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Abstract

That the inuence of PRAM model [FW78] is ubiquitous in parallel al-

gorithm design is as clear as the fact that it is technologically infeasible for

the forseeable future. The current generation of parallel hardware prominently

features distributed memory and high-performance interconnection networks {

very much the antithesis of the shared-memory required for the PRAMmodel.

It has been shown that, in spite of communication costs, for some problems

very fast parallel algorithms are available for distributed-memory machines {

from embarassingly parallel problems [Fox95] to sorting and numerical analysis

[GV94]. In contrast it is known that for other classes of problem PRAM-style

shared-memory simulation on a distributed-memory machine can { in theory

{ produce solutions of comparable performance to the best possible for such

architectures.

The Bulk Synchronous Parallel (BSP) model [Val90] accurately represents

most parallel machines { theoretical and actual { in an execution and cost

model. We introduce a scalable portable PRAM realization appropriate for

BSP computers and a methodology for usage. Our system is fast and built

upon the familiar sequential C++ coupled with the new standard BSP li-

brary [GHL+96] of parallel computation and communication primitives. It is

portable to and predictable on a vast number of parallel computers including

workstation clusters, a 256 processor Cray T3D, an 8 node IBM SP/2 and a 4

node shared-memory SGI Power Challenge machines. Our approach achieves

simplicity of programming over direct-mode BSP programming for reasonable

overhead cost. We objectively compare optimized BSP and PRAM algorithms

implemented with our C++ PRAM library and provide encouraging experi-

mental results for our new style of programming.
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1 Introduction

The vast majority of theoretical parallel algorithm design in the last twenty years has

primarily been targetted at large scalable machines that communicate via shared

memory, the so called Parallel Random Access Machines(PRAMs) [FW78]. The

PRAM is an ideal parallel computer: a potentially unbounded set of processors

sharing a global address space. The processors work synchronously and during each

time step each processor either performs a computation or accesses a single data

word from the global address space in unit time. PRAMs may be subdivided ac-

cording to the memory capabilities. The EREW PRAM (or EPRAM) is a processor

in which no individual memory location is accessible by more than one processor

in the same timestep. The arbitrary CRCW PRAM (or CPRAM) allows multiple

writes and reads of the same location in the same timestep.

Thus, the PRAM model abstracts parallelism by stripping away considerations

such as communication latency, memory and network conicts during routing, band-

width of interconnection networks, memory management, and processor synchro-

nization. The PRAM captures our intuitive perception of what a perfect parallel

machine should be { allowing a concentration on the pure theoretical complexity

of a problem without concern for pragmatic complications. A vast collection of

algorithms and techniques are known for the model [J�aJ92, KR90].

In contrast, practical parallel programming is currently under the domination

of distributed memory computers. These machines take many forms, from work-

station clusters to large high-performance machines (for example the Cray T3D

or IBM SP/2). Vendors of high-performance parallel computers are clearly of the

opinion that systems of fast sequential processors with large local memory coupled

to fast communication networks are the future. With industrial producers aiming

in this direction it is reasonable to assume that, at least for the forseeable future,

distributed memory will continue to dominate. No realization of theoretical shared

memory models seems feasible at present; the architectural challenge of producing

a genuinely scalable machine with unit communication cost has not yet been re-

solved. Tremendous e�ort has been expended on producing a fully scalable PRAM

[FKW96, ADK+93] with, so far, only modest success.

It is increasingly accepted that a prerequisite for portable and scalable parallel

computing is a simple accurate method of performance prediction. Realistic paral-

lel machines are very diverse which complicates this goal. Recently a plethora of

models [LMR95] have been introduced as bridging models to unify these machines
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with programming and cost methodologies. The Bulk-Synchronous Parallel(BSP)

model [Val90, RPL96] is one such model and appears to be the most common. The

model is a high-level abstraction of hardware for the purpose of allowing paral-

lel programs to be scalable and run eÆciently on diverse hardware platforms. A

library implementation, based on a succint collection of primitives, of BSP was in-

troduced in [Mil93, RPL96]. Its successor, BSPlib [GHL+96], is widely available for

many systems. BSP may also be considered as a simpli�ed and more intellectually

manageable approach than the highly exible MPI [SOHL+95, CFT+94] or PVM;

BSPlib obtains performance equalling both these systems.

