative
VLIW-like
schedules

annotations

Array Range Checks Analysis

Object Liveness Analysis

Dataflow Analysis

Control Flow Analysis

Parser

Java IR

Optimized
 Java IR

Code Optimization
constant folding,
copy propagation,
CSE,
loop invariant removal
register allocation
instruction scheduling
...

Annotated
Class File

Annotations

Annotation-aware JVM System
(JIT Compiler, Interpreter)

Bytecodes Annotations

Dynamic Code
re-optimization

optimized
native code

register
allocation

Code Generation

instruction
selection

Garbage
Collection

run-time
IR

High Level Source Code Info

Object Type Analysis

Method Side Effect Analysis

Escape Analysis

Spill
annotations

Param Passing
annotations

Stack Map
annotations

Object Connectivity
annotations

Method Side Effect
annotations

Object Liveness
annotations

Register Allocation
Annotations

Code Improving Optimizations
Instruction Scheduling Optimizations

Memory System Optimizations
Annotations

Escape Analysis
annotations

Verification

Data Dependence
annotations

Figure 2: Annotation-generating Java Bytecode Compiler (AJBC) and Annotation-aware JVM system

Virtual Register Allocation annotations represent the result of performing register allocation assuming an

in�nite number of symbolic registers. The information provided by the VRA annotations can then be used

by a JVM engine, either an interpreter or a JIT compiler, to perform a fast and e�cient dynamic register

allocation and also to indicate which bytecodes (or bytecode sub-operations) are redundant 3 or subsumed

by preceding operations; such operations need not be translated into native code. In Section 3 we show in

detail how a JIT compiler interprets these annotations, does register allocation, and produces native code. In

the remainder of this current section we discuss the format of VRA annotations and how the Java front-end

compiler produces them.

3As discussed earlier, redundant bytecodes appear in the optimized bytecode stream due to the stack machine model.

5

Each instruction de�ned in the Java bytecode language is mapped into operations in our Java IR. Anno-

tations for virtual register allocation basically hold information on the operands of the Java IR operations.

The VRA annotations represent source operands, destination operands, and any intermediate values implic-

itly calculated by the bytecode sub-operations (e.g., array address calculation in an array element access

operation). Each bytecode operation type has a distinct VRA annotation format. A format may have multi-

ple variations that indicate how a particular bytecode sub-operation should be translated: where to read its

input operands, where to write the result, and perhaps whether or not this sub-operation should be skipped

(e.g. when a previous operation has already computed the needed value).

Figure 3 shows an example of correspondence among bytecodes, Java IR and VRA annotation formats.

Each SRC, EXTRA and DEST �elds holds virtual register numbers representing the operands for the sub-

operations. In Case 1 of Figure 3, the Java IR code sequence for the computation performed by the bytecode

iaload is illustrated. The most general format of an iaload operation includes 2 SRC �elds, 2 EXTRA �elds and

one DEST �eld with SRC-SRC-EXTRA-EXTRA-DEST as annotation header format. The �rst SRC �eld represents

the virtual register that holds the array object reference; the second SRC �eld represents the virtual register

that holds the index; the �rst EXTRA �eld represents the result of the array index calculation; the last EXTRA

�eld represents the result of the array address calculation; and the DEST �eld represents the virtual register

holding the array element read from memory. If the address computation has already been computed, as

in Figure 3 Case 2, the header SRC-DEST indicates that the SRC �eld holds the array element address and

DEST �eld is the suggested virtual register to hold the value read from memory, meaning that the translation

process can skip the sub-operations for array index and address calculation and the bytecode iaload can be

translated into a single load operation.

Bytecode Java IR

iaload

V0 holds array address
V1 holds index

1 : ishl V1, "ishift", V2
2 : iadd V2, "arraySizeOffset", V2
3 : aadd V0, V2, V3
4 : ild (V3), V4

Annotated Bytecode
opcode SRC SRC EXTRA EXTRA DEST
iaload V0 V1 V2 V3 V4

Case 1: Array element address calculation and array load
Bytecode Java IR

iaload V0 holds array element address

4 : ild (V0), V1

Annotated Bytecode
opcode SRC DEST
iaload V0 V1

Case 2: Array load

Figure 3: Example of Java IR and VRA annotations for iaload bytecode

Figures 5 and 7 from Appendix Section 7 show how local variables and class member variables are

represented in our Java IR. Local variables are directly mapped to virtual registers. Local variable accesses

(e.g, iload and istore) are represented in our Java IR as nop operations, annotated as SRC, or move

operations (move between symbolic registers or move of a constant value into a symbolic register) annotated

as SRC-DEST, CONST-DEST, depending on the result of optimizing the Java IR via copy propagation. When

the JVM interprets the annotation format SRC it has the information that the local variable is in a virtual

6

register indicated by the byte following the format header but no machine code is generated for the bytecode.

Class member variables are kept as variables in memory in our Java bytecode compiler and accessed via load

and store operations, as shown in Figure 7 for bytecodes getstatic, putstatic, getfield and putfield.

As a consequence, these variables are also kept in memory in our AJIT system. To enable some optimization

on accesses to class member variables, we designed annotations that make explicit the variable address

calculation, just like those in array references. For example, bytecode getfield has the di�erent annotation

formats SRC-DEST and SRC-EXTRA-EXTRA-DESTwhich state whether or not the variable's address has already

been computed. For some types of class member variables and for some safe program points we attempt a

better virtual register allocation and we also designed annotations that express such cases (see Appendix

Section 7.3).

A complete listing of all Java bytecode operation types, the corresponding Java IR operations and VRA

annotations formats can be found in the Appendix Section 7. In the design of the Java IR and VRA annota-

tions we made some assumptions on object layout and dynamic dispatching (e.g., see Java IR operations for

array element access operations and Java method calls) based on the most used conventions. However such

assumptions do not compromise the portability of the annotations (i.e., annotations for the intermediate

bytecode sub-operations can be ignored by the underlying JVM).

