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Abstract

The major contribution of this paper is the application of modern analysis techniques to the important

Message Passing Interface standard, work done in order to obtain information useful in designing both

application programmer interfaces for object-oriented languages, and message passing systems. Recogni-

tion of \Design Patterns" within MPI is an important discernment of this work. A further contribution is

a comparative discussion of the design and evolution of three actual object-oriented designs for the Mes-

sage Passing Interface (MPI-1) application programmer interface (API), two of which have in
uenced the

standardization of C++ explicit parallel programming with MPI-2, and which strongly indicate the value

of a priori object-oriented design and analysis of such APIs. Knowledge of design patterns is assumed

herein.

Discussion provided here includes systems developed at Mississippi State University (MPI++), the

University of Notre Dame (OOMPI), and the merger of these systems that results in a standard binding

within the MPI-2 standard. Commentary concerning additional opportunities for further object-oriented

analysis and design of message passing systems and APIs, such as MPI-2 and MPI/RT are mentioned in

conclusion.

Connection of modern software design and engineering principles to High Performance Computing

programming approaches is a new and important further contribution of this work.
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1 Introduction

The message passing paradigm for parallel computing is widely used and well understood. Message pass-

ing communication layers are commonly used on many types of machines, ranging from massively parallel

supercomputers to clusters of workstations. The reader is assumed here to have a signi�cant knowledge

of the de facto MPI-1 standard [14, 15], an e�ort in
uenced by over a decade of research and commercial

systems [2, 3, 7, 11, 12, 19, 21, 23, 24, 25, 27, 29]. This interface has been realized in several commercial

implementations, based on well-known public implementations [5, 20].

In this paper, we present two object-oriented class libraries for supplementing MPI, in support of C++.

The features and limitations of these systems are indicated, as is an after-the-fact object-oriented analysis

of the application programmer interface and semantics of MPI-1. We compare the two class libraries to the

C++ interface accepted by the MPI Forum. Furthermore, we note that both class libraries have formed

the basis for support of this interface in various forms of MPI implementations. The main lessons here are

that C++ needed a class library to work comfortably with the MPI application programmer interface, that

several levels of abstraction make sense, and that these still may be particularly of interest to users in view

of the spartan support ultimately introduced by the MPI Forum itself.

The major contribution of this paper is the application of modern analysis techniques to the important

Message Passing Interface standard, work done in order to obtain information useful in designing both ap-

plication programmer interfaces for object oriented languages, and message passing systems. Recognition

of \Design Patterns" within MPI is an important discernment of this work. A further contribution is a

comparative discussion of the design and evolution of three actual object-oriented designs for the Message

Passing Interface (MPI-1) application programmer interface (API), two of which have in
uenced the stan-

dardization of C++ explicit parallel programming with MPI-2, and which strongly indicate the value of a

priori object-oriented design and analysis of such APIs. Knowledge of design patterns is assumed herein.

Discussion provided here includes systems developed at Mississippi State University (MPI++), the Uni-

versity of Notre Dame (OOMPI), and the merger of these systems that results in a standard binding within

the MPI-2 standard. Commentary concerning additional opportunities for further object-oriented analysis

and design of message passing systems and APIs, such as MPI-2 and MPI/RT are mentioned in conclusion.

Connection of modern software design and engineering principles to High Performance Computing pro-

gramming is a timely and important further contribution of this work.

1.1 C++ and MPI

MPI-1 included bindings for the C and Fortran77 languages. Since C++ bindings were not included in the

MPI-1 standard, C++ programmers were obliged to augment the MPI C binding in order to achieve feasible

programming with MPI, and this factor most probably detracted from use of MPI by C++ programmers in

the mid-1990's.

Two research groups, reporting jointly in this communication, prepared class libraries with distinct design

factors and features, in order to address this situation: MPI++, designed at Mississippi State University,

and Object-Oriented MPI (OOMPI), designed by the University of Notre Dame. Both MPI++ and OOMPI

were explicitly designed for inheritance; users can derive their own objects from either class library. MPI++

uses several features of C++ that are absent from the subsequently accepted MPI-2 C++ bindings, while

remaining faithful to the majority of function signatures from the MPI C bindings. OOMPI emphasizes

object-oriented design and ease of use rather than compliance with the MPI C bindings. In addition to

reference and const semantics, OOMPI makes extensive use of default arguments, overloaded function

names, and inheritance. Both libraries are of interest because they preceeded C++ bindings that were later

added to MPI and signi�cantly in
uenced these standardized extensions.

In particular, the MPI C++ bindings were accepted to be a minimalistic approach to the message passing

model. A small set of objects are provided which encapsulate all MPI data and functionality. While much

of the C function signatures are preserved, the C++ bindings take advantage of several inherent features

of the C++ language, to include reference and const semantics. More advanced features of C++, such as

overloading and polymorphism, were not used in order preserve a direct and unambiguous mapping to the

speci�ed functionality of MPI. While the design criteria appear restrictive, the MPI C++ bindings provide
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both a simple object-oriented model that programmers can immediately use in their C++ programs as well

as a sound basis for building class libraries that use more advanced features of C++.

1.2 Related Work

In this section, we note other e�orts to enhance MPI and other message passing systems for use with C++.

1.2.1 ARCH

ARCH is a C++-based library for asynchronous and loosely synchronous system programming, particularly

targeted at dynamic, irregular problems [1]. ARCH provides support for this type of programming with

facilities such as dynamic creation of threads and processes as well as load balancing strategies. Although

ARCH is designed on top of the MPI interface and supports calls to the MPI functions, its communication

interface is vastly di�erent from MPI's. For example, channels for communications between processes must

be de�ned and the processes must be synchronized.

1.2.2 mpi++

The mpi++ library (not to be confused with MPI++) is a C++ binding for MPI that is supposed to present

the semantic and conceptual model of MPI in a way which is easily recognizable to those familiar with MPI

and is also a \good" C++ design [22]. mpi++'s concentration on the separation of the message into static

and dynamic properties led to a layered construction of the message using templates. Although this method

hides many of the details from the user, all information about the message must be known at compile time.

The mpi++ package is therefore unable to support data-dependent messages.

1.2.3 Para++

Para++ [9, 10]. provides a C++ binding to use with either PVM [18], or MPI and is designed so that it

can be used without a knowledge of either underlying middleware. The main contribution of Para++ is

to provide new io-streams that allow for communication between processes. Para++ provides the two

addition streams pin (parallel in) and pout (parallel out) that are similar to cin and cout except they

communicate between processes.

1.3 Organization

The remainder of the paper is organized as follows. An object-oriented analysis of MPI is presented in

Section 2. Three object-oriented designs for MPI are presented in Sections 3- 5. The three designs are

discussed in Section 6. Finally, suggestions for future work and conclusions are o�ered in Section 7- 8 and 9,

respectively.

2 Object-Oriented Analysis of MPI

An object-oriented programming model would contribute to the understanding of the application program-

mer interface, o�er intuition for the design of object-oriented support for such programming, and motivate

strategies for extensions that provided added functionality and/or higher achievable performance. The ex-

isting C binding for MPI is not entirely suitable for object-oriented programming in C++. For example, the

\handles" provided to the user are typically behaving as plain C pointers, so there is no direct mechanism

for inheritance and the user cannot customize the environment to better suit a particular application.

The �rst step in creating object-oriented support for MPI is to derive an object-oriented analysis of

the existing MPI bindings. The MPI speci�cation is evidently object based. The persistent opaque objects

de�ned by MPI, such as communicators and groups, �t naturally into an object-oriented programming

paradigm. However, the computational models supported by MPI can be better supported if these opaque

objects are real objects instead of handles. First, an informal object model is constructed to lay out the
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overall structure according to the MPI speci�cation. Then, a more detailed design is obtained by inspecting

the Argonne/MSU MPICH implementation [20] and using design patterns [17]. A short set of illustrative

requirements are posed, together with solutions for such requirements. As C++ is the intended language for

implementation, certain design decisions are slanted toward C++. Other object-oriented languages could

also be considered in future studies, but are beyond the scope of this paper.

2.1 Developing the MPI Object Model

The Object Model is developed following the steps suggested in the Object Modeling Technique (OMT)1:

1. Studying the MPI standard and identifying all the important classes. Since the MPI speci�cation is

informally object-based, many of the classes are readily inferrable. A class corresponds to each opaque

object de�ned in MPI. These classes include: Communicator, Group, Datatype, Op, Request, Status,

and Errorhandler [14]. Corresponding to the concept of di�erent types of communicators, there is an

inferrable class InterComm for intercommunicators and IntraComm for intracommunicators. Datatypes

are also intuitively distinguishable: BasicType for prede�ned datatypes, and DerivedType for user

derived datatypes. The Cache class deals with the \caching" facility speci�ed by MPI. From process

topologies, two more classes are identi�ed: Graph for general graph virtual topologies, and Cart for

Cartesian topologies, themselves evidently subclasses of communicators.

There are three more fundamental classes that are not obvious from the MPI speci�cation: Message,

Transports and Device. The word message appears many times in the MPI standard. However, since

MPI for the most part is a functional speci�cation, it always speci�es the exact syntax with parameters

when describing sending and receiving, so it is easy to overlook this class. MPI also speci�es di�erent

types of send and receive operations, Transports provides a method of encapsulating these di�erent

operations. Similarly, the MPI speci�cation uses di�erent terms, such as \underlying mechanism,"

\communication system," and \machines" in order to describe the support for passing messages, but

the concept of having an abstract Device is not discussed.
2. Preparing a data dictionary. Table 1 shows a data dictionary for these classes. This is a simple data

dictionary, describing only the most important properties of each class.
3. Identifying associations between classes. Again, this task was greatly aided by the detailed speci�cation

given by the MPI standard itself. The identi�ed associations are illustrated in the object model shown

in Figure 1.
4. Identifying attributes. The MPI standard speci�es explicitly what the opaque objects are, it is not hard

to �nd the critical attributes. For example, communicators must have context, but that context is not

necessarily a tangible quantity or object. The identi�ed attributes are illustrated in the object model

shown in Figure 1.
5. Re�ning with inheritance. Most of the inheritance relationships between MPI classes are clear. For

instance, the MPI standard says that topology structures are intracommunicators. The MPI datatypes

also form a natural inheritance relationship.

2.2 Separating the Interface and Implementation

The Object Model in Figure 1 captures the structure of the core of MPI. However, the model does not

explicitly address how to support the user interface (the 128 functions speci�ed in the MPI-1.1 standard).

The speci�c format of these functions depends on the language bindings. The C binding, which can be

speci�ed as a thin layer on top of this design, is not discussed here. Instead, we are interested in an object-

oriented design of MPI, so the user interface discussed here will be based on the draft C++ binding of MPI-2

[15], which in turn was in
uenced by our earlier work.