Theory provides a motivation for emulating PRAM memory in BSP for prob-

lems that have little locality or, alternatively, are diÆcult to program due to complex

communication patterns. We introduce a fast simulation of PRAM machines to �ll

the practical void. Obviously emulation will have slow-downs related to the per-

formance of the communication network and we show how these are quanti�able

in the BSP cost model. For the problems described such slow-down is optimal for

BSP machines and consequently relieving the programmer of memory allocation

comes - in theory - without penalty. We present a practical investigation of this

claim. This paper contributes by unifying the BSP and PRAM models in a common

programming environment. We introduce a powerful scalable class library simulat-

ing the di�erent PRAM memory models on any BSP machine; we also describe an

extension to the C++ language to facilitate its use.

2 The BSP Model

The Bulk-Synchronous Parallel (BSP) model of computation has been proposed in

[Val90] as a uni�ed framework for the design, analysis, and programming of general

purpose parallel computing systems. It o�ers the prospect of achieving both scalable

parallel performance and architecture independent parallel software, and provides

a framework which permits the performance of parallel and distributed systems to

be analyzed and predicted in a precise way. Predictability is an important issue in

parallel computing and BSP is designed with this in mind. In contrast, estimating

run time in many other models of parallel computing is diÆcult.

The term bulk-synchronous reects the underlying position of the model between

the two extremes, (i) entirely synchronous systems, and (ii) fully asynchronous

systems. The BSP computer as described in [Val90] and further explored in [GV94,

McC93, McC95] consists of the following three components: (i) a collection of p
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Figure 1: The BSP Computer

processor/memory components numbered 0; : : : ; p�1, (ii) a communication network

that can deliver messages point to point among the processors, and (iii) amechanism

for eÆcient barrier synchronization of all the processors.

Computation on the BSP model proceeds in a succession of supersteps. During a

superstep each processor is given a task to perform using data already available there

locally before the start of the superstep. The task may include (i) computation steps

on values held locally at the start of the superstep, (ii) message transmissions, and

(iii) message receipts. The performance of any BSP computer can be characterised

by the following three parameters, where time is measured in local ops lost:

� p { the number of processors,

� g { where the time required to realise h-relations1 in continuous message usage

is gh time units, and

� l { the minimum time between successive synchronization operations.

The constraints of bulk synchronisation and emphasis on message balance are

suÆcient for highly predictable running times. A superstep can complete at any

time after the �rst l time units. The time complexity of a superstep S in a BSP

algorithm is de�ned as max fl; x+ ghg time units, where x is the maximum number

of basic computational operations executed by any processor during S and h is

the maximum number of messages transmitted or received by any processor or

equivalently the h-relation realized by the superstep.

2.1 PRAM vs. BSP Programming

Two modes of programming were envisaged based on the BSP model: (i) direct-

mode where the programmer retains control of memory distribution [Val90], and

(ii) automatic-mode where programs are written in a high-level language that hides

low-level details such as memory allocation.

1A h-relation is a message pattern in which no processor receives more, nor sends more, than

h words
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Direct-mode programming has been successfully utilised for a multiplicity of

problems [GV94, McC95], and optimal results have been obtained for combinatorial

and geometric problems, linear algebra and numerical analysis, data structures and

databases [GV94, GS96b, GS96a, Goo96, McC93, Suj96, Sin96]. Some of these re-

sults have been obtained using the Oxford BSP Toolset, BSPlib, which is a highly ef-

�cient realization of the BSP model [GHL+96]. It is also possible to implement BSP

using subsets of other parallel libraries, for example, MPI [SOHL+95, CFT+94].

BSPlib has the advantage over MPI of being extremely simple. It is based on a

small package of a dozen communication primitives and as such provides a good

introduction to high performance parallel library based programming.

[GV94] suggests that the direct-mode of programming is advantageous in the

following circumstances:

(1) where small multiplicative constant factors are important,

(2) where small problem instances can be run more eÆciently in direct-mode

(less slackness is required) than in automatic-mode.

(3) the underlying BSP machine has high g, and

(4) l is high for direct but not for automatic-mode for the problem instance

in hand.

Direct-mode programming thus emphasises multiplicative constant factors close

to one, i.e. one-optimal algorithms.

In this paper we investigate the practicality of the alternative automatic-mode of

programming, where, for the sake of simplicity, the programmer is relieved of explicit

memory distribution and communication. In contrast to proposition (3) above, we

propose that there are problems for which { regardless of g { the direct-mode may

possibly provide no better performance than automatic-mode. Such problems have

poor locality. Typical examples include symbolic problems, i.e., like list-ranking and

sparse matrix computations. Theory shows that it is suÆcient to employ automatic

style BSP programming rather than direct style. A tool to support automatic-mode

programming is therefore desirable and this is the problem our package answers.