2.1 Compile-Time Register Allocation

The choice of which virtual register to hold an operation's operands is crucial to the register allocation

done at run-time. In order to enable a fast and e�cient dynamic register allocation, the VRA annotations

must convey the order in which variables should be allocated to physical registers (and thus which should

be spilled if necessary). This is accomplished by assigning, at compile-time, the lowest virtual register

numbers to the most important variables in the code. In our annotation-generating compiler we implement

a modi�ed priority-based graph-coloring algorithm. A priority-based coloring algorithm [5] uses heuristics

and cost analyses to determine the ordering of live ranges and guarantees that the most important live

ranges are assigned colors �rst. In our compiler, variables (method local variables, class variables, stack slots

and compiler generated temporaries) are prioritized by their static reference counts, having references inside

loops counting 10 times more and scaled by the loop nesting level.

After the generation of the Java IR, the compiler runs data-ow analyses and performs copy propagation

and common sub-expression elimination. At this point loop structures are also identi�ed and static reference

counts are calculated. The �rst step of our register allocator is to build a priority list of variables using

this information. In case of matching static reference counts, the priority of a variable is dictated by the

order in which it was declared in the code. As we want to keep the number of virtual registers as low as

possible, we assign the same virtual register number to variables with non-conicting live ranges. This is

accomplished by building the interference graph which gives us information on conicting live ranges. Using

7

the information provided by the interference graph, the virtual register assignment algorithm picks variables

from the priority list and assigns virtual register numbers to them, reusing lowest virtual register numbers

or creating a new virtual register number in case of conicts.

In our register allocation algorithm, when assigning virtual register numbers we associate each virtual

register number with the Java type of the variable it is allocated to, and we do not allow, for example, a virtual

register holding an integer to later be re-used to hold a oating-point value. This restriction, although it has

the counter e�ect of increasing the number of virtual registers, serves two main purposes. It guarantees that

the mapping of a virtual register to a physical register is �xed in the run-time compilation system. Otherwise,

the frequent re-mapping of virtual registers to physical registers to comply with variable types and machine

register assignment restrictions will conict with the virtual register priorities, potentially leading to an

increase in spills and lower performance. Associating virtual registers to Java types also facilitates the

annotation veri�cation process. We use the run-time data-ow analysis that checks Java bytecode type

properties for normal bytecode veri�cation to identify incorrect annotated class �les.

When trying to do machine independent optimizations we lose opportunity to be as aggressive as tradi-

tional native compilers. In particular, our virtual register allocation scheme does not allocate registers taking

into account call costs or spill code minimization. Both interfere in the quality of the register allocation and

most variations of the traditional graph coloring algorithm try to address these factors. In our compile-time

register allocation we do not produce spill code as we work with an in�nite number of symbolic registers and

we do not make any assumption on calling conventions.

3 Annotation-aware Java Virtual Machine System

The rightmost portion of Figure 2 depicts our annotation-aware JVM which consists of an annotation-aware

JIT (AJIT) compiler. To implement our annotation scheme we modi�ed Ka�e (version 0.9.2) code which is

distributed freely under the GNU Public License [26]. The changes concentrated on a few number of �les

and consisted of the design of a new register allocator, modi�cations to the generation of Ka�e's internal

pseudo machine instructions representation, and changes to its SPARC code generator. Both the original and

new functionality coexist in the system, allowing the processing of annotated methods and non-annotated

methods within the same class �le.

As VRA annotations are derived from translating bytecodes into a RISC-like three address code, one

wonders whether they are general, exible and helpful enough to produce optimized code for di�erent target

architectures. We experimented with the Intel architecture in [15], and now with the SPARC architecture in

this paper | two distinct architectures (CISC and RISC respectively). Our annotation scheme has proven

to be su�cient for generating code for these two platforms. As we experiment with other architectures our

annotation types and formats will be further validated and re�ned.

The AJIT compiler invokes di�erent translation routines depending on the presence of the annotation

8

define_insn(IALOAD)
{
/*
 ..., array ref, index -> ..., value
 VRA annotation format: header (byte) + data (sequence of bytes)
*/

 a = meth->annotationsTable->entry[i];
 i++;

 if (a.header == SRC_SRC_EXTRA_EXTRA_DEST){
 index = *(a.VRAData); objref = *(a.VRAData+1);
 extra1 = *(a.VRAData+2); extra2 = *(a.VRAData+3); dest = *(a.VRAData+4);

 annotated_lshl_int_const(vrslots[extra1].slots, vrslots[index].slots, SHIFT_jint);
 if (object_array_offset !=0)
 annotated_add_int_const(vrslots[extra1].slots, vrslots[extra1].slots, object_array_offset);
 annotated_add_ref(vrslots[extra2].slots, vrslots[objref].slots, vrslots[extra1].slots);
 annotated_load_int(vrslots[dest].slots, vrslots[extra2].slots);

 }else if (a.header == CONST_SRC_EXTRA_EXTRA_DEST){
 const = *(a.VRAConst); objref = *(a.VRAData);
 extra1 = *(a.VRAData+1); extra2 = *(a.VRAData+2); dest = *(a.VRAData+3);

 annotated_move_int_const(vrslots[extra1].slots, (const<<SHIFT_jint), NULL);
 if (object_array_offset !=0)
 annotated_add_int_const(vrslots[extra1].slots, vrslots[extra1].slots, object_array_offset);
 annotated_add_ref(vrslots[extra2].slots, vrslots[objref].slots, vrslots[extra1].slots);
 annotated_load_int(vrslots[dest].slots, vrslots[extra2].slots);

 }else if (a.header == SRC_SRC_EXTRA_DEST){
 objref = *(a.VRAData); src2 = *(a.VRAData+1); extra = *(a.VRAData+2); dest = *(a.VRAData+3);

 annotated_add_ref(vrslots[extra].slots, vrslots[objref].slots, vrslots[src2].slots);
 annotated_load_int(vrslots[dest].slots, vrslots[extra].slots);

 }else if (a.header == SRC_DEST){
 src = *(a.VRAData); dest = *(a.VRAData+1);
 annotated_load_int(vrslots[dest].slots, vrslots[src].slots);
 }else if (a.header == SRC){
 // no action
 } else error = TRUE;
}

Figure 4: AJIT translation process for iaload bytecode

attribute allowing both annotated and non-annotated methods to be invoked and translated during the

execution of a Java application. The process of producing native code from annotated Java bytecode is

done in a single pass over the bytecode stream. As each bytecode and its annotation bytes are read, the

corresponding Ka�e IR operation(s) is (are) generated. The generated Ka�e IR operation (or sequence of

operations) depends on the information provided by the annotations. This information may suggest that the

bytecode translation be skipped entirely, or that some sub-operations be eliminated or simpli�ed. Figure 4

shows how the original Ka�e code has been modi�ed to handle an annotated iaload bytecode operation.