To support this user interface in detail, a critical issue needs �rst to be solved. According to the MPI

Object Model we have assembled, there are classes corresponding to MPI opaque objects (e.g., communica-

tors) in the underlying system. The user interface also de�nes similar classes. There are two choices: either

1The study presented here considered only MPI-1.
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Class Description

Group An ordered collection of processes

Communicator The holder of the Group and other information

IntraComm A communicator working on a single group

InterComm A communicator working between two groups

Cart An intracommunicator with Cartesian topology

Graph An intracommunicator with general graph topology

Datatype A type describing the kind of data being transferred

BasicType Prede�ned datatypes

Derivedtype User-de�ned datatypes

Message An object that facilitates the composition of data

Transports An object that facilitates the mode of transfer

Device An object that facilitates the transfer of data

Request A handle to inquire about messages

Status The holder of information when a transfer completes

Cache An object that contains attributes, with callbacks

ErrorHandler A handler for processing errors

Table 1: Data Dictionary for MPI-1 Classes.

eliminate the corresponding classes in the Object Model and de�ne the functionality in the user classes, or

retain all the classes and treat them di�erently.

The better approach is the latter. Even though these classes both correspond to MPI opaque objects,

the classes in the user interface correspond to handles in the C language binding. The classes in the Object

Model are truly used to implement the MPI opaque objects. More speci�cally, the need for the separation

of interface from implementation stems from the following considerations:

1. The MPI standard speci�es that MPI manages system memory such as internal representations of

various MPI objects like groups, communicators, and datatypes. These structures are not directly

accessible to the user, and objects stored there are opaque: their size, shape, and contents are not

directly visible to the user. Opaque objects are accessed via handles, which exist in user space [14].

Therefore, in the object-oriented design, there is a need to separate objects into two categories: user

objects and system objects.
2. Because of the principle of \design for inheritance" [8], which is to promote 
exibility, the draft C++

binding proposes to declare user level methods virtual. This practice would allow the user to re�ne

the methods to suit a particular application better. But this also adds problems in the design and

implementation. For example,MPI collective operations are usually implemented at present with point-

to-point operations. So, if user level operations are not totally isolated from the implementation, a

re�ned user method (say a point-to-point send operation) may cause unexpected problems on other

operations (say the broadcast operation) [14].

The requirement of completely hiding the implementation from the user poses a particular problem if

C++ is the implementation language. In C++, even if implementation details are declared as private parts

of a class, the user can still see them in the header �les.

The Bridge design pattern [17] can be used to set up the structure and solve these problems. According

to the Bridge pattern, there should be two sets of classes, one for the user interface, and one purely for

implementation. The user object maintains a reference to an object of an implementation class, and forwards

client requests to the implementation object. We will use communicator-based classes to illustrate the idea.

Figure 2 shows the Bridge pattern structure for communicator-based classes. MPI::Comm has a reference

to the abstract base class Communicator. The reference will be set to an appropriate concrete subclass of

Communicator through communicator constructors. The methods of MPI::Comm simply forward the request

through its reference. The following C++ pseudo-code is meant to clarify this description:
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class MPI::Comm {

public:

// Communicator constructors

MPI::Comm() : _imp( 0 ) {}

virtual MPI::~Comm();

virtual int Create( const MPI::Comm& comm, const MPI::Group& group );

...

// Methods

virtual int Size ( int& size ) const;

...

private:

Communicator *_imp; // the reference through which

// implementation is accessed

};

int MPI::Comm::Create( const MPI::Comm& comm, const MPI::Group& group )

{

_imp = new IntraComm( comm, group );

}

int MPI::Comm::Size( int& size ) const

{

return _imp->Size( size );

}

The Bridge pattern provides a solution to support an object-oriented C++ user interface for MPI without

violating theMPI speci�cation. Moreover, the decoupling of interface and implementation allows for changing

the underlying implementation freely without a�ecting the MPI C++ binding; therefore, user programs

remain unchanged under such potential perturbations.

2.3 Designing Transports as a Command

The above MPI Object Model recognizes these key concepts message, communicator, transports,

and device and includes each as a class. Basically, Communicator issues a request to send a message and

Transports is responsible for using the proper send or receive operation and Device is responsible for

actually getting the message to its destination. The question is how to do that in a 
exible and elegant

way. To simplify participating classes, ideally, the Communicator class should know nothing about how

Transports actually sends a message, but it must clearly interact with Transports. MPI speci�es di�erent

kinds of send and receive operations [14], it is desirable to be able to handle di�erent messages conveniently,

while preserving MPI semantics. Likewise, Device abstracts into simple mux/demux information aspects of

the message, but is not intimately tied to Transports.

The Command design pattern provides a solution by providing a means of encapsulating these di�erent

types of send/receive operations. Figure 3 shows the structure obtained by applying the Command pat-

tern to this case. The base class Transports declares an interface for executing the start() operation,

which is to start sending or receiving messages. A concrete subclass of Transports uses proper Device

operations to implement its start() operation. The Communicator class knows which subclass to use to

instantiate a message object and which sublcass to use for the transports object, but has no idea how the

message is transferred. The Transports provides message-passing operations and knows nothing about the

Communicator's structure, though it will need data placed in Message from Communicator indirectly, par-

ticularly for mux/demux associated with a speci�c communicator's context space, and the other aspects of

the message envelope needed to route and demultiplex.

The Command design pattern sets up the structure, but there are some important details that are not

addressed. For example, MPI speci�es that messages are non-overtaking: if a sender sends two messages in

succession to the same destination, and both match the same receive, then this operation cannot receive the

second message if the �rst one is still pending [14]. To guarantee this partial ordering in the implementation,
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it is necessary to use communicator-based information (group, context information) as well as source and

tag information, so the Message class has to be carefully designed.

The use of the Command pattern in this case is a little di�erent from the typical situation described

in [17] that the receiver in our case is always Device, while in general di�erent commands have di�erent

receivers. As a matter of fact, explicitly specifying the receiver is not necessary in this case, as we will see

that the Device2 object will follow the Singleton pattern.

2.4 Ensuring Uniform Treatment of Datatypes

MPI has strong support for datatypes. In addition to the basic datatypes such as int, float, and

char, MPI provides functions for building derived datatypes, including contiguous, vector, hvector, indexed,

hindexed, and structured types [14]. New datatypes are built recursively from previously de�ned datatypes.

Moreover, basic datatypes and newly de�ned datatypes are used the same way in communication [14].

In the MPI Object Model we have de�ned, datatypes have been arranged in an inheritance hierarchy.

This ensures that all the datatypes can be used the same way as the base class. But the problem of how

to build new datatypes recursively from previously de�ned datatypes has not been addressed. To solve this

problem in a clean and elegant way, the Composite design pattern can be used.

The Composite pattern arranges objects into a part-whole hierarchy so that the di�erence between

compositions of objects and individual objects can be ignored from the user's point of view. It allows complex

objects to be built from primitive objects, which in turn can be composed, and so on recursively [17]. This

matches exactly what is needed here.

Figure 4 shows the structure obtained by applying the Composite pattern to datatypes. Here the aggre-

gation link from the derived datatypes means that the previously de�ned datatypes building this datatype

need to be stored, among other things. The operations of a derived datatype are typically implemented in

terms of operations of its building datatypes, with possibly additional actions.

2.5 Abstracting from Speci�c Devices

The class Device in the MPI Object Model represents the underlying communication system (e.g.,

socket API for TCP/IP or a portable abstraction of packet transfer). While it is su�cient to use this one class

to capture the idea in the Object Model, it is rarely so in a real portable implementation. The problem is

that the underlying hardware platforms vary greatly. Some architectures use a shared-memory programming

model, while others use a distributed-memory model. Even for similar platforms, such as distributed-memory

parallel machines, di�erent vendors provide di�erent, incompatible, native communication libraries. So it is

impossible to encapsulate all these di�erences in one class in a practical implementation.

The usual object-oriented solution to this problem would be to treat Device as an abstract base class

that de�nes the common interface for handling messages, and derive, by inheritance, subclasses with speci�c

implementations for di�erent platforms. In a sense, this is similar to the Adapter pattern, where a inter-

mediate class is introduced to adapt the interfaces of incompatible existing classes to a common, desired

interface [17]. In our case, the existing incompatible mechanisms are in the form of primitive routines instead

of classes.

There is one remaining problem: how do the Transports access the Device? One solution is to pass a

reference to messages when they are created. There should exist only one instance of a particular device in

the system. Therefore a reasonable solution is to make the device well known and guaranteed to be unique.

The Singleton pattern does precisely this, and the structure resulted from applying the Singleton pattern

is shown in Figure 5. The following C++ pseudo-code illustrates how this can be achieved:

class ConcreteDevice : public Device {

public:

// The sole operation to access device

static ConcreteDevice* instance();

2Naming follows the common convention of referring to transports interfaces of popular MPI implementations as \devices".
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// Regular methods

int deliver();

...

private:

// Direct instantiation is forbidden

ConcreteDevice();

// The only instance

static ConcreteDevice *_instance;

};

// Static initialization

ConcreteDevice* ConcreteDevice::_instance = 0;

ConcreteDevice* ConcreteDevice::instance()

{

if ( _instance == 0 ) {

_instance = new ConcreteDevice;

}

return _instance;

}

Basically, the unique device is accessed exclusively through the instance member function. For example,

the deliver method is invoked as:

ConcreteDevice::instance()->deliver();

There is no need to instantiate the device �rst (actually it cannot be), and no need to specify a particular

name for the instance.

2.6 Analysis Summary

Starting from the preliminary MPI-1 Object Model, we identi�ed and solved several key design issues

using the design patterns. The expanded MPI-1 Object Model is shown in Figure 6. This establishes the

fundamental structure for the object-oriented design of MPI-1, and is a main contribution of this work.

However, this design only represents one solution; other possibilities also exist. For example, in our

design, we use aggregation and treat the class Cache as part of the class Communicator. But we can also

think of \caching" facilities as additional responsibilities attached to a Communicator, so a more 
exible

way would be to follow the Decorator design pattern and to add the \caching" functionality dynamically as

necessary. This choice could be debated in the detailed design stage. Our aggregation approach is simple

and follows the MPI speci�cation directly.

Overall, this is an architectural design; to carry out the implementation ofMPI based on this design, there

are many details that need to be added. For example, the Transports class represents the message-passing

mechanism, but its exact interface needs to be speci�ed, which could be a demanding task. Transports

also has to provide some sort of resource management and to ensure progress [14]. Similarly, there are

also many issues that need to be solved for the class Message. For instance, Message should contain enough

information so that Transports can handle messages properly. This also means that the interfaces of Message

and Transports should be carefully de�ned with considerations for each other. Furthermore, messsages have

headers and object-oriented transports would be de�ned, if desired.

3 MPI++

The �rst attempt at an C++ interface for MPI occurred in 1994 with the C++ implementation, de�ned

by some of us, called MPI++ [28]. For the implementation of MPI++, a medium weight object-oriented

approach was taken. Although MPI++ is a class library, it only has a few classes not included in the MPI

C++ binding. The requirements that guided the design and implementation of MPI++ are as follows:
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1. The MPI++ interface should be consistent with the MPI C interface.
2. Performance-portability should be comparable to that of the C interface. That is, MPI++ features

should be lightweight whenever the corresponding C functions are lightweight.
3. MPI++ should exhibit a clean design that is prototypical of well-written object-oriented programs.

The following sections consider these requirements in turn, discussing the rationale behind them, and

their in
uence on the design decisions.