In particular it is clear that a cross-paradigm approach is required to produce

some large systems that selects the appropriate approach for each subproblem aris-

ing. This is essential to modularity. We integrate the message-passing, the shared-

memory and also data-parallel frameworks. The importance of paradigm uni�cation

has been realized in other publications (notably [CF96, GC92]). The BSP seman-
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tic model makes this uni�cation less complex than such papers have previously

expected.

3 PRAM Computations in BSP: Theory

Theoretical simulations of PRAMs on more realistic parallel machines are well doc-

umented (see for example [Har94, KLM92, Val90, MV84]). [KLM92, CMS95] and

many others concern Distributed Memory Machines (DMMs) which di�er from BSP

machines in that they can limit the number, c, of communications served by any one

machine in a time step. Even if h > c messages are sent to any one processor then

c are served and the cost is merely c globally. The DMM model is seen as realistic

due to the possibility of optimal communication where a �xed constant number of

cells have concurrent read/write capability. However this communication model is

harder to simulate in BSP than the EREW PRAM model { which therefore rules

out using DMM simulations as an intermediate level between BSP and PRAM. We

use the following de�nition of [Val90] to discuss BSP results.

De�nition 3.1 The slackness of a simulation of an n processor by a p processor

computer is de�ned to be the ratio n=p.

To distinguish between the n processors of a simulated machine and p of the

actual, we will often use the term virtual processor and physical processor respec-

tively.

It is also important to quantify the eÆciency of a simulation. We use the notion

of slowdown for this task.

De�nition 3.2 If machine A machine is simulated by machine B, slowdown (or

delay) is the number timesteps B requires to simulate a timestep of A

Simulation of the n-processor PRAM on n-processor realistic machines using

totally randomised memory is known to introduce slowdown of log n

log logn
(1+g) in the

BSP model. However, by increasing slackness it is found that simulations exist for

which the slowdown is the optimal �((1 + g)n=p).

For the DMM model simulation of PRAMs has achieved very low bounds on

the amount of slackness required for optimal simulation. Notably [CMS95] achieve

simulation of an n log log logn log� n-EREW with delay of O(log log logn log� n) on

an n-processor DMM. The techniques obtaining this result unfortunately do not

adapt to BSP. Even on the DMMmodel the constant factors appear to be prohibitive
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in these powerful simulations { although to our knowledge no precise quanti�cation

has ever been undertaken of these constants. [LRGD97] imply this to be true

of all simulations and consequently develop an approach which produces eÆcient

reads at the cost of expensive writes and large space usage. The simulation of

[GV94] shows that such a generalisation is too strong, as they develop a randomised

approach in which the overhead is merely two communications and a small number

of computations for both read and write operations at the expense of slackness of

!(logn) for the EREW model. Fast simulations are also obtained on a buttery

network in [ADK+93] - again using logarithmic slackness.

Our simulation is an improvement on that reported in [LRGD97] in which p

balanced write operations cost pg compared to g (with high probability) in [GV94].

Their original approach is feasible for only a small class of algorithms, namely that

in which the ratio of read operations to writes exceeds p to 1. [MV84] note that

in practice the read/write ratio of typical PRAM programs is around 8 to 1. The

approach of [LRGD97] also has global memory requirement of 
(np) where n is

the size of the PRAM memory being simulated. Such space factors are becom-

ing increasingly dominant in parallel programming where minimizing memory use

eliminates costly cache misses and virtual (disk based) memory. Memory usage in

[ADK+93] is, like ours, optimal at �(n). Methods similar to our own appear on

transputers in [CM96]

We therefore state the following:

Theorem 3.1 [GV94] Let !p be any function of p such that !p ! 1 as p ! 1.

Then the following amounts of slackness are suÆcient for simulating any one step of

an EREW PRAM or CRCW PRAM algorithm on a BSP machine in one-optimal2

time for communication (and constant factor optimal time in local operations if

g = O(1)):

(1) (!p p log p)-EREW PRAM on p-BSP,

(2) (!p p
2 log p)-CRCW PRAM on p-BSP.

Remark. The expressions before the hyphens denote the number of processors;

!p log p and !p p log p thus denote the slackness required for the simulations.