The translated Ka�e IR operation operands are speci�ed by virtual register numbers, extracted from the

annotations bytes. Once the entire bytecode stream has been processed, SPARC native code is produced

from the Ka�e IR. At this point, as each Ka�e IR operation is translated into native code, the register

allocator is invoked to replace virtual register numbers with machine registers.

Our VRA annotation scheme does not need any form of run-time intermediate representation to produce

register allocation. In our implementation we could have skipped building the Ka�e IR. This intermediate

representation does not capture any control or data ow information. Its basic functionality is to separate

the low level details of all possible target machine code from the interpreter and JIT compiler translation

functions. Keeping the IR enabled us to write code that can be shared in the compilation and interpretation

9

of annotated bytecodes to any target machine supported by Ka�e, which was very convenient at the moment

when validating our ideas on annotations.

The run-time register allocation is a mapping-based algorithm that essentially maps each virtual register

to a machine register, prioritizing the assignment of lower virtual register numbers. This guarantees that

high priority values (program variables represented by lower virtual register numbers) have preference in the

register assignment. When the physical registers are exhausted, virtual registers are mapped to temporaries

on the stack. As can be noticed, the complexity of our run-time algorithm is linear in the number of virtual

registers.

The �rst task performed in the translation of an annotated method is the initialization of a mapping table

used as an auxiliary data structure. The mapping table stores information on a virtual register number, the

corresponding machine register, and the stack pointer o�set that should be used in case of spilling. There are

some details in the initialization of the mapping table to correctly handle the SPARC calling conventions.

These details are taken care of in the method's prologue and in the translation of bytecodes for accessing

method local variables. Dealing with such details results in changing the mapping table as we force virtual

register to machine register mapping. As a consequence virtual register priorities may break which may

require further �xing later in the translation process by spilling a lower priority virtual register that has

been mapped to a physical register to free the register for a higher priority virtual register.

In the case of the SPARC architecture, the register allocator reserves four registers of each type (four of

the global integer registers g4-g7 and four of the oating point registers f28-f31) for evaluating expressions

that involve variables that are not mapped into machine registers. It uses local registers l0-l7 , global

registers g1-g3, any unused input register i0-i5 and oating point registers f0-f27 during allocation.

Registers o0-o7 are not available for the allocator and are reserved for passing parameters to method calls.

Our current register allocation scheme does not try to minimize the cost of method calls. At method

calls, copy operations are generated to move values into the correct SPARC output registers and all active

registers are spilled. Our annotation scheme can be modi�ed to carry information on which values produced

in the program are later passed to methods as parameters and also which registers should be saved across

method calls. Having the �rst kind of information would guide the register allocator in the virtual to physical

register mapping and would avoid some copies. The second kind of information would decrease the overhead

of method calls by spilling only the registers that are later referenced in the program.

3.1 Annotations Run-Time Overhead

To prove that our AJIT system is an acceptable engineering solution we need to quantify the overhead of

manipulating the annotated bytecode stream and the overhead of our mapping-based register allocation in

the process of generating optimized native code on the y. Annotations potential overhead results frommany

factors: (1) the larger class �le size which increases download time; (2) the time spent verifying non-trusted

10

annotated class �les; (2) the time spent in the interpretation of the information conveyed in the annotation

bytes (see the extra processing required to build the Ka�e JIT IR in Figure 4); (3) the time spent in the

mapping-based dynamic register allocation and (4) the demand for extra resources (memory for storing

annotations).

Network applications are sensitive to the download time overhead, but other types of applications that

do not depend on annotated class �les being downloaded are not a�ected. In our AJIT system, Ka�e run-

time IR is simple to build and manipulate. Other optimizing JIT compilers will need a more complex IR to

enable more advanced compiler transformations. We believe that the overhead of processing the annotations,

storing them and building a simple run-time IR will ultimately be less than the overhead of building, storing

and manipulating a complex IR in those systems. Besides, our run-time register allocation algorithm is an

algorithm that obeys a de�ned mapping rule and only manipulates a mapping table. As a result, our register

allocator is simple and fast. No time is spent on conict graph construction, coloring nor dataow analysis

| tasks routinely performed by traditional register allocators.

Among the above listed potential sources of overhead, the annotation veri�cation cost is the one of most

concern. Annotation veri�cation implies checking virtual registers type and checking virtual registers use

and re-use. To collect virtual registers type information can be done by extending the abstract interpretation

in the traditional Java bytecode veri�er. Besides collecting the type of the contents of operand stack slots

and local variables, the Java bytecode veri�er can also compute the type of the contents of virtual registers

(including the virtual registers from bytecode implicit sub-operations). The fact that in our AJBC we do not

allow variables of di�erent types to share the same virtual register number makes VRA annotations easier to

be checked. Any reuse of a virtual register in distinct bytecode operations requiring di�erent operand types

indicates an invalid annotation. Virtual registers type information is cheaply obtained as a byproduct from

the traditional bytecode veri�cation.

Other rules for legal annotated class �les have to be de�ned to evaluate if a certain re-use of a virtual

register to represent a new local variable, an operand stack value or an implicit bytecode sub-operation

operand is valid. Checking such rules is the expensive part of the annotation veri�cation process. The di�er-

ent annotation formats carrying information on redundant sub-operations also makes annotation veri�cation

more complicate. To accomplish this veri�cation task compiler analyses that would be necessary to compute

at run-time are UD-chains, DU-chains and liveness analyses. An alternative solution to avoid computing

such analyses would be to de�ne proofs for annotations in a way similar to the proofs generated by certifying

compilers [11, 20] to validate optimized native code. Annotation veri�cation is still work in progress in our

research group.