3.1 The MPI++ Interface

Because of the standardization process, MPI's language-independent semantics are not subject to rapid

change. It was thus attractive (as well as prudent) to follow the MPI standard carefully when designing

and implementing MPI++, even though this is not an o�cial language binding. MPI has a C language

binding, of which many potential users of MPI++ already have a working knowledge. Therefore, little

e�ort should be needed for such users to migrate from the C interface to MPI++. These considerations

strongly suggested that the MPI++ interface be both syntactically and semantically consistent with the C

interface. Semantic consistency requires that the counterparts in the two interfaces must perform the same

function without unexpected side e�ects, including e�ects on performance. This prevents erroneous uses or

unexpected performance penalties when one switches from one interface to the other.

When using the MPI++ interface instead of the standard C interface, many small di�erences must be

noted. The �rst di�erence to note is that the statement #include <mpi.h> from the standard C interface

has been replaced by #include <mpi++.h> in the MPI++ interface. Another change to notice is that the

pre�x MPI has been changed to MPIX . A pre�x other than MPI was needed in order to avoid name con
icts,

since MPI++ was implemented on top of the C interface. 3 It is important to note that functions that do

not readily fall into classes are not given wrappers and must be called using the standard C calls. These

pragmatic steps were consistent with our earlier experimental pragmatic goals.

One big di�erence between the C interface and the MPI++ interface is that all MPI++ versions of the

MPI functions are methods of an MPI++ class. For example, the function call in the C version:

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

appears in the MPI++ version as a method of the object MPIX COMM WORLD:

MPIX_COMM_WORLD.Rank(&rank);

For example, the send and receive calls that, in the C code, take the communicator comm1 as an argument:

MPI_Send(message, strlen(message), MPI_CHAR, size-1,TAG, comm1);

MPI_Recv(message, MAX_MESSAGE_SIZE, MPI_CHAR, 0,TAG, comm1, &status);

become methods of comm1:

comm1.Send(message, strlen(message),MPIX_CHAR, size-1, TAG);

comm1.Recv(message, MAX_MESSAGE_SIZE, MPIX_CHAR, 0,TAG, &status);

One way to describe the relationship between the C binding and MPI++ is to say that we have moved

the communicator argument to the front of the function call, making it the object to be dereferenced. This

has let us drop the pre�x \MPI " or \MPI Comm" from member function names. The class hierarchy described

in the next section shows the value and e�ectiveness of this approach.

3Through the use of the C preprocessor, we provide shortcuts that allow the use of the MPI pre�x. However, we prefer to

use the MPIX pre�x because MPI++ is not a standard interface of MPI, and only standard bindings may use the MPI pre�x.
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MPIX_Comm_interMPIX_Comm_intra

MPIX_Comm

MPIX_Comm_worldMPIX_Comm_cart MPIX_Comm_graph

Figure 7: Hierarchy of Communicator-Based Classes for MPI++

3.2 Object-Oriented Design of MPI++

As discussed in Section 2, the MPI speci�cation is object-based. It is therefore relatively easy to identify

the major classes for MPI++. In general, class hierarchies can be either single-rooted or forests [31]. Either

approach could have been used in the design of MPI++. The forest approach, in which a number of

superclasses support the user-accessible objects, �ts the MPI speci�cation naturally. We were convinced

that using it would result in a system that was more likely to be consistent with the C interface, and also

initially easier to build. Most MPI functions are available as methods of a class in MPI++. However, some

MPI functions such as MPI DIMS CREATE don't fall easily under one object. In MPI++, these functions are

called using the standard C bindings (These functions were not given wrappers).

The Communicator-based Classes The communicator-based classes constitute the backbone of the

MPI++ architecture. Their hierarchy is illustrated in Figure 7. The base class MPIX Comm contains all

the functions common to both intra- and inter-communicators, such as point-to-point communication and

accessor functions. Its interface is sketched in Figure 8.

The MPIX Comm intra (intra-communicators) class, derived from MPIX Comm, contains collective commu-

nication and topology functions, as well as various functions that do not apply to inter-communicators4 A

sketch of its interface is given in Figure 9.

The MPIX Comm inter (inter-communicators) class is also derived from the MPIX Comm class. It contains

only those functions peculiar to itself. Figure 10 gives a sketch of its interface.

While most of these methods are straightforward to use, users must note several points. First, the destruc-

tor for the MPIX Comm class does not free the communication resources associated with the communicator.

All instances of MPIX Comm must therefore be freed explicitly, as in C, using MPIX Comm::Free()5

Second, users must distinguish between using the overloaded \=" operator for communicators and in-

stantiation via the communicator's copy constructor. For example, during copy construction, a call made by

4MPI-2 removes intercommunicator collective restrictions.
5The semantics of the C binding have been retained. This notionally follows the restrictive approach we applied when

de�ning operator= as a shallow copy: we have chosen not to introduce implicit synchronization across process groups.
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class MPIX_Comm {

public:

MPIX_Comm(); // Constructor

virtual \~ MPIX_Comm(); // Destructor

virtual int Free(); // Free

virtual int Dup(MPIX_Comm*); // Initializer

// Environment

virtual int Abort(int);

virtual int Errhandler_set(MPI_Errhandler&);

virtual int Errhandler_get(MPI_Errhandler*);

// Accessors

virtual int Size(int *);

virtual int Rank(int *);

// Sends

virtual int Send(void *,int,MPI_Datatype,int,int tag=0);

// Receives

virtual int Recv(void*,int,MPI_Datatype,int,int,MPIX_Status*);

// Pack and Unpack operations

virtual int Pack(void*, int, MPI_Datatype, void *, int, int*);

virtual int Unpack(void*, int, int*, void*,int, MPI_Datatype);

// Overloaded operators (= does copying, not parallel duplication)

virtual MPIX_Comm& operator=(const MPIX_Comm& old_comm);

virtual int operator==(const MPIX_Comm&);

virtual int operator!=(const MPIX_Comm&);

private:

}

extern MPIX_Comm MPIX_COMM_NULL;

extern MPIX_Comm_world MPIX_COMM_WORLD;

Figure 8: Interface of the MPIX Comm Class.

class MPIX_Comm_intra : public MPIX_Comm {

public:

// Constructors

MPIX_Comm_intra(void);

MPIX_Comm_intra(const MPIX_Comm_intra&);

MPIX_Comm_intra(const MPIX_Comm_intra&, const MPIX_Group&);

MPIX_Comm_intra(MPIX_Comm_intra&, int, int);

// Initializers

virtual int Create(const MPIX_Group&, MPIX_Comm_intra*);

virtual int Split(int, int, MPIX_Comm_intra *);

// Collective operations

virtual int Barrier(void);

// Topology functions

virtual int Cart_create(int, int dims[], int periods[], int,

MPIX_Comm_intra*);

};

Figure 9: Interface of the MPIX Comm intra Class.
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class MPIX_Comm_inter : public MPIX_Comm {

public:

// Constructors

MPIX_Comm_inter(void);

MPIX_Comm_inter(const MPIX_Comm_inter&);

// Accessors

virtual int Remote_size(int*);

virtual int Remote_group(MPIX_Group*);

// Intracommunicator constructor

virtual int Merge(int, MPIX_Comm_intra*);

};

Figure 10: Interface of the MPIX Comm inter Class.

all processes of the group is illustrated. This call causes a deep copy of the communicator to occur, which

involves synchronization across the processes that made the call:

// communicator instantiation calls

// parallel call, deep copy occurs

MPIX_Comm_intra::MPIX_Comm_intra(const MPIX_Comm&) MPIX_Comm_intra c1=comm1;

By way of contrast, operator= is a local call: when pre-existing objects are assigned to, no parallel

operations are done. We note that this is a shallow copy of the communicator.

// overloaded MPI_Comm::operator=(const MPI_Comm&) which

// does not create a duplicate of comm1

MPIX_Comm_intra c2; // initialized to be MPI_COMM_NULL

c2 = comm1; // local call

In short, setting one MPIX Comm intra instance equal to another does not create a new communicator.

Thus, only one of the two communicator instances above should call MPIX Comm intra::Free(). The user

must decide how to manage this freeing operation themselves. This follows the logic that C operators,

extended to C++ objects, should not have unexpected side e�ects. In practice, the above property can

be avoided by using reference counting [8], but the real issue is the potential for deadlock. If operator=

required loosely synchronous invocation over the entire group involved in the communication, subtle bugs

involving synchronization could arise from seemingly local operations.

Figure 7 shows that three subclasses are derived from MPIX Comm intra: MPIX Comm world,

MPIX Comm cart, and MPIX Comm graph. MPIX Comm world is special, in that there is exactly one instance of

it in any MPI program. This instance is called MPI COMM WORLD. To prevent users from creating additional

instances of this class, MPIX Comm world is designed and implemented as a Singleton [17]. This class adds

two methods to MPIX Comm intra, which are used to manipulate the MPI environment:

int Init(int *argc, char*** argv)

int Finalize()

The other two subclasses derived from MPIX Comm intra provide support for virtual topologies. A virtual

topology is a machine-independent naming abstraction used to describe communication operations in terms

that are natural to an application. MPIX Comm cart supports cartesian topologies, i.e. topologies based on

rectangular coordinates. MPIX Comm graph supports general graph topologies, in which processes are nodes

of an arbitrary graph.
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class MPIX_Group {

public:

// Constructor

MPIX_Group(void); // create an empty group

MPIX_Group(const MPIX_Group& old_group); // copy a group

virtual ~ MPIX_Group(void); // Destructor

virtual int Free(void); // Free a group

virtual MPIX_Group& operator= (const MPIX_Group&); // Assignment

// Group accessors

virtual int Size(int *);

// Group manipulation

virtual int Union(const MPIX_Group&, MPIX_Group*);

// Overloaded set operators

virtual MPIX_Group operator- (const MPIX_Group&);

virtual MPIX_Group operator+ (const MPIX_Group&);

// Overloaded self-modifying operators

virtual MPIX_Group& operator-= (const MPIX_Group&);

virtual MPIX_Group& operator+= (const MPIX_Group&);

// Shift members off the ends of a group

virtual MPIX_Group operator<< (const int);

virtual inline MPIX_Group operator>> (const int);

// Compare the members of groups

virtual int operator== (const MPIX_Group&);

virtual int operator!= (const MPIX_Group&);

private:

MPI_Group group;

};

extern MPIX_Group MPIX_GROUP_EMPTY;

extern MPIX_Group MPIX_GROUP_NULL;

Figure 11: Interface of the MPIX Group Class.
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MPIX_Datatype

MPIX_Type_vector MPIX_Type_struct MPIX_Type_indexed

MPIX_Type_basic

MPI_INT MPI_FLOAT etc.

Figure 12: Hierarchy of Datatype-Based Classes in MPI++

The Group Class Figure 11 sketches the interface of the MPIX Group class, most of which is straightfor-

ward. MPIX Group objects are not explicitly used in communication; their only use in MPI-1 is for describing

group members when building new communicators using MPIX Comm::Create(). They are therefore not as

important as the communicator classes in most MPI++ programs. However, they are more important in

MPI-2, which has a dynamic process model using groups as well as communicators.

The Datatype Class In addition to the basic datatypes such as int, float, and char, MPI provides

functions for building derived data types, including vector, indexed, and structured types. New data types

are built recursively from previously de�ned datatypes. Figure 12 shows the hierarchy of datatype classes

for MPI++.

