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Abstract
We present here our work aimed at developing an open, network based
visual software engineering environment for parallel processing called
Visper. It is completely implemented in Java and supports the message-
passing model. Java offers the basic platform independent services needed
to integrate heterogeneous hardware into a seamless computational
resource. Easy installation, participation and flexibility are seen as key
properties when using the system. We believe the approach taken
simplifies the development and testing of parallel programs by enabling
modular, object oriented technique based on our extensions to the Java
API.
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1. Introduction

Wide and local area networks represent an important computing resource for parallel
processing community. The processing power of such environments is deemed huge. One
of the problems is that they are made up of heterogeneous hardware and software. In this
paper we focus on describing a novel metacomputing environment named Visper. The
aim of the project is to allow a programmer to make an efficient use of networked
computing resources by employing techniques such as visual program composition and
analysis, checkpointing and fault tolerance. Visper is implemented in and for Java [16]
that, due to its platform independence and uniform interface to system services, simplifies
the implementation of SPMD parallel applications and the system software needed to
support them.

1.1 Native Message-Passing Systems

A number of tools and libraries have been designed to foster the use of networks to run
parallel programs. In the message-passing domain, products like the MPI [19] and the
PVM [15] transform heterogeneous networks of workstations and supercomputers into a
scalable virtual parallel computer. While MPI is focused on message passing aspects,



PVM acts as a runtime system. The aim of both is to provide a standard and portable
programming interface for several high level languages. They have been adapted to a
variety of architectures and operating systems. Both systems require programmers to
build a different executable for each target architecture or operating system and programs
must be started manually. The insufficient security and dependence on shared file system
limits their use for large or widely distributed applications. For example, while it is
possible for a PVM process to run code that is loaded from other network nodes, the
virtual machine provides no protection for its hosts against malicious or errant behavior
from the downloaded code.
To enable message-passing programming across intranet boundaries, on a global scale, a
number of systems have been developed. Globus [14, 21] is a popular toolkit that
comprises a set of interrelated components for wide area computing. As part of the
project, the MPICH-G library was developed to run MPI on a wide area network using
the same standard MPI commands. Nexus [12] is a communication library that enables
transparent accessibility of remote computers with support for lightweight threading,
communication, synchronization, and address space management. Legion [18, 21] is a
metacomputing system based on a distributed objects model, and unlike many other
systems, security is an integral component of its core. Legion provides users with
mechanisms to select policies that meet their needs without jeopardizing local
administrative requirements.

1.2 Java Programming Model

Java is an object-oriented (OO) language whose syntactical structure is similar to C++.
The language model, though somewhat limited, finds its strongest point in its simplicity.
With the advent of Java and the Internet the world of computing has been enriched by a
new programming technique that is inherently driven by platform independence. This
explains why Java should not be recognized merely as yet another programming language
but rather as a concept or an environment. Java is a sequential programming language
that features object-oriented concepts and preemptive multithreading, where thread
methods offer a set of synchronization primitives based on the monitor paradigm by
C.A.R. Hoare [20]. In Java, the synchronized-wait-notify construct provides such a high-
level monitor.
Java threads, however, do not have built-in point-to-point communication primitives
needed for message-passing parallel programming. Instead, the API provides general
concepts for implementing communication primitives that are very flexible. Thus created
freedom allows various kinds of communication facilities to be used. Java binaries are
shipped across a network and executed on client machines. Security is therefore a critical
issue and strongly enforced in Java. A Java interpreter executes binaries at client side.
Hence, the model is safe since the sent bytecodes are verified at the client that prevents
corrupted or evil classes from causing problems [42]. Based on these premises we can
extend the network OO programming from the procedural one based on RPC or RMI [41]
to the class one based on the fact that classes and objects can be sent over a network
rather than plain data or a method invocation. Moreover, it is possible to preserve object’s
state, to initialize it, etc. We can think of classes (threads) that are distributed over
networks, rather than just methods that execute on remote hosts.



While being a concurrent multithreaded language with dynamic (remote) loading and
linking capabilities, Java offers little help for distributed programming. Objects and
classes in Java are mobile. They may be unknown to the receiver upon reception, but
since new classes can be added to a running program, objects downloaded from network
can be resolved and linked in at runtime. Thus, dynamic linking can be employed to
implement elegantly mobile code systems allowing, for example, dynamic system
configuration or programming. However, Java threads are not mobile, since thread
migration is not supported. This means that both data and code can be moved or
transmitted from one machine to another at any point in time, but not the current state of
execution, if any, associated with the object.