The bound of slackness for CRCW can be further improved for a penalty in the

constant factors of simulation using a di�erent algorithm (see [Val90]) to the one

we explore.

2By 1-optimal we mean that the constant multiplicative factors involved in the communication

and computation overheads are g and 1 respectively
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Our simulation utilises a constant-time perfect hash function to map the address

space across the distributed memory randomly. In [Ger93] it is established that the

hash functions described in [DM90] suÆce. For the purpose of our experimental

evaluation and in order to maintain space and time eÆciency we utilise linear hash

functions, i.e., h(x) = ax mod m, for a and m co-prime. Although, there are many

situations theoretically in which this class could result in high module congestion, in

[ADK+93, RBJ88] it is observed that linear hash functions perform well in practice.

The �rst log p bits of h(x) represent the physical processor to which the address

x is mapped and the least signi�cant bits specify the location of the data on that

processor. Hash function h is bijective from f0; : : : ;m � 1g onto itself and this

allows the global space for a PRAM memory of n words to be m = �(n). This

fact signi�cantly avoids the need for secondary hashing for collision resolution. In

particular, choosing m = 2k, where 2k�1 < n � 2k, simpli�es calculation of h to

one multiplication followed by a bitwise-AND. In addition, the space used globally

to store a data set of size n is bounded above by 2n. The simulation algorithm

(EREW and CRCW PRAM) is outlined next.

Algorithm BSP-PRAM

Superstep 1 :

� Locally eliminate duplicate memory requests in linear time - using, for

example, a local hash table or a linear integer sort routine. For each of

the multiple requests to the same memory location select a representative

of the requests made to that address.

� Send the representatives to the processor(s) determined by the global

hash function h.

Superstep 2 :

� On each processor, process the requests received. For writes this involves

merely updating the value in local memory, for reads sending back the

locally held value to the requesting processor.

Superstep 3 :

� Process the responses, duplicating the values where there were multiple

read requests to the same location.

This algorithm works for both EREW and CRCW PRAMs { although the dupli-

cate removal stage is redundant and therefore not employed for the EREW model.
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We have implemented this algorithm on top of BSPlib and developed a PRAM

language to facilitate easy implementation of PRAM programs.

4 Locality Analysis

Having established the bounds achievable for PRAM simulation, we proceed to anal-

yse those problems for which that approach is viable. We quantify intuitive notions

of communication complexity and locality and develop a sound basis for unifying

the BSP and PRAM computations. In [J�aJ92], the communication complexity of a

PRAM algorithm is de�ned as the worst case bound on traÆc between the shared

memory and any processor executing that algorithm. This is inappropriate for BSP

computations as it is applied over the algorithm as a whole and does not account

for imbalance within communication steps. In [ACS90] communication phases are

considered; in each phase a single communication can be made by each processor to

the shared memory; the total number of such phases constitutes the communication

complexity. Accordingly, since this is essentially a h-relation idea, we adapt this

concept to form a new de�nition of BSP communication complexity.

De�nition 4.1 The BSP communication complexity M(A; p) of a p-processor BSP

algorithm A is the sum (over all supersteps) of hi, where during superstep i algo-

rithm A realises a hi-relation.

De�nition 4.2 The BSP communication complexity M(Q; p) of a problem Q is

the minimum over the communication complexities M(A; p) of all p-processor BSP

algorithms A solving Q.

A notion of locality is de�ned in [Ran93] as follows. Consider a two processor

network in which the data of a problem of size n is balanced. Let the communication

complexity �M(n) of a problem be de�ned as the minimum (over all algorithms

that solve the problem) of the number of elements that must be communicated

over a link between the two processors. If the work required by a work-optimal

PRAM algorithm to solve the problem is �W (n) then the locality is de�ned to be

�L(n) = �W (n)= �M(n). We generalise this approach to suit BSP computations by

employing a p-processor abstraction instead of the two processor abstraction.

De�nition 4.3 LetW (Q; p) be the minimum work over all work-optimal BSP algo-

rithms for a problem Q. The locality L(Q; p) of a problem Q involving p-processors

is L(Q; p) =W (Q; p)=M(Q; p).
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The following result is then obtained [LS96].

Theorem 4.1 If L(Q; p) = �(1) then simulating an optimal PRAM algorithm on

the BSP model does not create additional communication traÆc over a direct BSP

algorithm, except for multiplicative constant factors.