As can be seen, the datatypes used in the MPI C binding �t into the object-oriented programming

model without further abstraction. In our earlier MPI++ implementation, we had chosen not to make C++

wrappers for them.

The Handler Classes The four remaining classes in the MPI++ class hierarchy are used during non-

blocking communications. They are MPIX Request, MPIX Status, MPIX Request collection, and

MPIX Status collection. Their methods correspond to the appropriate MPI C functions that act on

them. For example, the C function:

MPI_Wait(MPI_Request *request, MPI_Status *status);

becomes:

MPIX_Request request;

request.Wait(MPIX_Status *status)

Figure 13 shows a sketch of the interface for MPIX Request; the interface for MPIX Status is illustrated

in Figure 14. The interfaces for MPIX Request collection and MPIX Status collection are similar. The

methods for MPIX Request collection correspond to MPI C functions that apply to an array of type

MPI Request.
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class MPIX_Request {

public:

// Constructor

MPIX_Request();

// Destructor

virtual ~ MPIX_Request();

// Request destructor

virtual int Free();

// Request operations

virtual int Wait(MPIX_Status *);

virtual int Test(int*, MPIX_Status*);

// Overloaded operations

MPIX_Request& operator=(const MPIX_Request&)

private:

MPI_Request request;

};

Figure 13: Interface of the MPIX Request Class.

class MPIX_Status {

public:

MPIX_Status(); // Constructor

virtual ~ MPIX_Status(); // Destructor

// Status accessors

virtual int MPI_TAG();

virtual int MPI_SOURCE();

virtual int Test_cancelled(int *);

private:

MPI_Status status;

};

Figure 14: Interface of the MPIX Status Class.
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3.3 Comments on Design

From the above discussion, one can see that MPI++ o�ers most of the major functionality of MPI's C

interface. The features currently missing, such as pro�ling and environmental inquiry functions, are mostly

of an auxiliary nature, and could be added easily.

MPI++ employs several standard object-oriented concepts. First, MPI++ uses inheritance, or white box

reuse. In particular, the communicator-based class hierarchy gives 
exibility to, and promotes reusability

and extensibility in, the design of parallel libraries. For example, if a particular application requires a two-

dimensional Cartesian topology of dimension P �Q, then the user can create one with minimal e�ort using

inheritance and customize. A sample interface might look like:

class MPIX_Grid2d : public MPIX_Comm_intra {

public:

MPIX_Comm_intra Row, Column; // Row and column communicators

MPIX_Grid2d(void); // Constructor

~ MPIX_Grid2d(void); // Destructor

int Free(void); // Free grid

int Dup(MPIX_Grid& grid_out); // Duplicate grid

// Initialize grid

int Init(MPIX_Comm_intra& comm_in, int P, int Q);

// Overloaded point-to-point operations

int Send(void*, int, MPIX_Datatype, int P, int Q, int tag);

int Recv(void*, int, MPIX_Datatype, int P, int Q, int tag,

MPIX_Status&);

// Overloaded collective operations

int Bcast(void*, int, MPIX_Datatype, int P, int Q);

int Reduce(void*, void*, int, MPIX_Datatype, MPI_Op, int P, int Q);

// Grid accessors

int P(void);

int Q(void);

int p(void);

int q(void);

private:

int P_, Q_; // dimensions of grid

int p_, q_; // local processes' position in grid

};

The row communicator would contain all the processes in the same logical row of the grid, and would be

used for communication local to the row. The column communicator would contain the processes sharing

in the same logical column, and would be used analogously. Point-to-point functionality is overloaded to

accept grid-speci�c process names, such as coordinate (5,3), instead of process ranks. This is because our

design takes advantage of the underlying object-based design of MPI. The resulting MPI++ design, looked

at as a class hierarchy, is thus relatively shallow and wide in terms of the C++ objects, and little overhead

is consequently introduced.

Polymorphism is another key feature of object-oriented design. Methods in MPI++ classes are declared

virtual in conformance with the Inheritance Canonical Form, in order to support reuse by users of the

classes. Thus, MPI++ was designed for simple inheritance by users, though the implementation of MPI++

itself does not currently support virtual inheritance. We expect, in future, to exploit inheritance within the

implementation to support a better design for MPI datatypes.

Finally, MPI++ uses operator overloading and default arguments to provide simpler and more intu-

itive member functions. For example, MPI++ overloads the - operator to have the same e�ect as the

MPIX Group::Differencemember function. Other examples include the | and & operators for MPI Group::Union

and MPIX Group::Intersection respectively, and the use of << and >> to shift a speci�ed number of group

members o� the front or end of a group.
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Furthermore, the tag argument in communication calls is usually an optional argument, which MPI++

sets to 0 by default. This simpli�es programs that do not use tags.

4 OOMPI

OOMPI was introduced after MPI++, and o�ers an alternative, higher abstraction approach to accessing MPI

from C++. For instance, a typical MPI function call in C is of the following form:

MPI_Comm comm;

int i, dest, tag;

...

MPI_Send(&i, 1, MPI_INT, dest, tag, comm);

Here, i, 1, MPI INT, and tag specify the content and type of the message to be sent, and comm and

dest specify the destination of the message. A more natural syntax results from encapsulating the pieces

of information that make up the message and the destination. That is, we could perhaps encapsulate i, 1,

MPI INT, and tag as a message object6 and comm and dest as a destination (or source) object.

Before committing to any OOMPI objects, let's review the sort of expressive syntax that we would like for

ease of use. OOMPI has to be easy to use. The function call above would be very naturally expressed as

int i;

...

Send(i);

But this is incomplete, we still require some sort of destination object. In fact, we would like an object

that can serve as both a source and a destination of a message. In OOMPI, this object is called a port.

4.1 Ports and Communicators

Using an OOMPI Port, we can send and receive objects with statements such as:

int i, j;

OOMPI_Port Port;

...

Port.Send(i);

Port.Receive(j);

The OOMPI Port object contains information about its MPI communicator and the rank of the process to

whom the message is to be sent. Note, however, that although the expression Port.Send(i) is a very clear

statement of what we want to do, there is no explicit construction of a message object. Rather, the message

object is implicitly constructed (see 4.2 below).

Port objects are closely related to communicator objects | a port is said to be a communicator's view

of a process. Thus, a communicator contains a collection of ports, one for each participating process. OOMPI

provides an abstract base class OOMPI Comm to represent communicators. Derived classes provided by OOMPI

include OOMPI Intra comm, OOMPI Inter comm, OOMPI Cart comm, and OOMPI Graph comm, corresponding

to an intra-communicator, inter-communicator, intra-communicator with Cartesian topology, and intra-

communicator with graph topology, respectively. This is similar to the design concepts in MPI++.

Individual ports within a communicator are accessed with operator[](), i.e., the ith port of an OOMPI -

Comm c is c[i]. The following code fragment shows an example of sending and receiving:

6The newer messaging standard, MPI/RT speci�es this consistently, both by merging memory descriptions(bu�er objects),

and source/destination/communication(channels).
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int i, j, m, n;

OOMPI_Intra_comm Comm;

...

Comm[m].Send(i);

Comm[n].Receive(j);

Here, the integer i is sent to port m in the communicator and the integer j is received from port n.

4.2 Messages

We de�ne an OOMPI Message object with a set of constructors, one for each of the MPI base datatypes. Then,

we de�ne all of the communication operations in terms of OOMPI Message objects. The need to construct

OOMPI Message objects explicitly is obviated | since promotions for each of the base datatypes are declared,

an OOMPI Message object will be constructed automatically (and transparently) whenever a communication

function is called with one of the base datatypes.

Message objects could be eliminated entirely by declaring each communication function in terms of every

base datatype. However, this would result in an enormous number of almost identical member functions.

The use of message objects seems better for the sake of maintainability. There is some function overhead

because of the need to construct a message object, but the constructors can be made very lightweight so

that the overhead is negligible. The base types supported by OOMPI are as follows:

char short int long

unsigned char unsigned short unsigned unsigned long

float double

In addition to messages composed of single elements of these types, it is also desirable to send messages

composed of arrays of these types. By introducing an OOMPI Array message object, we can also provide

automatic promotion of arrays. Thus, to send an array of integers, we can use a statement like:

int a[10];

OOMPI_Port Port;

...

Port.Send(a, 10);

Again, no explicit message is constructed.

Note that in the above examples we have not explicitly given a tag to the messages that are sent. If no

tag is given, a default tag is assigned by OOMPI, but users can supply a tag as well:

int a[10];

OOMPI_Port Port;

...

Port.Send(a, 10, 201);

The declaration of OOMPI Port::Send() is

void OOMPI_Port::Send(OOMPI_Message buf, int tag =

OOMPI_NO_TAG);

void OOMPI_Port::Send(OOMPI_Array_message buf, int count,

int tag = OOMPI_NO_TAG);

Here, the default value of OOMPI NO TAG is not the tag used on the message. Rather, it is a dummy value

that indicates that no tag was explicitly given, so inside the body of OOMPI Send(), a default tag is used,

depending on the type of the data. OOMPI reserves the top OOMPI RESERVED TAGS tags. Users can use any

tag between zero and OOMPI TAG UB (This is similar to choices o�ered by MPI++).
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4.3 User De�ned Datatypes

Although it is convenient to be able to pass messages of arrays or of single elements of basic datatypes,

signi�cantly more expressive power is available by accommodating user objects (i.e., user-de�ned datatypes).

That is, OOMPI should provide the ability to make statements of the form:

MyClass a[10];

OOMPI_Port Port;

...

Port.Send(a, 10, 201);

To accomplish this, OOMPI provides a base class OOMPI User type from which all non-base type objects

that will be communicated must be derived. This class provides an interface to the OOMPI Message and

OOMPI Array message classes so that objects derived from OOMPI User type can be sent using the syntax

above.

Besides inheriting from OOMPI User type, the user must also construct objects in the derived class so that

an underlying MPI Datatype can be built. OOMPI provides a streams-based interface to make this process

easier. The following is an example of a user-de�ned class object:

class foo : public OOMPI_User_type {

public:

foo() : OOMPI_User_type(type, this, FOO_TAG) {

// Build the datatype if it is not built already

if (!type.Built()) {

type.Struct_start(this);

type << a << b;

type << c << d << e;

type.Struct_end();

}

};

private:

// The data for this class

int a, b;

double c, d;

char e;

// Static variable to hold the newly constructed

// MPI_Datatype

static OOMPI_Datatype type;

};

The steps in making a user object suitable for use in OOMPI as an OOMPI Message are as follows:

1. Derive the class from OOMPI User type.
2. The object must contain a static OOMPI Datatype member.
3. The constructor for the class must initialize OOMPI User type according to

OOMPI_User_type(OOMPI_Datatype& type, this, int tag)

where type is the name of the static OOMPI Datatype member, and tag will be the default tag for all

instances of this class.
4. Identify the internal data to be communicated.
5. The constructor for the class must check if the static OOMPI Datatype member has been built (by

calling its Built() member function). If it has not been built, appropriate calls to the datatype must

be made so that it can be built.
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Note that the tag that is set with the OOMPI User type constructor will apply (by default) all instances

of the foo class. This default tag may be overridden with the Set tag(int tag) member function for

particular instances of foo7.