11

4 Results

Our results revolve around four benchmarks: Neighbor, which performs a nearest-neighbor averaging across

all elements of a two-dimensional array; EM3D, a code that creates a graph and then performs a 3D elec-

tromagnetic simulation [8]; Huffman, a character string compression and decompression application; and

Bitonic Sort, which builds a binary tree and then performs bitonic sorting (recursively) [3]. [26]. The

speedup results are shown in Table 1. When collecting the timings and measuring the speedups we did not

include translation nor compile time, and thus the results represent the quality of the generated code. The

programs were compiled using our annotation-generating Java bytecode compiler and then executed using

JVMs available on the SPARC platform: SUN JDK interpreter version 1.1.6, SUN HotSpot JVM version

1.2.2, Ka�e JIT compiler version 0.9.2, and our AJIT system.

Benchmarks SpeedUp
AJIT/Sun Interpreter 1.1.6

Neighbor
256x256 array
1500 iterations

EM3D
1250 tree nodes
200 iterations

Bitonic Sort
1024 tree nodes
512 iterations

Huffman
30000 array nodes
288 iterations

SpeedUp
AJIT/Kaffe JIT 0.9.2

SpeedUp
HotSpot 1.2.2/Kaffe JIT 0.9.2

Class File
Size Increase

1.41

2.01

1.17

1.25

1.40

1.50

2.66

2.73

1.63

1.42

1.49

1.58

5.16

4.86

1.25

3.19

Table 1: Benchmark speedups and class �le size increase

From the two �rst speedup columns in Table 1 we notice that our annotation based approach o�ers

speedups varying from 1.25 to 5.16 over direct interpretation, and is 17% to 100% faster than Ka�e JIT

technology. Both our AJIT system and Ka�e are baseline compilers that only do register allocation. We

think the most fair comparison we can make is with the original Ka�e code, as all other features of the

JVM are maintained the same across AJIT and Ka�e, the only di�erence being in the code generator.

The third speedup column in Table 1 compares Ka�e system performance with SUN HotSpot. SUN HotSpot

optimizing compiler implements global register allocation via graph coloring, a number of traditional compiler

optimizations (e.g., common sub-expression elimination, loop invariant removal, constant propagation, and

dead-code elimination) and possibly some object oriented language optimizations (e.g., method inlining).

The individual e�ect of each of these optimizations could not be �ltered out and the quality of the generated

code reects the combined e�ect.

In relation to Ka�e, the best AJIT system speedups were achieved for codes consisting of basic loops

iterating over array-based or pointer-based data (Neighbor, EM3D and Huffman). The smallest performance

gain was observed for the code with the highest number of method calls | Bitonic Sort. This result is

explained by the way our AJIT system, and Ka�e as well, handle method calls during dynamic register

12

allocation. In short, both JIT compilers do not take advantage of SPARC calling conventions and do not

try to minimize spill code. At method calls, copy operations are generated to place values in the correct

parameter passing registers and all live registers are spilled. Looking at SUN HotSpot performance when

compared with Ka�e's we notice that our AJIT compiler performs as good as SUN's JVM in two cases

and presents much lower performance for the other two benchmarks, which are those that involve frequent

method calls. This last result indicates a point of performance bottleneck in our scheme. By extending our

VRA annotation scheme with extra information, such as virtual registers to be saved across method calls and

which virtual registers are used as method call parameters can improve the impact of our VRA annotation

scheme by reducing the number of copy operations and amount of spilling.

The last column in Table 1 shows that under the current encoding scheme annotated class �les have an

average of 53% size increase. We have not optimized our encoding scheme and we believe more compact

representation is possible.

5 Related Work

Various approaches are being proposed to overcome the ine�ciency of translating the Java bytecode to native

code, and thus increase the execution speed of Java programs. When compilation time is not a constraint,

the most common approach is to translate Java bytecode into some higher-level program representation

[6, 14, 22] and then �nally to native code (perhaps using an existing compiler, as in [22]). When speed

of compilation is an issue, optimizing JIT compilers [1, 2, 4, 13, 17, 26, 27] try to improve the quality

of the native code generated on the y by adapting traditional optimization techniques to run-time code

generation. Optimizations can also be applied during load-time, i.e. after bytecode generation yet before run-

time translation to native code; [7, 9] are examples of Java bytecode optimizers. In the following paragraphs

we overview commercial and academic systems, some of which make use of annotation schemes to aid code

optimization.

Several researchers exploit the idea of code annotations and relate to our approach. In the context of

selective dynamic compilation, code annotations in the form of programmer hints [12] or high-level language

constructs extensions [21] serve as guide to how to handle language constructs during run-time code special-

ization and where (and on what) dynamic compilation should take place. Just like in our annotation scheme

these systems use annotations to balance the tradeo� between dynamic compilation speed and the quality

of the generated code. However we are designing annotations that can be automatically generated by the

compiler, instead of relying on skilled programmers. Our annotation-aware run-time system is also simpler

in terms code generation complexity and system footprint.

Most directly related to our VRA annotation scheme is Wall's work [25] on cross-module link-time register

allocation. His objective is to solve conicts in register assignment caused by the separate compilation

of individual modules composing an application program. He corrects such conicts via global register

13

allocation at link-time using annotations encoded in the native code to convey register assignment relocation

information.

Looking at the information publicly available for most current JVM implementations none of these sys-

tems, with the exception of SUN HotSpot [13], attempt to apply graph coloring heuristics for run-time

register allocation. The cost of graph coloring heuristics can be very expensive reaching complexity poten-

tially quadratic in the number of register candidates (for Java bytecode programs the register candidates

include local variables, stack slots and compiler temporaries). JVM systems employ cheaper register alloca-

tion algorithms resorting to either simple local register allocation as in [26] or region-based register allocation

as in [4, 27].

Ka�e [26] is the virtual machine that serves as basis for our implementation. Its register allocation is a

simple algorithm that maps Java operand stack slots and local variable slots to memory positions on the stack

of the translated method. When the allocator runs out of machine registers, the least recently used register

is spilled and freed for allocation. There is no special treatment to reduce method call costs, or to exploit

machine calling conventions. Upon a method call, copy operations are introduced to guarantee values are in

the correct registers and all modi�ed registers are spilled. The Intel's JIT compiler described in [2] implements

register allocation of local variables, stack slots and temporaries in separate phases. Local variables are

pre-allocated using a priority-based algorithm while the others are locally allocated as in Ka�e. Another

interesting JVM implementation is CACAO JIT compiler [1]. CACAO also implements �xed pre-coloring

of local variables relying on the e�cient coloring of local variables done by the Java bytecode compiler.