Sparse matrix multiplication, bounded integer sorting, connectivity of an n ver-

tex graph with m edges, and evaluating arithmetical expressions have localities of

�(1), �(1), �(�(n;m)) and �(1) respectively [Ran93]. Here, �(n;m) is the inverse

of the Ackerman function and is practically �(1) for our purposes. A facility to sim-

ulate such PRAM algorithms on the BSP is thus desirable. On the other hand, there

are many problems which do exhibit locality, for example comparison sorting, dense

linear algebra problems and some computational geometry problems [GV94, Sin96].

Some of these problems are neither irregular nor dynamic, and therefore, as shown

in the following sections they can { be simulated eÆciently.

5 PRAM Computations in BSP: Implementation

We have developed a C++ class for managing the distributed memory of a BSP

computer to replace explicit fetch and store of remote data by a more modern ap-

proach. A single class { the BSPArray { provides a base for the system and from this

class we derive the EREW and CRCW memory classes. A static parallel environment is

provided by the underlying BSPlib [GHL+96] on which we implement our dynamic

PRAM parallelism. We provide a language extension to ease the implementation of

PRAM algorithms which is similar in nature to the other PRAM-oriented [LRGD97]

languages of 11 [LRGD97] and FORK95 [HSS94, KT96] but we additionally intro-

duce generic data types and other C++ bene�ts. A simpler prototype C++ PRAM

class library, without language embellishments and built on top of an earlier BSP

library [RPL96, Mil93], was presented in [AGLS96].

5.1 The C++ PRAM Class Library

The C++ base library we have developed is a exible tool for realizing distributed

arrays, with placement functions, of polymorphic data type on BSP machines. By

employing polymorphism we were able to address the containment of any homoge-

neous collection of data elements (array). The two constituent parts of an array are

its placement and its elements. In our implementation, placement is handled by a

view function, which determines the location of each index; in the PRAM context
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the view is our hash function. C++ allows the rede�nition of array-indexing and

assignment for a type to purpose-built procedures { therefore without the need for

writing a compiler we are able to change the way data is accessed for our shared-

memory class and introduce a BSP approach appropriate to our needs.

In the context of reading and writing global memory, we apply BSP semantics

to the assignment operator: access is not guaranteed to happen until the next

barrier synchronization has occurred. In reading, the remotely held value cannot

be used until the next synchronization point. E�ectively all accesses are queued

locally (using the view) with the details of source and destination addresses until

the system can handle them. Decoupling of communication and synchronization is

at the core of BSP and has been found to result in eÆcient algorithms [GV94]. The

system expects explicit synchronisation invocation.

For example, the following fragment of code reads the i-th entry of shared-

memory array x and places it in local variable j on physical processor 0. After the

implicit sync command, the value of variable j is the value of x[i]. Local variable j

is of a new type Slow<int> reecting the fact that it obtains its new value after the

synchronization point. Variable j can be used as an ordinary integer in the next

superstep by using the built-in type casting which we provide with the Slow class.

if (BSPme == 0) j = x[i];

x.sync();

The basic array class can be used without CRCW/EREW intentions as a simple

interface to a data-placement which avoids the more basic untyped bspstore and

bspfetch of the BSP libraries. The view function can be used to place data in any

appropriate distribution.

For our purpose we derive EREW PRAM and CRCW PRAM memory classes.

These supply the random hash function, and in the latter handle combining of

messages during synchronization as given by the algorithm BSP-PRAM. Without

further embellishments, these classes may be used to provide PRAM-style shared

memory in the standard BSP environment. We have described how PRAM mem-

ory is simulated and now proceed to describing our eÆcient simulation of PRAM

processes.

5.2 Language Extensions

We have designed a concise macro extension to C++ to create a PRAM abstraction

with most of the capabilities that PRAM-speci�c languages contain. Our library
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can be integrated with standard BSP programs in a simple and consistent manner.

We introduce only three new constructs.

� PRAM on (expression) statement { Initialise a simulation of expression

processes for the scope of statement.

� PRAM statement { Carry out statement on each of the virtual processes.

� PRAM if (expression) statement1 [PRAM else statement2]opt { Select those

virtual processes for which expression is true and for the scope of statement1

use just these. If a PRAM else appears then statement2 is executed with

the remaining active processes.

A statement is any valid C++ statement, including further PRAM macros,

and expression is a valid integer expression. We permit nesting of PRAM on and

PRAM if statements but not of the PRAM which semantically must execute pure

C++ statements.