A necessary condition to make the building of datatypes thread safe, the entire process must be protected

by a mutex. The Built() member function performs a down on the mutex before checking to see if the

datatype has been built or not. If it has not been built yet, Built() returns a FALSE and the type is

built. When Struct end() is invoked, MPI Type Struct() and MPI Type commit() are called to build the

datatype, and the up is performed on the mutex.

4.4 Return Values

All functions in MPI-1 return an error condition; a provision for installing error handlers allows errors

to be trapped in various speci�ed ways. Again, C++ allows OOMPI to be more expressive. Rather than

returning error codes, OOMPI functions have speci�ed return values (typically corresponding toMPI-1 \out"

parameters). Error conditions may then optionally be handled with exceptions.

OOMPI allows one of three actions to happen upon an MPI error: the underlying MPI implementation

may handle the error, OOMPI may throw an exception, or OOMPI may simply set OOMPI errno and return.

These three functions can be set per communicator; see the OOMPI Comm class for more details.

If the function returns after the error has been handled, OOMPI will attempt to return an invalid value

depending on the type of object being returned. For example, functions that return pointers or arrays will

return 0 (casted to the appropriate type). Functions returning int will return OOMPI UNDEFINED. Functions

that return OOMPI objects will return invalid objects; attempting to invoke any member functions on them

will result in another error.

4.5 A Streams Interface for Message Passing

Streams are a standard mechanism used in C++ for performing I/O. The syntax of stream based I/O is

appropriate for message passing, for convenience, even though MPI is message and not stream based itself

That is, messages can be sent and received in OOMPI with the statements:

int i, j;

OOMPI_Port Port;

...

Port << i << j;

Port >> i >> j;

Since second arguments to operator>>() and operator<<() are disallowed, default tags (based upon the

message type) are used. These default tags can be overridden, however. (See section 4.10 for the discussion

of the OOMPI Message and OOMPI Array message objects.) Note that user-de�ned datatypes can have their

default tags set by the user with the Set tag() member function. To enforce thread safety, each variable is

sent or received individually using the MPI Send() or MPI Recv() function calls. In the above example, i

is sent with MPI Send(), j is sent with MPI Send(), i is received with MPI Recv(), and �nally j is received

with MPI Recv(). This adds overhead in return for simplicity.

The streams interface could be expanded to include many more features (such as tags to indicate the

end of a message, tags to indicate what type of send/receive should be used, etc.). However, none of these

concepts are thread safe (unless OOMPI Ports are localized to a single thread) since they imply that the

OOMPI Port object must contain local state. OOMPI could demand that threads must keep their own copies

of ports, a break in the similarity between ports and send.

4.6 Packed Data

MPI-1 provides the capability for users to pack their own messages. A stream interface is provided in OOMPI.

In the following example, a message of 200 integers is constructed and sent:

7The functions Get tag() and Set tag() are inherited from the OOMPI Tag class.
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int i;

OOMPI_Port Port;

OOMPI_Packed msg(OOMPI_COMM_WORLD.Pack_size(i, 400),

OOMPI_COMM_WORLD, PACK_TAG);

...

msg.Start();

for (i = 0; i < 200; i++)

msg << i << rank;

msg.End();

Port << msg;

The arguments to the OOMPI Packed constructor are the size of the bu�er to be created, the communicator,

and the tag to be used for sending and receiving this instance. Note that no count argument is passed to

the Port when sending the object; an OOMPI Packed object inherently knows its count. That is, sending an

OOMPI Packed object will send as many bytes as were packed. Receiving an OOMPI Packed object will attempt

to receive a message as long as the entire bu�er. MPI-1 allows the normal receipt of a shorter-than-expected

message.

Note that the OOMPI Packed object has local state. However, it does not appear to be a common case for

more than one thread to pack into the same bu�er. Therefore, we de�ne a process that has multiple threads

packing into one bu�er to be erroneous, and avoid locking concepts and locked objects. Each thread should

pack into its own OOMPI Packed instance. In any case, the OOMPI Packed object provides the same level of

thread safety for packing as does MPI-1.

4.7 Attributes

Unlike MPI++, OOMPI does not support MPI attributes. The MPI functions MPI Attr Get(), MPI -

Attr Put(), MPI Keyval create(), and MPI Keyval free(), have no corresponding functions or classes in

OOMPI. Attribute caching can be handled in C++ in a much more e�cient and intuitive manner than is

provided with the MPI interface. Future versions of OOMPI may include some attribute caching scheme

(Since this is a form of object declaration, users can exploit inheritance).

4.8 Objects

Listed below are all the objects that are used by OOMPI at the user level. Each object contains a brief

description and list of functional requirements.

Each object is pre�xed with OOMPI so that no name con
icts will occur with the ANSI C bindings of

functions, datatypes, and constants. All OOMPI names (member functions, objects, and constants) follow

the same capitalization scheme as MPI-1 names. In addition to the MPI pre�x, many MPI-1 functions also

contained a second pre�x to classify functionality (e.g., MPI Type *). In such cases, the second pre�x was

made part of the object name and the member functions were named from the remaining su�x. For example,

MPI Type Vector() became the Vector() member function of the OOMPI Datatype object.

4.9 Communicator Objects

The objects associated with communicators are as follows:

OOMPI Comm OOMPI Comm world OOMPI Group

OOMPI Intra comm OOMPI Cart comm OOMPI Port

OOMPI Inter comm OOMPI Graph comm OOMPI Any port

These objects encapsulate the functionality ofMPI communicators and are the basis for all communication

(point-to-point and collective). The communicator objects contain the group object used to create the

communicator, a port object for each rank in the communicator, and an error handler (if there is one).
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The OOMPI Comm object is an abstract base class from which the classes OOMPI Intra comm, OOMPI Inter -

comm, and OOMPI Comm world are derived. These classes represent and provide the functionality associated

with intra-communicators, inter-communicators, and MPI Comm world, respectively. Note that the class

OOMPI Comm world has only one instance of an object, the global variable OOMPI COMM WORLD.

The OOMPI Group object encapsulates all the operations on groups. In OOMPI, the OOMPI Group is used

by the OOMPI Communicator object.

An OOMPI Port object is created for each rank in a communicator. It encapsulates all the point-to-point

and rooted collective communication functionality. Point-to-point communication routines (e.g., Send() and

Recv()) invoked on an OOMPI Port implicitly specify the destination (or source) rank. Rooted collective

communication routines invoked on an OOMPI Port implicitly specify the root of the operation.

4.10 Message and Data Objects

The OOMPI objects associated with messages are as follows:

OOMPI Message OOMPI User type OOMPI Request

OOMPI Array message OOMPI Packed OOMPI Status

OOMPI Datatype OOMPI Op

The MPI-1 C bindings of MPI-1 specify that all data bu�ers are of type (void *). Since the type of

the data is not inherent in the argument, a second argument must be speci�ed to provide the type. In

C++, functions can be overloaded based on the type of their formal parameters, but there are two problems

with this approach: it leads to a function explosion and user-de�ned types are not included in this scheme.

Using OOMPI Message as a base class with lightweight default promotions for all base types provides a clean,

e�cient, and useful way to not have to overload functions for each type.

The OOMPI Message object is a base class that is used to unify diverse datatypes (base C++ types and

user-de�ned types) into one object type. That is, every MPI-1 function that includes a (void *) data bu�er

argument is replaced with an OOMPI Message argument (and/or OOMPI Array message argument, see below).

Since the OOMPI Message object includes the MPI datatype and a pointer to the top of the data, functions

that have OOMPI Message arguments inherently know the data's type and where it resides in memory.

The OOMPI Message object can be used for both implicit promotion and explicit message formation. It

is sometimes desirable to explicitly form an OOMPI Message to override a default type tag or to encapsulate

an entire array (to include the count argument). The resulting OOMPI Message object can be re-used after

it is formed, even if the variable (or values in the array) change; the OOMPI Message object keeps a pointer

to the data just for this purpose.

The OOMPI Array message object is very similar to the OOMPI Message object except that it is used to

implicitly promote arrays. It does not take an argument indicating how many elements exist in the array;

OOMPI Array message is only used as a promotion mechanism, and can therefore only take one argument.

One of the main reasons for splitting the implicit promotion of arrays into its own class is to avoid

an ambiguity where count arguments are required. Since the OOMPI Array message class is only used for

promotion purposes, an explicit count argument must be supplied. The OOMPI equivalents of the MPI -

Send() function are declared below. In the second function, the count argument speci�es how many elements

are in the array.

void Send(OOMPI_Message buf, int tag = OOMPI_NO_TAG);

void Send(OOMPI_Message_array buf, int count, int tag =

OOMPI_NO_TAG);

OOMPI Array message is only used as an internal object; it is not considered to be part of the user

interface.

That is, there are three mechanisms to pass data of base C++ types (user de�ned types are discussed

in section 4.3) to OOMPI functions: two implicit mechanisms and one explicit mechanism. OOMPI Message

and OOMPI Array message are used to implicitly promote the base types. Note that the implicit promotion

to an OOMPI Array message is not su�cient for the stream interface because the count argument cannot be

supplied.
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int i, j[10];

OOMPI_Port Port;

...

// Both implicit mechanisms can be used with the

// standard interface:

Port.Send(i);

Port.Send(j, 10);

// Only the implicit scalar promotion can be used with

// the stream interface:

Port << i;

OOMPI Message can also be used to explicitly create re-usable messages that contain either scalar variables

or arrays:

int i, j[10];

OOMPI_Port Port;

OOMPI_Message imsg(i, MY_INT_TAG);

OOMPI_Message jmsg(j, 10, MY_INT_ARRAY_TAG);

...

// Explicitly formed messages can be sent through the

// standard interface:

Port.Send(imsg);

// Or they can be sent through the stream interface:

Port << jmsg;

// They can also be re-used:

i++;

j[3]++;

Port << imsg << jmsg;

The OOMPI Datatype object is used to describe the datatype of a message. In addition to providing

access to functions that build the less complicated user-de�ned datatypes such as MPI Type contiguous()

and MPI Type vector(), the OOMPI Datatype object also provides a simple, streams-based interface to build

more complex datatypes with MPI Type struct(). The OOMPI Datatype object can build and commit any

valid user-de�ned MPI-1 datatype.

The OOMPI User type object is the heart of user-de�ned datatypes. It must be inherited and initialized

by all objects that will be sent and/or received in message passing calls. It is very similar to OOMPI Message

in that it is used to unify all datatypes (through inheritance) into a single type that can be used to access

the object's type and data.

The OOMPI Packed object provides a simple, streams-based interface for packing and unpacking messages.

The bu�er that is used for packing and unpacking can either be speci�ed by the user or allocated by the

OOMPI Packed object.

The OOMPI Op object is a simple wrapper to the MPI Op create() and MPI Op free() functions.

OOMPI Request objects are used for non-blocking communications to identify a posted communication

and match the initiating post with the post that terminates it. A request object identi�es properties of

a communication operation such as send mode, the communication bu�er, its context, and the tag and

destination arguments to be used for a send (or receive). In addition, this object stores information about

the status of the pending communication operation.