Both Intel's JIT compiler and CACAO implement lazy code generation with operand stack simulation to

keep track of the Java operand stack contents. This information helps to combine instructions, eliminate

copy operations and spilling, better use the machine calling conventions and reduce method call costs. The

IBM Latte [27], IBM Jalapeno [4] and IBM Japan JIT compiler [17] systems implement an interval coloring

algorithm and linear scan register allocation algorithms [21, 24], respectively. These algorithms are faster

than graph coloring heuristics because they compute simpli�ed liveness analysis. For small regions of code

with a lot of variables these algorithms perform well, but as the size of the region increases, the performance

degrades as compared to graph coloring approaches.

An interesting research work on dynamic compilation is the Slim Binary project [10, 18]. It proposes an

architecture-neutral intermediate representation for software distribution that can be seen as an alternative to

Java bytecode. Slim Binary incorporates a more complex tree-based intermediate representation as compared

to Java bytecode, incurring extra run-time overhead to manipulate it. Slim Binary code is dynamically

compiled to native code just like Java bytecode. Much like our annotation scheme extends the Java bytecode

with extra information that is collected during o�-line traditional compilation, the Slim Binary representation

could bene�t from our annotation scheme for reducing run-time optimization costs.

14

6 Conclusions and Future Work

Most approaches for speeding up Java execution resort to dynamic compilation and run-time code re-

optimization. In this scenario, run-time costs must be minimized and thus it is desirable that the bulk

of the compilation process be done statically at compile time. Having a rich program representation convey-

ing, for example, dependence information to allow instruction scheduling and support for dynamic register

allocation, will decrease the time spent on run-time code generation by cutting down the time spent on

program analysis and transformation. In this paper we discussed how the Java bytecode language is a poor

choice for a high-performance program representation and we presented an approach based on code anno-

tations that helps to overcome this problem. We discussed in detail the implementation of our resulting

annotation-aware JIT system.

Our �rst annotation-aware JVM prototype implements a virtual register allocation annotation scheme

that conveys information for dynamic register allocation. It also enables some basic code improving optimiza-

tions by identifying and eliminating redundant computation and allowing propagation of values. Preliminary

results show that we produce code that can be competitive with the performance of the best commercial

JVM implementation in the market and indicate where the performance bottleneck of this type of machine

independent optimization is. We plan to extend our VRA annotation scheme by incorporating information

that minimizes call costs and the amount of spilling. We are also working on a VRA annotation veri�cation

process. We have interest in other Java performance problems, besides register allocation optimization,

and we have identi�ed a number of annotation candidates that we plan to exploit in the future using our

annotation scheme.

7 Appendix

This section lists out the Java Bytecode operation types, their corresponding Java IR sub-operations and
VRA annotation formats as implemented in the �rst prototype of our AJIT system.

7.1 Scalar Load and Store Instructions

Figure 5 summarizes how scalar load and store instructions are represented. Local variable load is represented
as nop operation in our Java IR and the variable is directly allocated to a virtual register. Local variable
store can be represented as copy or nop operations depending on whether the store operation de�nes a
new live range for the local variable or not. Loading of constants can be represented as loading a constant
from a memory location where it is stored or as a nop operation, depending on the primitive type of the
constant. Bytecode operations that have constants as their operands are annotated with such constant value,
for integer type constants, or are annotated with the virtual register that contains the constant value, for all
the other types of constants. The option for further constant folding is left for the JVM which depends on
the target architecture support for operations with immediate values.

7.2 Arithmetic Instructions and Type Conversion Instructions

Figure 6 summarizes how arithmetic, type conversion and local variable increment instructions are repre-
sented. Bynary and unary operations are represented as add, subtract, multiply, divide, remainder, negate,

15

shift, bitwise OR, bitwise AND and bitwise exclusive OR operations de�ned in our Java IR. They are an-
notated with a constant value and/or up to three virtual registers, representing the operation operands and
result. Local variable increment is represented as an add operation in the Java IR and is annotated with
the virtual register allocated to the local variable. Type conversion instructions are represented in the same
way as unary operations.

7.3 Object Creation and Manipulation

Bytecode instructions that manipulate class instances are represented as shown in Figure 7. Class �elds are
variables kept in memory and explicit load and store operations are used in our Java IR for accessing such
variables. The address computation for �eld accesses is made explicit via Java IR operations and in the VRA
annotation formats. For some class variable types and safe program points (e.g., unsafe program points are
places where an exception may be thrown or there is a method call for which the e�ect on the class �eld is
not known) class �eld accesses can be represented the same way we represent local variable accesses (i.e.,
copy or nop operations).

Creating a new instance of a class is represented as a method call in our Java IR, as shown in Figure
8. There is one virtual register for representing the address of the method for creating the class instance
and another for representing the newly created class object. The call to the class instance initialization
method that follows an object creation is handled by another Java IR method call instruction representing
the method invocation bytecode. Instructions for checking properties of class instances or array objects such
as checkcast and instanceOf are also represented as Java IR method calls, as shown in Figure 8.

How to map array element load and store bytecodes into our Java IR and the corresponding VRA
annotation formats are shown in Figure 9. For these bytecode operations we made explicit the array index
calculation and the array address computation besides the actual array load or store sub-operation. Virtual
registers representing the base array address, the array index and the element to be stored are passed as
parameters to the sub-operations. The result value and intermediate values are also represented using virtual
registers and correspond to the sub-operations operands. In case a load or store operation may be omitted,
either because the element load has been computed before or a store back to memory is not necessary, the
array access is represented as a nop operation and the VRA annotation bytes contain the virtual register
where the array element can be found. The operation to get the length of an array is represented as a load
operation in our Java IR, as shown in Figure 10. One virtual register is used for the array base address
and another for the result. Operations for creating a new array object are represented as method calls
in our Java IR. These call operations take as parameters a virtual register containing the address of the
method, the array dimensions represented as constants or values in virtual registers and the place where to
store the newly created array reference, as summarized in Figure 10. Observe that we made assumptions
about object layout when representing the bytecode sub-operations for manipulating array objects. These
assumptions are based on most used conventions and do not compromise the portability of the annotations.
(e.g., annotations for the intermediate bytecode sub-operations can be ignored by the underlying JVM).