The PRAM on construct allots virtual processes to physical BSP processors. If

appropriate, the old distribution is restored after the completion of the PRAM on

construct. The construct assigns a unique constant identi�er (PID) to each of the

virtual processes and evenly distributes these across the physical machine. The

mapping of the virtual processes to physical processes is only modi�ed by this con-

struct. This allows processes to exploit the local memory of BSP machines for data

caching and the avoidance of unnecessary shared-memory reads. In conjunction

with this, the following additional variables are also de�ned.

� PID { globally unique virtual process identi�er in [0; : : : ; n� 1], where n

is the number of virtual processes.

� PRAM slack { the number of active processes held on the local BSP

processor (the sum of PRAM slack over all physical processors is therefore

n).

� PIDl { locally unique process identi�er in [0; : : : ; PRAM slack� 1].

The PRAM slack and PIDl values are set for each virtual process at each PRAM on

and PRAM if statement and remain constant for each PRAM statement. This allows

space eÆcient use of local memory on the physical BSP machine.

The PRAM construct initiates and supports the actual computation by execut-

ing statement on all virtual processes. The statement executed can be any native

C++ statement based on locally held data (e.g. local procedure call), compound
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statements or shared-memory accesses, however, it must not involve BSP synchro-

nization or further PRAM macros. The statement can depend on PID, PRAM slack

and PIDl if necessary.

Our alternation construct allows statements to be executed by processes that

satisfy a predicate. The predicate may involve PID and any locally held variables.

These statements do not invoke individual PRAM statements but they do change

the set of active processes to the subset of those currently active which satisfy and

fail the predicate respectively. The true/false branches are de�ned semantically to

execute concurrently and internally synchronously (currently the system executes

them in sequence, an approach also adopted in [LRGD97]). The old processor

distribution is restored when both branches have �nished and the next instruction

is then executed.

Local memory for each virtual processor can be de�ned using another class we

introduce which allots the correct space on each physical processor { thus providing

space eÆciency. The class is Local<T> and each declaration of an object of this

class introduces PRAM slack elements on each physical processor. We can also opt

to just use the physical BSP memory for simplicity { as our next example shows.

The following code illustrates a sample C++ PRAM matrix-multiplication pro-

gram.

void Matrix_Mult (CRCW<double>& A, CRCW<double>& B, CRCW<double>& C, int n)

{

PRAM_on (n * n) {

Double AL[n * n], BL[n * n]; // One per physical processor for easy

Local<int> i, j, k ;

Local<double> t ;

PRAM { // First parallel step

i = PID / n ; k = PID % n ; // Row and column to calculate

for (j = 0 ; j < n ; j++) {

AL[i * n + j] = A[i * n + j] ; // Read to local memory

BL[j * n + k] = B[j * n + k] ;

}

}

A.sync() ; B.sync();

PRAM { // Second parallel step

t = 0 ;

for (j = 0 ; j < n ; j++) {

t += AL[i * n + j] * BL[j * n + k] ;

}

C[PID] = t ;

}

C.sync() ;

}

}

Our PRAM extension has a structured nature { all processors (virtual and phys-

ical) �nish simultaneously and resume together the next block of a program with
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restored virtual processes sets if appropriate. Consequently, during the execution of

a top-level PRAM simulation, the program state transformation can be speci�ed;

the end of the simulation can be followed by a barrier synchronization marking its

completion and the limit of its inuence. Therefore, we consider such subprograms

as sequences of supersteps and reason about their external behaviour in the global

single-threaded BSP manner.

The structure allows procedures containing PRAM simulations to be used in

conventional BSP programs. BSP procedures can be called from within a PRAM on

block (or procedure) and vice-versa. Shared memory objects are conventional C++

objects and may be passed as parameters accordingly. Virtual parallelism and

supersteps can be handled within such procedures. By also allowing a PRAM

procedure to modify slackness or relabel the PIDs assigned to physical processors

with the PRAM on construct, for the duration of its execution, it sets its own degree

of parallelism. This allows a PRAM procedure to be una�ected by the number of

processes that do not participate. A procedure need not inherit complex subsets

of processes: PRAM algorithms can be written easier for blocks of processes such

as [0; : : : ; n� 1]. Varying slackness enhances modularity and reusability. The only

\constant" is the data; it persists for the whole of a scope de�ned by conventional

C++ scoping rules.