1.3 Motivation

Distributed and parallel programming have been topics of active research for some time
with the main areas of interest being networking and architecture related issues. In 1995
the Pasadena Working Group #7 [26] has drawn out the following recommendations
regarding tools for high-performance computing environments: Efficient support for
(object-oriented) programming on parallel architectures in particular requires elaborate
programming tools. The research should aim at supporting high-bandwidth, low-latency
messaging, and transparent marshaling and demarshaling of message content. The
ability to instantiate or schedule processes (threads) on shared and distributed memory
architectures with low overhead is also important, together with support for the right
division of work between various software layers and employed machines. This work
needs to be progressively extended to address the more general issues of an
infrastructure for parallel objects in an environment that is not dedicated to one
application and is controlled by external agents, and therefore extensible. In our
research, we have taken Java as the basis for building a system that aims at meeting the
Pasadena Working Group #7 recommendations as close as possible.
Even though Java was not designed for parallel programming, it is not hard to identify the
reasons to implement a parallel application in Java. As an OO language, Java provides us
with strong typing, and the objects everywhere feature that has as few implementation
dependencies as possible. Java code is compiled to a form that runs on any architecture
that implements the Java Virtual Machine (JVM) [23]. Therefore, with Java, the
architecture dependent problems of metacomputing have been resolved since the
environment and the API are inherently architecture independent. However, the price for
that has been in slow execution speed of Java programs. This problem has been addressed
by the just-in-time (JIT) and HotSpot compilation techniques, with some encouraging
results being reported [37]. The Java Native Interface [39] and support for CORBA [38]
enables interoperability with native code for better performance or reuse. Security is part
of the language as well as of the environment. The lack of pointer arithmetic and garbage
collection allows fast prototyping. The missing support for parallel processing can be
implemented either by extending the API or by adding new keywords to the language.
New keywords, however, violate portability by requiring nonstandard components. The
implementation of the missing functionality to enable efficient group operations (e.g.
control and method invocation) and message-passing parallel programming while
exploiting the advanced features of Java (e.g. object and class mobility, object
serialization [40]) is another aspect of our research.



Visper is conceived as an open and integrated metacomputing environment that provides
services to design, develop, test and run message-passing parallel programs. It provides
an MPI-like communication library, and features to spawn and control lightweight
processes (i.e. threads) on remote hosts from within the environment. It is controlled and
configured by a set of agents that can be dynamically uploaded. The system is capable of
supporting multiple users and applications concurrently, where each application runs
within its own session, being controlled and monitored from its parent console. In this
paper we will expand upon the mentioned points. Section 2 describes the organization
and the main services supported by the environment. Section 3 describes the API and the
programming model, while Section 4 provides various performance data. Section 5
informs on the related metacomputing work in Java. A description of older systems can
be found in [2]. The paper concludes with Section 6.

2. Visper

Visper is an interactive, object-oriented environment implemented in Java, with a set of
tools for construction, execution and testing of SPMD applications. It is conceived as a
tool for research into parallel and distributed Java programming, and as an efficient,
reliable and platform independent environment that produces useful results. It can be used
by multiple users and run multiple programs concurrently. Figure 1 shows the tool
architecture and the main components. Visper consists of a frontend (i.e. console) and a
backend (i.e. system services). The purpose of the frontend is to implement the graphical
user interface and to encapsulate as much of the syntax of the model as possible. The
backend implements the semantics of the model independent of the front design. The
overall system operation can be described in terms of the two components.
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Figure 1 Architecture

Visper is built on top of two communication techniques: a reliable point-to-point
(TCP/IP), and an intranet multicast (iBus [32]). Both techniques are used simultaneously.
We have enhanced the iBus with a routing subsystem that transfers iBus messages across
domain boundaries. Each user starts a console that represents the frontend to the system.
The console provides the means to compose, start and analyze parallel programs. The



user then creates one or more sessions, where each session runs only one parallel program
at a time. A session is an ordered collection of hosts and represents a virtual parallel
computer. It allows control and data collection of a running program. It can dynamically
grow or shrink while a program is running, since hosts can join or leave (i.e. crash). The
host that dynamically joins a session, remains part of it until manually removed by the
user.
The backend consists of the services to run parallel programs and generate debugging and
runtime data. The naming service represents a database of available resources, sessions
and acts as a port-mapper and detector of faulty machines for point-to-point mode. Each
machine that is part of a Visper environment must run a Visper daemon. Each daemon
forks one worker process per session that runs parallel programs, and maintains workers'
state (e.g. active, dead). To minimize the start-up cost, each session maintains its set of
workers as long as active. As presented in Figure 1, workers can run multiple remote
threads (RT). To allow location transparent programming and more efficient loading of
Java class files (i.e. active and passive objects), the user can define multiple loading
points, and different access modes (e.g. http://…, file://…).