The OOMPI Status object encapsulates all the operations that can be performed on an MPI Status

handle. These operations include the MPI functions MPI Get count(), MPI Get elements(), and functions

for determining the source and type of incoming messages.
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4.11 Object Semantics

The semantics of OOMPI object is a critical issue. All of the objects exist to provide access to MPI-1

functionality, so the semantics of their member functions are well de�ned. However, it is not completely

clear what happens in the presence of some of the expressive power that we gain by using C++.

For instance, it is important to de�ne what happens in the following sort of statement:

int i;

OOMPI_Intra_comm a;

a = OOMPI_COMM_WORLD;

a[0].Receive(i);

In particular, here are some questions about the above statement:

1. In the statement OOMPI Intra comm a, what value is given to the internal MPI communicator handle

of a?
2. What would happen if a communication operation were attempted using a just following its construc-

tion?
3. In the statement a = OOMPI COMM WORLD, what value is given to the internal communicator of a?

Is it MPI COMM WORLD or is it a duplicate (using MPI Comm dup())? What happens to the internal

communicator that might already exist in a? What if another object references that communicator?

These and other issues are handled by a set of formalisms for construction, destruction, copying, and assign-

ment of OOMPI objects.

Handles. Most OOMPI objects encapsulate MPI handles and their associated functions. As such, it is very

important to provide sharing semantics for the underlying MPI handles. For example, consider a statement

like

int i = 0;

OOMPI_Request Request = OOMPI_COMM_WORLD[0].Send_init(i);

The call to the Send Init() member function of OOMPI COMM WORLD ultimately results in a call to MPI -

Send init(). The call to MPI Send init()will in turn produce an MPI Request handle that is then wrapped

up inside an OOMPI Request which is the return value of Send init(). This return value is then assigned

to Request. Since the underlying MPI Request is an opaque handle, it is important that Request contain

the same internal MPI Request handle as the object returned by Send init().

OOMPI includes a simple internal reference counting mechanism for providing such sharing semantics. The

internal MPI handles of OOMPI objects are not themselves contained inside of OOMPI objects (although it is

useful to consider them to be). Rather, they are wrapped up in a special container object and the OOMPI

objects themselves have a \smart pointer" to the wrapped-up handle to e�ect reference counting.

The rami�cations of the sharing semantics on the construction, destruction, copying, and assignment of

OOMPI objects are described below.

Construction. All OOMPI objects that have internal MPI handles will provide a constructor that takes the

corresponding MPI handle as an argument. The argument will have a default value of the handle NULL

value. For example, this constructor for OOMPI Cart comm would be declared as:

OOMPI_Cart_comm(MPI_Comm = MPI_COMM_NULL);

Destruction. Destruction of an OOMPI object with a smart pointer (and concomitant destruction of the

smart pointer itself) will cause the reference count of the container to be decremented. A decrement to zero

will cause the container itself to be destroyed and a pre-de�ned function to be called on the handle contained

therein (e.g., MPI Request free()).
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Copying and Assignment. A copy or an assignment is usually two steps; 1) destruction of the previous

contents, 2) assignment of the new contents. Step 1 is discussed in the previous paragraph; step 2 is simply

the inverse | increment the reference count of the container that is being copied.

Compatibility. In order to maintain compatibility with existing MPI C libraries, it is not only necessary

to be able to construct OOMPI objects from MPI handles (as discussed above), it may also be necessary to

extract the MPI-1 handle from the OOMPI object. For such cases, any OOMPI object that contains an MPI

handle also includes a Get mpi(void) member function which will return a reference to the internal MPI

handle.

It should be noted that the Get mpi() function is only intended to provide an interface to the under-

lying MPI objects for use by external libraries. Extracting the underlying MPI object and using it for the

construction of another OOMPI object will create inconsistency problems within OOMPI. Since OOMPI

uses a wrapping scheme to ensure that separate instances of OOMPI objects actually point to the same MPI

object, using the extracted MPI object to create another OOMPI object will create second wrapper instance

within OOMPI rather than a copy of the original wrapper. This is considered erroneous.

const Semantics. The const version of OOMPI was speci�cally designed to be implemented on top of

existing MPI-1 ANSI C bindings. As such, it was onerous to use const for functions and arguments in

OOMPI when the underlying MPI implementation did not make use of it at all. Since MPI-2 includes C++

bindings which make use of const, future versions of OOMPI will be layered on the C++ bindings rather

than the C bindings, and therefore utilize const constructs.

inline. This document only outlines the design requirements for OOMPI; it does not specify particular

implementation details. As such, inline is an optimization that will be expected in high-quality OOMPI

implementations, but it is not required, and therefore is not speci�ed in this document. Since the current

OOMPI implementation is a thin layer on top of existing MPI bindings, it only makes sense to use inline

wherever possible, but this is an implementation decision.

5 MPI C++ Language Bindings

A number of proposals for the MPI C++ bindings were introduced during the course of the MPI-2 Forum.

The original (preliminary) proposal was modeled closely after the MPI++ class library (Section 3). The

initial proposal introduced a major question to the Forum; speci�cally whether the bindings should be a

full-blown class library or should they be something closer to the C interface? Both options were explored,

with proposals for each introduced over a period of time. After the Forum had a chance to study and

evaluate the class library proposal, it was decided that the role of the C++ bindings was to facilitate the

development of class libraries, but not actually to be a class library. The proposed class library later became

Object-Oriented MPI (OOMPI), see Section 4).

After the class library approach was discarded, the pendulum swung towards conservatism and a proposal

for low-level bindings was made. These proposed bindings were close to the C bindings, but provided a few

C++ features such as const and reference semantics. However, the Forum decided that these bindings were

too low-level and did not do enough to enable class library design.

Thus, the �nal, and accepted, proposal for MPI C++ bindings found the middle ground between big and

small. The bindings contain a number of class library-like features, but still remain limited enough not to

constrain class libraries built using them. In many respects, it very closely resembles the original MPI++

design (Section 3).

5.1 Object-Based Design

An obvious choice for the C++ bindings (once there was a decision to go with the \small" interface)

was to turn the handles into regular C++ objects. These objects, however, retained the same handle-

based semantics as their C counterparts. Namely, the C++ objects are user-level handles to underlying
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implementation-dependent objects. Thus, the C++ bindings present the visible portion of the Bridge pattern

discussed in Section 2.

Most MPI functions became methods associated with MPI objects. In most cases, which object to asso-

ciate with a given function was \obvious", though the rationale is ultimately more intuitive than rigorous.

Examples of these obvious choices were Comm::Send() and Request::Wait(). Some functions were \obvi-

ous" candidates for a speci�c class even though they did not include a single IN or OUT argument of that

type. For example, MPI::Datatype::Create struct() takes an IN array of MPI::Datatype. Such functions

were still de�ned on that class, but were declared static since they have no corresponding this pointer.

5.2 Naming

MPI-1 did not use consistent naming rules. Often, names are of the form MPI Object action as in MPI COMM SPLIT

and MPI INTERCOMM MERGE, but sometimes they are not, e.g., MPI TYPE CONTIGUOUS. Sometimes the verbs are

consistent, e.g., MPI COMM FREE and MPI TYPE FREE, but sometimes they are not, as in MPI ERRHANDLER SET

and MPI ATTR PUT.

Unlike MPI-1, MPI-2 uses a consistent naming scheme of the form MPI Object action subset. For the

C++ bindings, the Forum decided to use the consistent names. Although the MPI-2 C++ scheme for both

MPI-1 and MPI-2 functions are slightly di�erent from the MPI-1 C names in several cases, the consistent

C++ naming scheme was found to be advantageous for the following reasons:

1. The C++ bindings are new. There is no existing code that needs to be changed or documentation

that must be rewritten.
2. It was agreed that using the inconsistent names was more of a problem in a C++ context where the

structure highlights discordant design. The inconsistent names would result in C++ names such as

Status.Get count() and Status.Get elements(), which both use the verb \get," while Comm.Size()

and Comm.Rank() do not.8

3. The C++ names are necessarily di�erent from the C names already, e.g., Comm.Send() instead of

Comm.MPI Send().

One relatively new feature of ANSI C++ is the namespace construct which allows programs to provide

explicit scoping of MPI names. The MPI C++ bindings make use of this feature by including all names

within the scope of a namespace MPI.9 As such, all C++ MPI names are pre�xed with \MPI::".

5.3 Object Semantics

Constructors and Destructors. MPI-1 has routines that clearly create objects (e.g., MPI COMM DUP) and

routines that free them (e.g., MPI COMM FREE). It seems at �rst natural in C++ to turn these and related

functions into constructors and destructors. The main problem with such an approach is that Create() and

Free() are collective operations. Thus a declaration

MPI::Comm a(MPI::COMM_WORLD)

intended implicitly to MPI COMM DUP the prede�ned MPI COMM WORLD communicator would be a \collective

declaration." Worse, the return from the routine where this variable was declared would be a collective

operation, when the object was implicitly freed with MPI COMM FREE in the destructor.

MPI-2 therefore chooses a path that may be unfamiliar to C++ programmers: the application is respon-

sible for explicitly creating and freeing objects using the appropriate explicit MPI function calls. Consistent

with the MPI memory management model, memory management is not automatically handled by construc-

tors and destructors.

Nevertheless, MPI-2 speci�es default constructors that initialize objects to be equivalent to their cor-

responding MPI::* NULL handles, and destructors that do free the \top-level" C++ object, but not the

underlying object to which it refers.

8In comparison, the actual names of the last two functions use the standardized verb \get". They are MPI::Comm::Get size()

and MPI::Comm::Get rank(), respectively.
9Some C++ compilers do not implement the namespace construct yet. An Advice to implementors in the MPI-2 standard

allows implementors to use a non-instantiable MPI class if namespace is not available.
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Copy and Assignment. Since the C++ objects are still handles to underlying objects, the copy and

assignment operations are shallow. The assignment

MPI::Comm comm = MPI::COMM_WORLD;

does not create a new communicator, comm is now an alias for MPI::COMM WORLD. That is, comm and

MPI::COMM WORLD now reference the same underlying object. The MPI::Status object does not follow this

rule. Since MPI::Status has public data members and does not necessarily point to internal implementation-

dependant data, copies and assignments are deep.

Comparison. Similarly, comparisons of MPI handles return true only if they point to the same internal

object. MPI::Status is again an exception to this rule; the comparison operators are not de�ned on the

MPI::Status class because it is not a handle to an underlying object.

Constants. The prede�nedMPI constants are singleton objects, meaning that they can only be instantiated

once. In contrast to the C and Fortran constants, their types are explicitly speci�ed with the exception

of MPI::COMM NULL (discussed below). All constants must also be const to allow for possible compiler

optimizations, particularly when passed as function parameters.

5.4 The Comm Class Hierarchy

The C++ bindings recognize the inheritance relationships between types of communictors by de�ning the

following four communicator classes: Intercomm, Intracomm, Cartcomm, and Graphcomm. Intercomm and

Intracomm are derived from the Comm base class; Cartcomm and Graphcomm are derived from Intracomm.

Functions that require speci�c types of communicators (e.g., MPI CART RANK) are de�ned on their respective

classes, while functions that apply to all types of communicators (e.g., MPI SEND) are de�ned on the base

class, MPI::Comm.