The system allows libraries of PRAM programs to be constructed to the fullest

extent of C++ including polymorphic class libraries. We allow the de�nition of new

classes that can then be placed in shared memory arrays. New classes can also be

derived from the EREW and CRCW classes. We have not yet considered further

implications for object-oriented or object-based programming that our language and

library raises. Other extensions based on the underlying distributed array package

are under development.

6 Experimental Results

We present results on three computational problems that exhibit di�erent levels of

locality: list ranking, matrix multiplication and bitonic sorting. The list ranking

problem has locality �(1) [LS96, ACS89]; in contrast, sorting and matrix multi-

plication are computation bound, i.e. 
(1) locality. Matrix multiplication of two

n�n matrices can be achieved by a direct-mode BSP algorithm in optimal �(n3=p)

and �(n2=p2=3) computation and communication time respectively [McC95]. Thus,

the locality of matrix multiplication is �(n=p1=3). Finally, optimal BSP sorting has
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been shown to have locality �(lg (n=p)) [Goo96]; by contrast, in [GS96c], it is shown

that bitonic sorting has locality �(1 + (lgn=p)= lg2 p).

For a comparison, we have developed eÆcient BSP implementations of these

algorithms on top of BSPlib. We have also implemented the corresponding PRAM

algorithms on our C++ PRAM library. For list ranking we coded the EREW

random-mate algorithm of [MR85] employing O(n= lgn) processes. Matrix multi-

plication employs a straightforward n-process CREW algorithm. For sorting we

use the non-optimal bitonic sorting algorithm [J�aJ92] { favouring this over more

complicated optimal algorithms. As this algorithm is not eÆcient, we improved its

performance by implementing a C++ class that replaces comparators by multi-way

mergers [GS96c]. This approach demonstrates the bene�ts of our C++ PRAM li-

brary polymorphic capabilities, i.e., we were able to replace the comparators with

mergers thus allowing blocks of sorted arrays to be merged, and still use the original

program.

1 Physical Processor 4 Physical Processors

List Direct PRAM Direct PRAM

Size Time (s) Time (s) Time (s) Time (s)

8192 0.217 0.71 0.103 0.28

32768 0.891 2.87 0.378 0.96

131072 5.192 12.90 1.655 3.67

524288 35.862 61.77 13.394 16.66

Table 1: List Ranking on SGI Power Challenge.

The list ranking problem is inherently non-local and therefore results in com-

plicated and irregular data access patterns. This situation is handled e�ectively by

our system. As exhibited in table 1 the slowdown of the PRAM simulation over

the direct-mode BSP implementation is in the region of 1-3 on a 4 processor SGI

Shared Memory Power Challenge. We note that the slowdown factor decreases as

the problem size increases and this may be attributed to the C++ PRAM library

overheads. Similar �ndings are observed on the distributed memory Cray T3D.

Matrix multiplication is computation bound and its structured communication

patterns allow for eÆcient direct-mode BSP implementations. Moreover, the struc-

tured computation patterns fully utilise the �rst- and second-level cache of the

system, and therefore, can be advantageously exploited in direct-mode BSP imple-

mentations. On the other hand, the underlying hashing scheme of our C++ PRAM

15



1 Physical Proc 4 Physical Procs

Matrix Direct PRAM Direct PRAM

64 x 64 0.008 0.21 0.003 0.07

128 x 128 0.053 1.30 0.015 0.41

256 x 256 0.381 7.51 0.103 2.32

512 x 512 3.005 66.10 0.785 17.20

Table 2: Matrix Multiplication on SGI Power Challenge (time in seconds)

Physical Processors

1 4 16 32

Matrix Direct PRAM Direct PRAM Direct PRAM Direct PRAM

64 x 64 0.07 0.73 0.02 0.22 0.003 0.08 0.002 0.06

128 x 128 0.56 4.20 0.14 1.25 0.04 0.45 0.02 0.28

256 x 256 4.49 24.96 1.12 6.84 0.29 2.27 0.15 1.28

512 x 512 36.61 8.99 47.08 2.25 13.92 1.14 7.58

Table 3: Matrix Multiplication on Cray T3D (time in seconds)

library destroys locality and this is reected in the slowdown of the simulation (refer

to tables 2 and 3 and �gure 2). Performance on the Cray T3D is respectable for

large problems { an asymptotic limit of a factor of 5 slowdown was observed for all

the di�erent numbers of processors tested. The PRAM algorithm we implemented

is CREW in nature and therefore sustains considerable overheads due to combin-

ing of memory requests (superstep 1 of algorithm BSP-PRAM) { the reduction of

such overheads is a task on which our e�orts are now focussed. An alternative way

of alleviating the 5-20 slowdown factor of the simulation is by increasing the data

granularity, as we do for the sorting problem.