7.4 Control Transfer Instructions

A Conditional jump bytecode is translated as a Java IR comparison operation followed by a conditional jump
operation, as shown in Figure 11. These sub-operations take a constant value and/or virtual registers as
operands and produce a condition value in a virtual register as a result. Conditional jumps that manipulate
long, oat and double values are represented as special Java IR comparison operations, also shown in Figure
11. These bytecodes could have been broken into the simple compare and branch Java IR operations however
we did not �nd any advantage in making explicit the compare operations implicit in these bytecodes. In all
these cases, the virtual register annotations include up to two operand arguments.

The unconditional branch bytecodes as goto, goto w and return have counterpart Java IR operations.
Compound conditional branch bytecodes as tableswitch and lookupswitch are broken into Java IR con-
ditional jump operations. When annotating these bytecodes, the virtual register corresponds to the key
argument being tested. Bytecode instructions associated with the implementation of finally keyword (jsr
and ret) are represented as jump operations in our Java IR and are not annotated. These bytecodes are
also shown in Figure 11.

16

Bytecode Java IR VRA Annotation Formats

amovi �addressOfConst�, V1
{l,d,f,a}ld (V1), V2

{l,d,f,a}ld (V1), V2

[i,l,f,d]load
[i,l.f,d]load_<n>

{i,l,d,f,a}mov V1, V2 SRC DEST

CONST DEST

nop

{i,l,d,f,a}mov CONST, V1[i,l,f,d]store
[i,l.f,d]store_<n>

bipush
sipush
iconst_<n>
iconst_m1

aconst_null
ldc, ldc_w, ldc2_w
[l,f,d]const_<n>

SRCnop

nop

NONE

SRC

EXTRA DEST

SRC DEST

nop SRC

Figure 5: Java IR and VRA annotation formats for scalar loads and stores

Bytecode Java IR VRA Annotation Formats

[i,l,f,d]binaryOp
[i,l.f,d]unaryOp

{i,l,d,f}binaryOp V1, CONST, V2

CONST SRC DEST

SRCiinc

{i,l,d,f}binaryOp CONST, V1, V2

{i,l,d,f}binaryOp V1, V2, V3

{i,l,d,f}unaryOp CONST, V1

{i,l,d,f}unaryOp V1, V2

iadd V1, CONST, V1

SRC CONST DEST

SRC SRC DEST

CONST DEST

SRC DEST

Figure 6: Java IR and VRA annotation formats for arithmetic, type conversion and local variable increment
operations

17

nop

SRC

SRC

putfield

amovi �offsetOfField�, V3
aadd V2, V3, V4
{b,c,s,i,l,d,f,a}st V1, (V4)
amovi �offsetOfField�, V3
aadd V2, V3, V4
{b,c,s,i,l,d,f,a}st CONST, (V4)

SRC SRC EXTRA EXTRA

CONST SRC EXTRA EXTRA

getfield

amovi �offsetOfField�, V2
aadd V1, V2, V3
{b,c,s,i,l,d,f,a}ld (V3), V4

aadd V1, V2, V3
{b,c,s,i,l,d,f,a}ld (V3), V4

SRC EXTRA EXTRA DEST

SRC SRC EXTRA DEST

SRC DEST{b,c,s,i,l,d,f,a}ld (V1), V2

nop

Bytecode Java IR VRA Annotation Formats

EXTRA DEST

SRC DEST

SRC

SRC

amovi �addressOfClassField�, V1
{b,c,s,i,l,d,f,a}ld (V1), V2

{b,c,s,i,l,d,f,a}ld (V1), V2

nop

getstatic

amovi �addressOfClassField�, V2
{b,c,s,i,l,d,f,a}st V1, (V2)

{b,c,s,i,l,d,f,a}st V1, (V2)

putstatic
amovi �addressOfClassField�, V2
{b,c,s,i,l,d,f,a}st CONST, (V2)

{b,c,s,i,l,d,f,a}st CONST, (V2)

SRC EXTRA

CONST EXTRA

SRC SRC

CONST SRC

{b,c,s,i,l,d,f,a}mov V1, V2 SRC DEST
CONST DEST

nop
{b,c,s,i,l,d,f,a}mov CONST, V2

SRC DEST

CONST DEST

aadd V2, V3, V4
{b,c,s,i,l,d,f,a}st V1, (V4)

aadd V2, V3, V4
{b,c,s,i,l,d,f,a}st CONST, (V4)

SRC SRC SRC EXTRA

CONST SRC SRC EXTRA

{b,c,s,i,l,d,f,a}mov V1, V2
{b,c,s,i,l,d,f,a}mov CONST, V1

{b,c,s,i,l,d,f,a}st V1, (V2)

{b,c,s,i,l,d,f,a}st CONST, (V1)

SRC SRC

CONST SRC

Figure 7: Java IR and VRA annotation formats for class instance �eld accesses

Bytecode Java IR VRA Annotation Formats

new

SRC DEST

checkcast

instanceof

acall V1, classType, V2

SRC SRC

EXTRA DEST

SRC EXTRA

amovi addressOfNew, V1
acall V1, classType, V2

amovi addressOfCheckCast, V1
call V1, classType, V2

call V1, classType, V2

amovi addressOfInstanceOf, V1
icall V1, classType, V2

icall V1, classType, V2

SRC EXTRA DEST

SRC SRC DEST

Figure 8: Java IR and VRA annotation formats for manipulating object instances

18

Bytecode Java IR VRA Annotation Formats

[b,c,s,i,l,f,d,a]astore

[b,c,s,i,l,f,d,a]aload
ishl V2, [b,c,s,i,l,f,d,a]shiftV, V3
iadd V3, arraySizeOffset, V3
aadd V1, V3, V4
[b,c,s,i,l,f,d,a]ld (V4), V5

nop

SRC SRC EXTRA EXTRA DEST

ishl CONST, [b,c,s,i,l,f,d,a]shiftV, V3
iadd V3, arraySizeOffset, V3
aadd V1, V3, V4
[b,c,s,i,l,f,d,a]ld (V4), V5

aadd V1, V2, V3
[b,c,s,i,l,f,d,a]ld (V3), V4

[b,c,s,i,l,f,d,a]ld (V1), V2

CONST SRC EXTRA EXTRA DEST

SRC SRC EXTRA DEST

SRC DEST

SRC

ishl V2, [b,c,s,i,l,f,d,a]shiftV, V4
iadd V4, arraySizeOffset, V4
aadd V1, V4, V5
[b,c,s,i,l,f,d,a]st V3, (V5)

nop

SRC SRC SRC EXTRA EXTRA

ishl CONST, [b,c,s,i,l,f,d,a]shiftV, V3
iadd V3, arraySizeOffset, V3
aadd V1, V3, V4
[b,c,s,i,l,f,d,a]st CONST, (V4)

aadd V1, V2, V4
[b,c,s,i,l,f,d,a]st V3, (V4)