The function MPI COMM DUP presents a unique problem in this MPI COMM DUP returns a new communicator

of the same type as the original. In C, this is not a problem because all four communicators are of the same

type. In C++, however, each communicator is a di�erent type, and one function cannot return four di�erent

types. Also, since it is not desirable to have copy constructors that perform collective actions, DUP must be

realized as a regular member function. Several alternatives were proposed:

1. Return by Reference. virtual MPI::Comm& MPI::Comm::Dup() This binding does not �t the MPI

memory management model that requires the user to manage memory. Thus, this C++ version of

MPI COMM DUP would be signi�cantly di�erent than its C and Fortran counterparts if it were to allocate

memory itself.
2. Return by INOUT. virtual void MPI::Comm::Dup(MPI::Comm& newcomm)Although this binding would

not break the MPI memory management model, the syntax is non-intuitive, and does not conform to

ideas discussed later in Section 5.6
3. Return by value. COMMTYPE MPI::COMMTYPE::Dup() Substituting any of the four communicator types

for COMMTYPE gives four non-virtual bindings; this function is not implemented on the MPI::Comm

base class. However, typical parallel library functions take any type of communicator as an argument,

duplicate it (regardless of its type), and use it to perform simple sends and receives. That is, a typical

function in a C++ parallel library may be prototyped as:

void startFoo(Comm& usercomm)

But since Dup() is not de�ned on the Comm base class, startFoo cannot duplicate usercomm without

�rst casting it to another type, which defeats the point of prototyping the argument as a Comm&. Simply

put, this binding restricts the use of ploymorphism.

The Forum decided that option 3 was the best solution since it does not break the MPI memory man-

angement model, has intuitive syntax, and returns the correct type. To provide a \virtual Dup()", a new

function was introduced that only exists in the C++ bindings, Clone():
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virtual MPI::Comm& MPI::Comm::Clone() = 0;

Although Clone() does not conform to the MPI memory management model, the Forum decided that its lack

of symmetry was acceptable because the name only exists in the C++ bindings. Note: that the prototypes

of Clone() in the derived classes are slightly di�erent; they return references to their respective (derived)

types.10

The type of MPI::COMM NULL is implementation dependent; it must be able to be used in comparisons

and initializations with all types of communicators.

5.5 Exceptions

The C bindings for almost all MPI functions (except MPI WTICK and MPI WTIME) return an error code. In

principle, an application can check this error code and take some action if there is an error. In practice,

this error code is rarely used. First, by default, errors cause an MPI program to abort (this is often the

desired behavior). Second, even if MPI is con�gured to return errors to the application, the MPI standard

states that the state of a program is unde�ned after an MPI error. About the only thing an application can

(semi)reliably do is print an error message and abort. Finally, it is tedious to check the return value from

every MPI function call and to appropriately handle the errors.

C++ exception handling provides an elegant mechanism to handle errors. C++ applications are given the

option of setting the default error handler to MPI::ERRORS THROW EXCEPTIONS, in which case MPI functions

throw a C++ exception when there is an error. Thus, C++ member functions do not return error codes as

function values.

5.6 Return Values

In C and in Fortran, values are returned through the argument list. For instance in C,

MPI_Comm newcomm;

MPI_Comm_dup(MPI_COMM_WORLD, &newcomm);

returns a new communicator in newcomm. Part of the reason for this is that the return value of the function

is reserved for the error code. Since C++ MPI methods do not return error codes, the function return value

is freed up to hold more than an error code, thus allowing more natural notation such as

MPI::Comm newcomm = MPI::COMM_WORLD.Dup();

In many MPI functions there is a single \OUT" quantity that makes sense as a return value in the C++

case. In other functions, the OUT quantity may not be readily returned (e.g., when it is an array { because of

MPI's memory management model { or when there are multiple OUT arguments and it is not obvious which

argument should be returned), or there may be no OUT quantity at all. In these cases, the corresponding

C++ bindings return void.

5.7 References, Pointers, and MPI STATUS IGNORE

The MPI C++ bindings use const and reference semantics when possible. All \IN" parameters that areMPI

objects are both const and passed by reference to allow for compiler optimization. Additionally, passing by

reference does not incur the additional overhead of copy constructors. Thus, the binding for MPI COMM SEND

is

void Comm::Send(..., const Datatype& datatype, ...)

10Not all C++ compilers implement virtual functions in derived classes that can overload the return types. An Advice to

Implementors in MPI-2 allows implementors to return MPI::Comm& if their compiler does not yet support this feature.
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The only pointer arguments are char* arguments for strings (because of convention) and void* arguments

for choice bu�er arguments.

This introduces a problem with the the new MPI-2 option to ignore a returned MPI Status by specifying

the constant MPI STATUS IGNORE for the corresponding OUT argument. In C, this constant is an argument

of type MPI Status*, and usually has the value NULL. In C++, the corresponding status argument is passed

by reference and therefore must be a valid MPI::Status instance; it is not possible to pass a NULL pointer.

Therefore, the C++ bindings take a di�erent route, which is to have two bindings for every function with

an OUT MPI Status argument in the language-independent speci�cation. One binding has a reference to a

MPI::Status argument and the other has no MPI::Status argument. The C constant MPI STATUS IGNORE

has no corresponding constant in C++.

5.8 Interfacing with C

To provide a transparent interface between C and C++, three functions are de�ned on all C++ MPI classes

(except MPI::Status): a casting operator to cast C++ objects into C handles, a promotion operator to

create C++ objects from C handles, and an assignment operator to allow the assignment of C handles to

C++ objects.

There is no mechanism to translate directly from C++ to Fortran. A user must convert a C++ object

into a C handle and then use the provided MPI-2 functions to convert it to a valid Fortran handle.

5.9 Design Details

An abbreviated de�nition of the MPI namespace and its member classes is as follows:

namespace \MPI/ {

class Comm {...};

class Intracomm : public Comm {...};

class Graphcomm : public Intracomm {...};

class Cartcomm : public Intracomm {...};

class Intercomm : public Comm {...};

class Datatype {...};

class Errhandler {...};

class Exception {...};

class File {...};

class Group {...};

class Info {...};

class Op {...};

class Request {...};

class Prequest : public Request {...};

class Grequest : public Request {...};

class Status {...};

class Win {...};

};

These include MPI-2 objects not previously considered in this paper and beyond the scope of the cur-

rent discussion. Multiple and virtual inheritance are not used in the design. All member functions are

virtual except those which are static (which cannot be virtual) and the MPI COMM DUP variants (which

are implemented separately on each class).

6 Comparisons

Each of the three designs for MPI are valid object-oriented approaches, but are intended for di�erent uses.

Both OOMPI and MPI++ can be extended to include new MPI-2 features as well, they are not shown here.

The \minimalistic" approach of the C++ bindings only provides an object-oriented base for MPI, and is

intended to be used to build higher-level abstractions, (such as MPI++ and OOMPI).

Conversely, OOMPI makes use of many C++ features and does not attempt to preserve the function

signatures ofMPI. Since this backwards compatibility was not one of the goals, OOMPI had greater 
exibility
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MPI++ OOMPI C++ bindings

Use inheritance Yes Yes Yes

Designed for inheritance Yes Yes Yes

OUT arguments Pointer Reference Reference

Return Values Error Codes OUT OUT

Error reporting Return code Exceptions Exceptions

Destructors Empty MPI * free() Empty

Copy constructor Deep Shallow Shallow

Table 2: Comparison between several points of the MPI C++ bindings, MPI++, and OOMPI.

in design which allowed for new abstractions, e�cent usage of default arguments, and overloaded functions.

If the MPI C++ bindings and OOMPI can be considered the two extremes of object-oriented design, MPI++

can be considered a hybrid of the two.

Table 2 shows a comparison of several points between the three approaches. The use of inheritance is a

key di�erence between the class libraries and the bindings. For example, MPI++ and OOMPI both have

expanded class hierarchies for communicators while the C++ bindings only have a single MPI::Comm class.

However, all three libraries are designed for inheritance. That is, users can derive their own objects from

objects in any of the three libraries.

The C++ bindings and OOMPI both use reference semantics for OUT variables, while MPI++ uses

pointer semantics. The use of reference semantics allows for cleaner notation and for user-de�ned polymor-

phism as well as preventing overhead from copy constructors. Pointer semantics remain compatible with the

MPI C bindings and potentially ease migration for C programmers, but provide for less elegant notation,

which we regret in retrospect.

As a design requirement, the C++ bindings must conform to the C and Fortran 77 bindings and return

integer result codes from function calls. MPI++, also by design, returns integer result codes. OOMPI,

however, usually returns the OUT variable; exceptions are used to return errors. This allows for much more

natural programming and readable code. For example:

int rank1, rank2, rank3;

MPI::COMM_WORLD.Rank(rank); // C++ bindings

MPI_COMM_WORLD.Rank(&rank); // MPI++

rank = OOMPI_COMM_WORLD.Rank(); // OOMPI

The OOMPI version is an assignment to the rank variable.

Since one of the MPI philosophies is to have the user manage memory space, the C++ bindings do

not attempt to take advantage of destructors; destructors do not free the MPI handle in the underlying

implementation. MPI++ also takes this approach. OOMPI uses intelligent reference counting to free the

internal MPI handle when the last OOMPI object referencing it is destroyed. While taking the burden of

memory management o� the user, it can produce unexpected results if the programmer is not careful. The

following OOMPI fragment shows this:

void foo()

{

OOMPI_Intra_comm bar;

bar.Dup(OOMPI_COMM_WOLRD);

}

When bar goes out of scope at the end of foo, its destructor is invoked, which triggers a call to MPI -

COMM FREE, which may cause collective communication across the bar communicator.
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MPI++ takes the opposite approach in copy constructors; MPI COMM DUP is invoked, while the C++

bindings and OOMPI simply copy the handle. Unexpected collective communication can occur in the

following MPI++ fragment:

void foo(MPI_Comm_intra bar)

{

}

When the foo is invoked, the calling communicator is MPI COMM DUP'ed into bar. Additionally, it is

not MPI COMM FREE'ed when bar goes out of scope at the end of foo. This can result in wasted resources

if a programmer is not careful.

6.1 Code Examples

Figure 15 shows an implementation of the canonical ring program implemented in the MPI C++ bindings.

The ring program starts by having the highest numbered rank send a message to rank 0. When each rank

receives the message, it passes the message to the next rank (i.e., the process with rank equal to (my rank

+ 1), or rank 0 for the highest numbered rank). The message passes around the ring this way count times,

with rank 0 consuming the �nal message sent at the end of the program.

#include <iostream.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

MPI::Init(argc, argv);

int msg[1] = { 123 };

int rank = MPI::COMM_WORLD.Get_rank();

int size = MPI::COMM_WORLD.Get_size();

int to = (rank + 1) % size;

int from = (size + rank - 1) % size;

if (rank == size - 1)

MPI::COMM_WORLD.Send(msg, 1, MPI::INT, to, 4);

for (int i = 0; i < 5; i++) {

MPI::COMM_WORLD.Recv(msg, 1, MPI::INT, from, MPI::ANY_TAG);

MPI::COMM_WORLD.Send(msg, 1, MPI::INT, to, 4);

}

if (rank == 0)

MPI::COMM_WORLD.Recv(msg, 1, MPI::INT, from, MPI::ANY_TAG);

MPI::Finalize();

return 0;

}

Figure 15: Canonical ring program written with the MPI C++ bindings.