2.1 The Console

To a programmer, the console is the only tangible component of the tool. The purpose of
the console is to enable user-to-system interaction and to implement the syntax of the
programming model or program specification. Its main strength is in the visual parallel
program composition and in the visualization of program execution. Thus, it is the
console for the system in which the user constructs a parallel program, then exercises it
through an interface. Figure 2 shows various frontend components. For example, the
frontend provides a visual programming environment with a pallet of model primitives
that can be placed on a canvas and which can be interconnected using arcs to create a
Process Communication Graph (PCG), details of which can be found in [33, 35]. The
frontend also generates a structured internal representation of the model, performs
syntactic analysis of the graph the programmer is constructing, and translates the graph
into a Java program. Finally, the frontend is the user interface to the backend that allows
program execution, control and debugging.
To run a program, the user first connects to a Visper daemon, from where the currently
available hosts are obtained. In a group dialog, the user then creates one or more sessions.
Hosts can be shared between sessions, as each session has its own set of workers. Then, a
system wide path is defined that instructs the workers where to look for the application
class files. Finally, in an execution dialog, the user defines input arguments and starts a
program within a selected session. These operations do not require special scripts or valid
user accounts on the involved hosts. When running a program, the run-time data
collection can be switched on and off, and later analyzed in a space-time diagram (some
initial results have been reported in [22]). To help with debugging, the system also
intercepts the exceptions generated by the parallel program and displays it in the console.
If they are system related, they are displayed in the top right window, and if program
related, then in the bottom window where program output gets displayed. The top left
window displays backend messages initiated by user actions (e.g. J+ means the host has
joined the session). Console does not yet provide a system wide interface to jdb.



Figure 2 Frontend Components

2.2 The Backend

The backend consists of a naming service and a set of Visper daemons, resource
managers and workers running on a network or networks of computers (Figure 3). The
backend reacts to directives from a console, then notifies the frontend of the changing
program status as the execution process takes place. At a direction from a frontend, the
backend reports information regarding program activity and host allocation per session,
and generate space-time diagram data.
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Figure 3 Backend Control Flow



Visper is built on top of the socket API that comes with Java and the iBus intranet
middleware. Java sockets provide the basic reliable point-to-point communications by
TCP/IP protocol, and local intranet or subnet boundaries do not affect their scope. The
problem with this approach is its limited scalability. Ethernet and Token ring based
networks allow efficient hardware multicast facilities. However, in Java they are not
reliable and therefore we use iBus that enables a model of spontaneous networking,
where applications can join and leave reliable multicast channels dynamically. Along
with the reliable multicast capabilities, iBus also provides a simple interface to receive
membership changes and failure detection. When a view change occurs, either due to a
new node joining or leaving the channel, the iBus membership protocol detects it and
delivers a view change notification to registered listeners.

2.2.1 Visper Daemon

A Visper daemon (or just daemon for short) is a standalone Java process that enables its
host machine for processing in Visper. Upon startup, each daemon registers with the
naming service, and forks one worker that is initially not assigned to any session. If the
daemon is designated as an iBus router, it creates a thread that forwards iBus messages
across domain or subdomain boundaries to the designated daemons via TCP/IP channels.
After that, the daemon is ready to accept requests from a console or other backend
components. Requests are processed by a daemon agent, installed at startup. The default
agent can be replaced without restarting the daemon.
When a user creates a session, the console broadcasts the user-defined group of hosts into
the environment. Each affected daemon assigns the non-assigned worker to the session,
and then forks a new non-assigned worker to speed up future new session requests.
Daemons use the java.lang.Process class to control and communicate to the workers. To
simplify the design, console-to-worker communication is directed through a parent
daemon.

2.2.2 Resource Manager

Each Visper daemon is accompanied by a resource manager. Similar to the Visper
daemon, the resource manager implements only the basic synchronous and asynchronous
message-passing services, and a message handler that understands system-related
messages. Resource managers are configured by the agents that implement different
resource allocation policies. By default, each resource manager offers two allocation
policies: the random and the round robin. New policies can be added dynamically, at
runtime. When a resource manager adds a new host to a session, the parent console gets
informed about the change.

2.2.3 Worker

A worker is a standalone Java process that executes remote threads. From the system's
perspective, a worker represents a virtual processor with memory. Workers are persistent,
meaning that as long as the session they belong to is active, they remain active, too.
Therefore, they are capable of storing the bytecode locally across multiple executions.
Workers load bytecodes by a customized class loader. There is only one class loader per
worker. It extends java.lang.ClassLoader by allowing multiple loading modes and points.



When testing a program, the user can reload the stored classes without restarting the
worker, by creating a new loader. Workers can execute concurrently multiple remote
threads, if those threads belong to different groups. If not, they are executed as a FIFO.
Each worker provides a default communication channel for the parallel programs it runs,
which eliminates the need for an initial synchronization among a group of running remote
threads (see Section 3.6.2).