[b,c,s,i,l,f,d,a]st V1, (V2)

CONST SRC SRC EXTRA EXTRA

SRC SRC SRC EXTRA

CONST SRC SRC EXTRA

SRC SRC

aadd V1, V2, V3
[b,c,s,i,l,f,d,a]st CONST, (V3)

[b,c,s,i,l,f,d,a]st CONST, (V1) CONST SRC

SRC

Figure 9: Java IR and VRA annotation formats for array element accesses

Bytecode Java IR VRA Annotation Formats

arraylength

newarray

nop

aadd V1, arraySizeOffset, V2
ild (V2), V3

ild (V1), V2

anewarray

amovi addressOfNewArray, V1
acall V1, arrayType, V2, V3

acall V1, arrayType, V2, V3
acall V1, arrayType, CONST, V2

amovi addressOfNewArray, V1
acall V1, arrayType, CONST, V2

multianewarray

amovi addressOfAnewArray, V1
acall V1, classType, V2, V3

acall V1, classType, V2, V3
acall V1, classType, CONST, V2

amovi addressOfAnewArray, V1
acall V1, classType, CONST, V2

amovi addressOfMultiAnewArray, V1
acall V1, classType, V2, V3... Vn

acall V1, classType, V2, V3... Vn

SRC DEST
SRC

SRC EXTRA DEST

SRC EXTRA DEST

SRC SRC DEST

CONST EXTRA DEST

CONST SRC DEST

[SRC/CONST] EXTRA DEST

[SRC/CONST] SRC DEST

SRC EXTRA DEST

SRC SRC DEST

CONST EXTRA DEST

CONST SRC DEST

Figure 10: Java IR and VRA annotation formats for creating and manipulating array objects

19

7.5 Method Invocation and Return Instructions

Method return bytecodes are represented by counterpart Java IR return operations and are annotated
with the virtual register containing the value to be returned. Method invocation bytecodes are mapped
into Java IR method call instructions. These method calls take as arguments as many virtual registers or
constant values as the number of method parameters. We include other sub-operations that make explicit the
computation of the address of the method. In case method calls re-occur refering to the same object and the
same method, annotation bytes can suggest the omission of the method address computation. Note that we
have made assumptions about dynamic dispatching conventions. However, portability of the annotations has
not been a�ected. The method invocation bytecodes are further annotated with a virtual register containing
the calculated method address and when necessary, also virtual registers for the object whose method is
being invoked and the return value. Figure 12 shows the correspondence between these bytecodes, Java IR
operations and VRA annotation formats.

Bytecode Java IR VRA Annotation Formats

if_<eq,ne,lt,le,ge,gt> icmp_<eq,ne,lt,le,ge,gt> V1, 0, V2
br V2 trueLabel falseLabel

if_<null,nonnull>

if_icmp<eq,ne,lt,le,ge,gt>

if_acmp<eq,ne>

lcmp
fcmpl
fcmpg
dcmpl
dcmpg
goto
gotow
return
jsr
jsr
jsr_w

ret
tableswitch
lookswitch

acmp_<eq,ne> V1, null, V2
br V2 trueLabel falseLabel

SRC

SRC SRC DEST

CONST SRC DEST

icmp_<eq,ne,lt,le,ge,gt> V1, V2, V3
br V3 trueLabel falseLabel SRC SRC

SRC

icmp_<eq,ne,lt,le,ge,gt> CONST, V2, V3
br V2 trueLabel falseLabel
icmp_<eq,ne,lt,le,ge,gt> V1, CONST, V2
br V2 trueLabel falseLabel

acmp_<eq,ne> V1, V2, V3
br V3 trueLabel falseLabel
[l,f,d]cmp V1, V2, V3

[l,f,d]cmp CONST, V1, V2

[l,f,d]cmp V1, CONST, V2

goto label

return

goto label

goto label
icmp_<eq> V1, CONST, V2
br V2 trueLabel falseLabel

CONST SRC

SRC CONST

SRC SRC

SRC CONST DEST

SRC

none

none

none

none

monitorenter
monitorexit

amovi addressOfThrow, V2
call V2, V1

athrow

amovi addressOfMonitorenter, V2
call V2, V1

call V1, V2

call V2, V1

SRC EXTRA

SRC SRC

SRC EXTRA

SRC SRC

Figure 11: Java IR and VRA annotation formats for control transfer, exception handling and synchronization
operations

7.6 Operand Stack Management Instructions

These bytecodes manipulate the Java stack and represent copy, elimination or swap of values placed on the
Java operand stack. There is no need to represent them in Java IR operations or annotate them.