Note that MPI INIT and MPI FINALIZE are invoked as members of the non-instantiable MPI class, MPI::-

Init() and MPI::Finalize(), respectively. MPI COMM RANK, MPI COMM SIZE, MPI SEND, and MPI -

RECV, are implemented as member functions of MPI::COMM WORLD | Rank(), Size(), Send(), and
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#include <iostream.h>

#include "mpi++.h"

main(int argc, char *argv[])

{

MPI_Status status;

int rank, size, msg[1] = { 123 }, count = 5, i = 0;

MPI_COMM_WORLD.Init(&argc, &argv);

MPI_COMM_WORLD.Rank(&rank);

MPI_COMM_WORLD.Size(&size);

int to = (rank + 1) % size;

int from = (size + rank - 1) % size;

cout << "I am node " << rank << " of " << size << endl;

cout << "Sending to " << to << " and receiving from " << from << endl;

if (rank == size - 1)

MPI_COMM_WORLD.Send(msg, 1, MPI_INT, to);

for (i = 0; i < count; i++) {

MPI_COMM_WORLD.Recv(msg, 1, MPI_INT, from, &status);

cout << "Node " << rank << " received " << msg[0] << endl;

MPI_COMM_WORLD.Send(msg, 1, MPI_INT, to);

}

if (rank == 0) {

MPI_COMM_WORLD.Recv(msg, 1, MPI_INT, from, &status);

cout << "Node " << rank << " received " << msg[0] << endl;

}

MPI_COMM_WORLD.Finalize();

return 0;

}

Figure 16: Ring program written with MPI++.
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Recv(), respectively. The function signatures are similar to their C counterparts; the main di�erence being

the missing communicator argument (it has become this).

The MPI++ implementation of the ring program is shown in Figure 16. It is very similar to the C++

bindings implementation except that MPI++ does not have a separate MPI:: namespace, and MPI++ uses

default arguments for tags.

#include <iostream.h>

#include "oompi.h"

int

main(int argc, char *argv[])

{

int count = 5, i = 0, msg = 123;

OOMPI_COMM_WORLD.Init(argc, argv);

int rank = OOMPI_COMM_WORLD.Rank();

int size = OOMPI_COMM_WORLD.Size();

int to = (rank + 1) % size;

int from = (size + rank - 1) % size;

if (rank == size - 1)

OOMPI_COMM_WORLD[to].Send(msg);

for (i = 0; i < count; i++) {

OOMPI_COMM_WORLD[from].Recv(msg);

cout << "Node " << rank << " received " << msg << endl;

OOMPI_COMM_WORLD[to].Send(msg);

}

if (rank == 0) {

OOMPI_COMM_WORLD[from].Recv(msg);

cout << "Node " << rank << " received " << msg << endl;

}

OOMPI_COMM_WORLD.Finalize();

return 0;

}

Figure 17: Ring program written with OOMPI.

Figure 17 shows the OOMPI implementation of the ring program. While the structure of the OOMPI

version is almost identical to the previous two programs, the invocation of the message passing calls is quite

di�erent. operator[] is used to specify the OOMPI Port to send to or receive from. The Send() and Recv()

calls are quite di�erent as well; the integer message is transparently promoted into a OOMPI Message and

given a default tag before the communication takes place11.

11Note that strategic use of inline in OOMPI drasticly reduces the amount of overhead that one would expect from the

discussion of how the Send() and Recv() functions are invoked in this example.
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7 Future Design Work

An object-oriented programming model would contribute to the understanding of the application program-

mer interface, o�er intuition for the design of object-oriented support for such programming, and motivate

strategies for extensions that provided added functionality and/or higher achievable performance. Key design

isuues have been identi�ed and solved providing an object-oriented architectural model for MPI-1. However,

the added functionality and complexity of MPI-2 will require more rigorous analysis methods. These ex-

panded methods will o�er a more understandable, clearly de�ned and extensible model for the system.

Conceptual consistency of a detailed model promotes better understanding of the system which will lead to

better understanding of the implementation issues of the system. Extensibility o�ers better opportunities

for studying changes in the system. Added services and/or possible avenues for optimization could be the

source of the changes. The potential e�ects on the underlying object structures and interactions can then

be more carefully studied by using a more rigorous approach.

Several opportunities for extending the analysis exist. The �rst extension is to give a more formalized

view of the objects beyond the data dictionary. For instance, CRC cards would clearly identify the objects,

responsibilities and collaborators [4]. State transition diagrams present a more in-depth analysis of the

interaction of the objects within this system thus modeling more detailed behavior for the system [4]. Fowler

[16] has presented a di�erent approach, in that the domain is modeled conceptually. Using this approach to

model the domain knowledge provides a smoother transition to the speci�cation model for the system.

The collection of patterns is extensive and this repository of expertise may o�er proven solutions.

Buschmann [6] has organized the patterns into three levels, architectural, design, and idioms (implemen-

tation). For instance, an existing pattern could be chosen instead of created, as was done in this paper.

The Broker pattern, which has a message-passing variant [6], or Streams, a variant of which is used in a

push-driven message model [13] are both potential architectural patterns for the push-driven model of the

MPI system [30]. In fact, a merger of patterns may need to be considered for the MPI-2 system. The

Half-Sync/Half-Asynch architectural pattern may need to be merged with the Broker or Streams patterns

to provide the communications and �le I/O for MPI-2 [26]. Coordination of the architectural patterns with

supporting design patterns is another bene�t of reusing an architectural pattern [6, 13]. For instance, the

Proxy is a complimentary design pattern used by the Broker architectural pattern to transparently provide

appropriate message facility, such as IPC or network messages to applications [6] . Zimmer [32] and the Gang

of Four [17] o�er a di�erent classi�cation schemes of patterns as that provide more insight to combinations

of patterns that provide design solutions. Zimmer's classi�cation scheme concentrates on the relationships

between patterns. One of the possible criteria of classi�cation show which patterns are frequently used by

other patterns in their solutions. For example, the command pattern may use the composite pattern. The

Gang of Four takes yet another approach and classi�es the patterns according to the problem that it will

satisfy, such as behavioral or structural, etc [17].

Future study will look more closely at the MPI-2 domain and what is needed to provide a more detailed

model of that system. Patterns and research on combinations of patterns provides an extensive store of

techniques that may be reused to build this model for MPI-2. An implementation independent model can

then be built and used to provide a means of understanding MPI-2. Applying the understanding gained

through the use of these models, implementation issues and/or other issues can then be examined more

readily for each speci�c environment.

8 Object-oriented APIs for MPI

We consider the future research directions for the two research APIs described in this paper.

8.0.1 MPI++

The design of MPI++ discussed conservative choices about the use of C++ features. Speci�cally, in our e�ort

to retain a large measure of compatibility with the C interface, certain interfaces remain C-like. However,

the class structure of C++ was exploited in some cases.
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What is absent here, largely becauseMPI objects are already reference-counted by virtue of the application-

programmer-interface semantics, is discussion of nested classes, inheritance, and the handle/body (or enve-

lope/letter) idioms discussed by Coplien [8]. The MPI++ objects that implement opaque MPI objects are

relatively simple because the C objects they encapsulate are already quite easy to manage. However, because

the C binding has neither hooks for inheritance, nor an external interface to support tight binding of the

C++ interface, certain concessions were inevitable.

For example, it is not possible to layer certain calls involving arrays of request objects on top of the

equivalent MPI calls (e.g., MPI Wait and MPI Waitall). Speci�cally, one cannot pass an array of C++

requests to the C routine, because the objects di�er in content and format. For this reason, it is tempting

not to use some of the built-in MPI functionality that works on arrays of C objects, but rather to use

more primitive MPI functions, and do the array versions in the MPI++ implementation. However, this

could dramatically a�ect the performance and/or deadlock properties of the C++ version. Our design

requirements forbid so large a deviation from the original underlying implementation.

A workable solution to this problem is to consider a ground-up implementation ofMPI in C++, basing the

system on an appropriate abstract network architecture, as is commonly done. Considerable improvements

would potentially result if the entire system were C++, rather than just the uppermost layers, and some

of these could lead to improved functionality as well as higher performance. Such an implementation is an

ideal next step for the MPI++ project.

Application Experience Relatively small quantities of code have been written in MPI++ as compared

to MPI's C and F77 bindings, but substantial code now exists. Hence, we lack the breadth of feedback

that such experience would provide about the e�cacy of features we have provided, and the usefulness of

the extensibility of the classes we have de�ned. For example, we have not explicitly provided for multiple

inheritance based on our classes, although we have followed Coplien's Inheritance Canonical Form for simple

inheritance [8]. We expect to get additional feedback from application programmers, which could lead to

signi�cant additions or changes in functionality. Furthermore, other approaches to C++-based message

passing are likely to give us impetus for change and improvement.

At the outset of this work, we were already convinced that a class library based on MPI could provide a

useful parallel C++ environment. What remains to be studied is whether an inherently parallel compiler-

based environment, with commands to support and manage parallelism, can provide things that C++, as

extensible as it is, cannot. We look forward to such a comprehensive study, as we believe this will help

drive further research into the most fruitful directions for parallel C++ systems. Furthermore, we look to

signi�cant application experience as a guide toward what MPI++ should and should not provide to support

libraries and applications.

At present, MPI++ has been transfromed to o�er the standardized C++ language bindings for the MPI-1

subset of MPI-212

8.0.2 OOMPI

The next major release of OOMPI (1.1) will be built upon the C++ MPI bindings, and could utlilize

the newest MPI++ release for that purpose. This will enable full use of const semantics. While this

semantic change in the OOMPI interface may cause problems in terms of backwards compatibility, correctly

written OOMPI programs should not be adversely a�ected. Building OOMPI on the C++ MPI bindings will

simplify the underlying implementation of OOMPI. This will reduce the overhead of a typical OOMPI call,

and therefore result in higher performance. Some additional functionality will probably be o�ered as well.

For example, attribute caching, OOMPI to MPI casting operators, and enhanced datatype constructors are

potential new features.

Finally, OOMPI 2.0 is projected to include support for all of MPI-2, once MPI-2 implementations become

prevalent.

12This is available online 13 code and examples available at http://www.erc.msstate.edu/labs/hpcl/mpi++.
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9 Conclusions

In this paper, we presented two object-oriented class libraries for supplementing theMPI system, in support of

C++. The features and limitations of these systems were presented, as was an after-the-fact object-oriented

analysis of the application programmer interface and semantics ofMPI-1. We compared the two class libraries

to the C++ interface accepted by the MPI Forum. Furthermore, we noted that both class libraries have

formed the basis for support of this interface in various forms ofMPI implementations. The main lessons here

are that C++ needed a class library to work comfortably with the MPI application programmer interface,

that several levels of abstraction make sense, and that these still may be particularly of interest to users in

view of the spartan support introduced by the MPI Forum itself.

The lessons learned about the objects and interactions of MPI, obtained herein, o�er insight into the

forward design of extensions and future interfaces analogous to MPI, representing an important contribution

to further e�orts in such standard-oriented e�orts. Ideas from this work have had a positive impact on the

real-time message passing interface standard (MPI/RT), which has exploited object-oriented analysis and

design from the outset.
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