Bitonic sorting is structured in nature, yet it exhibits a low degree of locality.

The PRAM algorithm implementation handles e�ectively this situation by employ-

ing block structures instead of single word elements, thus reducing the slowdown

factor from 10-30 (large number of virtual processes) to 0.7-3 (small number of

virtual processes) (refer to table 4 and �gure 2). Optimal performance, almost

equaling that of direct-mode programming is obtained when virtual to physical

slackness approaches unity. In this situation the PRAM algorithm is equivalent to

the direct-mode BSP algorithm { except for the assumption that all data is non-

local. This example shows the exibility of our system { we were able to use a simple
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1 Physical Processor 4 Physical Processors

Size Direct Virtual PRAM Direct Virtual PRAM

Time(s) Processes Time (s) Time(s) Processes Time (s)

4096 0.011 256 0.31 0.004 256 0.13

4 0.027 4 0.012

16384 0.051 1024 1.90 0.073 1024 0.70

4 0.11 4 0.085

65536 0.310 32 1.18 0.132 32 0.42

4 0.52 4 0.18

262144 1.200 128 13.41 0.344 128 3.87

4 2.79 4 0.90

Table 4: Bitonic Sorting on SGI Power Challenge.

PRAM algorithm to implement a portable semi-automatic BSP sorting algorithm.
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Figure 2: Slow-down results for list ranking, bitonic sorting and matrix multiplica-

tion.

7 Conclusion and Future Directions

We have presented a practical study of PRAM simulations on the BSP model and

shown that for some problems the cost of simulating PRAM algorithms on BSP

machines is comparable (to within small multiplicative constant factors) to that

of direct-mode BSP solutions. As theory suggests, low locality problems such as,

list ranking and bitonic sorting, performed very well on our system as compared

to direct-mode implementations. Problems with overwhelmingly large locality (for

example matrix multiplication) can also produce respectable performance { com-
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binining reduces the amount of message traÆc generated from 2n3=p requests per

processor to at most 2n2 and at this level, the computation (n3=p) dominates.

The PRAM is not to be confused with shared memory programming as provided

by systems such as Treadmarks [LDCZ97]. The PRAM itself provides a discipline

for memory access. For the CRCWmodel access is unrestricted although concurrent

coincident writes will be arbitrarily resolved if they arise. For the EREW (exclusive

read/write) memory accesses from each PRAM processor must never coincide. The

vast collection of algorithms available in this disciplined stepwise synchronous model

proves that this is not a hindrance. Techniques such as lock access and release

[LDCZ97] are unnecessary in PRAM use. Another di�erence between the PRAM

and shared memory programming is that algorithm design for the PRAM model

typically assumes the number of processors to be massive - indeed for a problem

of n elements typically we will expect n processors. In our approach performance

prediction by retaining the simple predictable cost calculation of the PRAM and

BSP models, and scalable performance are essential features. We expect virtual

processor simulation and the lack of automatic caching, locking and block reads can

lead to slow perfomance for some general programs. However our locality analysis

and our results prove that for some well-known problems the approach is as eÆcient

as systems such as direct BSP and the PVM, MPI or Treadmarks systems.

Our PRAM programming environment is easy to program, and can be e�ec-

tively used in conjunction with, other BSP programs. The performance of our

PRAM algorithms is competitive to that of the corresponding direct-mode BSP

algorithms, and therefore, justi�es further development of these techniques. Recent

work veri�ed that in practice the simulation is scalable to large numbers of physical

processors (32, 64,..). Future work will focus on reducing the constant factors of the

simulation even further. Our automatic-mode programs were written in C++, but

the direct-mode programs were coded in C which is known to result in faster code.

Without C++, however, many of the advanced features of the PRAM language

would need to be replaced by more cumbersome constructs { alternatively we could

develop a compiler that handles shared memory eÆciently during compilation. The

experimental results we have presented show that, even with the associated slow-

down of the C++ language, the overheads are competitively low, indicating the

practical viability of PRAM programming within the BSP framework.
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