20

Bytecode Java IR VRA Annotation Formats

[b,c,s,i,l,f,d,a]return

invokevirtual

aadd V1, methodtableOffset, V2
ald (V2), V2
aadd V2, methodOffset, V3
ald (V3), V3
[b,c,s,i,l,f,d,a]call V3, V1, V4...Vn

SRC EXTRA EXTRA [[SRC/CONST] [DEST]]

SRC

invokestatic

invokespecial

invokeinterface

aadd V1, methodOffset, V2
ald (V2), V2
[b,c,s,i,l,f,d,a]call V2, V1, V3...Vn

[b,c,s,i,l,f,d,a]call V2, V1, V3...Vn

SRC EXTRA [[SRC/CONST] [DEST]]

SRC SRC [[SRC/CONST] [DEST]]

[b,c,s,i,l,f,d,a]return V1

amovi methodAddress, V1
[b,c,s,i,l,f,d,a]call V1, V2...Vn

[b,c,s,i,l,f,d,a]call V1, V2...Vn

EXTRA [[SRC/CONST] [DEST]]

SRC [[SRC/CONST] [DEST]]

amovi methodAddress, V2
[b,c,s,i,l,f,d,a]call V2, V1...Vn

[b,c,s,i,l,f,d,a]call V2, V1...Vn

amovi methodAddress, V2
[b,c,s,i,l,f,d,a]call V2, V1...Vn

[b,c,s,i,l,f,d,a]call V2, V1...Vn

SRC EXTRA [[SRC/CONST] [DEST]]

SRC SRC [[SRC/CONST] [DEST]]

SRC EXTRA [[SRC/CONST] [DEST]]

SRC SRC [[SRC/CONST] [DEST]]

Figure 12: Java IR and VRA annotation formats for method invocation and return operations

7.7 Throwing and Handling Exceptions

The athrow bytecode is annotated with a virtual register representing the reference to the object being
thrown. We map the throw keyword into a Java IR method call. Methods that can throw exceptions have
an extra return value that represents the thrown object. Catch clauses are mapped into conditional jumps.
These operations are listed in Figure 11. We are modifying our current implementation of AJBC and AJIT
to support exception handling as summarized above.

7.8 Synchronization

We represent synchronization at statement level by mapping the monitorenter and monitorexit bytecodes
into a Java IR method call. This method call takes a virtual register representing the object requiring syn-
chronized access as an argument. Our current implementation does not handle synchronization at statement
nor method levels.

References

[1] R. Gra A. Krall. E�cient JavaVM Just-in-Time Compilation. In Proceedings of International Conference on

Parallel Architectures and Compilation Techniques, PACT'98, 1998.

[2] A. Adl-Tabatabai, M. Cierniak, G. Lueh, V. M. Parikh, and J. M. Stichnoth. Fast, E�ective Code Generation in
a Just-In-Time Java Compiler. Proceedings of ACM Programming Languages Design and Implementation, pages
280{290, 1998.

[3] G. Bilardi and A. Nicolau. Adaptive Bitonic Sorting: An Optimal Parallel Algorithm for Shared Memory
Machines. Technical Report TR86-769, Cornell University, 1986.

[4] M. G. Burke, J. Choi, S. Fink, D. Grove, and M. Hind. The Jalapeno Dynamic Optimizing Compiler for Java.
In Proceedings of the ACM Java Grande Conference, pages 129{141, June 1999.

[5] F. C. Chow and J. L. Hennessy. A Priority-based Coloring Approach to Register Allocation. ACM TOPLAS,
12(4):501{536, October 1990.

[6] M. Cierniak and W. Li. Optimizing Java Bytecodes. Concurrency: Practice and Experience, 9(11), November
1997.

21

[7] L. R. Clausen. A Java Bytecode Optimizer Using Side-e�ect Analysis. Concurrency: Practice and Experience,
9(11), November 1997.

[8] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick. Parallel
Programming in Split-C. In Proceedings of Supercomputing 1993, pages 262{273, November 1993.

[9] P. Sweeney F. Tip, C. La�ra. Practical Experience with an Application Extractor for Java. ACM Conference

on Object-Oriented Programming Systems, Languages and Applications, November 1999.

[10] M. Franz and T. Kistler. Slim Binaries. Communications of the ACM, 40(12):87{94, December 1997.

[11] P. Lee G. Necula. The Design and Implementation of a Certifying Compiler. ACM Conference on Programming

Language Design and Implementation, June 1998.

[12] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers. Annotation-Directed Run-Time Specialization
in C. In Proc. of PEPM, June 1997.

[13] D. Griswold. The Java HotSpot Virtual Machine Architecture, March 1998.
See whitepaper at http://www.javasoft.com/products/hotspot.

[14] C. Hsieh, J. Gyllenhaal, and W. Hwu. Java Bytecode to Native Code Translation: The Ca�eine Prototype and
Preliminary Results. Proceedings of the 29th Annual Workshop on Microprogramming, December 1996.

[15] J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau. Annotating the Java Bytecodes in Support of Optimization.
Concurrency: Practice and Experience, 9(11):1003{1016, November 1997.

[16] SUN Inc. Sun JDK. See http://www.javasoft.com.

[17] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T. Suganuma, T. Onodera, H. Komatsu,
and T. Nakatani. Design, Implementation and Evaluation of Optimizations in a Just-In-Time Compiler. In

Proceedings of the ACM Java Grande Conference, pages 119{128, June 1999.

[18] T. Kistler and M. Franz. Dynamic Runtime Optimization. In Proceedings of the Joint Modular Languages

Conference, JMLC'97, pages 53{66, March 1997.

[19] T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation. Addison-Wesley, 1997.

[20] G. Necula. Proof-Carrying Code. ACM Symposium on Principles of Programming Languages, January 1997.

[21] M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A System for Fast, Flexible and High-Level Dynamic Code
Generation. Proceedings of ACM Programming Languages Design and Implementation, 1997.

[22] T. Proebsting, J. Hartman, G. Townsend, P. Bridges, T. Newsham, and S. Watterson. Toba: A Java-to-C
translator. See http://www.cs.arizona.edu/sumatra/toba.

[23] E�ective Edge Technologies. guavac open source.
Sources available at ftp://ftp.unicamp.br/pub/languages/java/guavac.

[24] O. Traub, G. Holloway, and M. D. Smith. Quality and Speed in Linear-scan Register Allocation. Proceedings of
ACM Programming Languages Design and Implementation, pages 142{151, 1998.

[25] D. W. Wall. Global Register Allocation at Link-Time. In Proc. ACM SIGPLAN'86 Symp. on Compiler Con-

struction, pages 264{275, June 1986.

[26] T. Wilkinson. Ka�e Open Source Java Virtual Machine. See http://www.transvirtual.com.

[27] B. Yang, S. Moon, S. Park, J. Lee, S. Lee, J. Park, Y. C. Chung, S. Kim, K. Ebcioglu, and E. Altman. LaTTe:
A Java VM Just-in-Time Compiler with Fast and E�cient Register Allocation. International Conference on

Parallel Architectures and Compilation Techniques, pages 128{138, October 1999.

22