3. Programming Model

A program in Visper is a union of three (orthogonal) entities: the code, the hosts, and the
class files location. From the programmers' perspective, Visper provides a simple API
that enables object communication and parallel processing. In Figure 4, the dashed lines
designate inheritance, and the solid lines represent aggregation. The system-level classes
are prefixed with a V (for Visper), and the user-level classes with a RT (for remote
thread). Most RT classes are just wrappers for the corresponding V superclasses. Their
purpose is twofold. First, to abstract away implementation issues by providing a simple
and coherent API. Second, to present the API as just one package (visper.rt), rather than
the programmer having to deal with the internal package structure.
A RTSession is an object allocated by the system that keeps track of all the resources
allocated by a program, and contains information about the current session status and
configuration. For each run, there is only one session object. The RTComms is an MPI
like library that provides point-to-point, collective, synchronous and asynchronous
communication and synchronization primitives. The group and process package
implements classes to group remote threads, to provide communication scope, and to
create and control them from within a program. VProcess is a system class that represents
a controllable virtual process. RTRemoteProcess and RTRemoteGroup provide methods
to spawn and control one or more remote threads. The RTGroup (VGroup) class of
objects provides primitives to order processes. It is unique within its session, representing
the smallest unit of process organization in Visper. The RTCheckpoint class implements
checkpointing.
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Figure 4 API

As a metacomputing environment, Visper is a collection of daemons that are dynamically
configured and controlled by the agents. All agents are derived from the VAgent class.
Agents are system-level, self-contained, interactive and autonomous objects. They



communicate by asynchronous messages that are offered by the system. Upon arrival, the
host daemon allocates a Java thread for the agent to run on, and informs the agent about
its message queue.

3.1 Message-Passing Primitives

At the application level, Visper provides a TCP/IP based communication class called
RTComms that enables direct process-to-process communications in pure [29] Java. The
RTComms style follows the MPI standard, but in its implementation is driven by the
features of and services provided by Java. Unlike MPI, all the primitives take a user
defined tag. We allow intergroup collective communications. The design is partially a
choice of simplicity over efficiency. While the Java Object Serialization [40] enables
simple programming, it is reportedly slow [4, 28] (also Section 4.2). Further, RTComms
hides the addressing and communication mechanisms from the programmer. Issues, such
as the establishing of communication channels and the handling of network exceptions
are performed internally, therefore making the programmer's code smaller than the
corresponding socket version. For brevity, we list below some of the implemented
methods. (For performance reasons, buffered MPI primitives were not implemented.)
public class RTComms {

public Object[] AllGather(RTDataGroup dg,Object data);
public Object[] AllGather(RTDataGroupInter dg,Object data);
public Object[] AllReduce(RTDataGroup dg,Object data,RTDataOp reduceOperation);
public Object[] AllReduce(RTDataGroupInter dg,Object data,RTDataOp reduceOperation);
public Object[] AllToAll(RTDataGroup dg,Object data);
public boolean Barrier(RTDataBarrier db);
public boolean Barrier(RTDataBarrier db,int count);
public Object Bcast(RTDataBroadcast db,Object data);
public boolean Cancel(VData d);
public Object[] Gather(RTDataGroup dg,Object data);
public Object[] Gather(RTDataGroupInter dg,Object data);
public void Probe(RTDataSend ds);
public boolean Probe(RTDataSend ds);
public boolean ProbeAsync(RTDataRecv dr);
public boolean ProbeAsync(RTDataSend ds);
public Object Recv(RTDataRecv dr);
public RTDataRecv RecvAsync(RTDataRecv dr);
public Object Reduce(RTDataGroup dg,Object data,RTDataOp reduceOperation);
public boolean Send(RTDataInter dr,Object data);
public boolean Send(RTDataSend ds,Object data);
public RTDataSend SendAsync(RTDataSend ds,Object data);
public boolean SendInter(RTDataInter di,Object data);
public Object SendRecv(RTDataSendRecv dsr,Object data);
public Object Test(RTDataRecv dr);
public boolean Test(RTDataSend ds);
public Object[] WaitAll(RTDataRecv[] dr);
public boolean[] WaitAll(RTDataSend[] ds);
public RTDataSend WaitAny(RTDataSend[] ds);

}
The RTComms class supports blocking and non-blocking point-to-point and collective
message-passing primitives in a raw and trace mode. Messages can be sent within a group
or among different groups. The synchronization capabilities are represented by the barrier
method. There are two variants, one that waits for all processes in a group and the other



that releases the block after the specified number of processes have made the call, as in
PVM. All the methods follow the same pattern, where first argument represents the
message envelope, and second argument represents the data. Similar to MPI, the
programmer is reasoning in terms of transparent process identifiers, rather than IP names
and ports. However, RTComms is an object based communication library taking
advantage of the Java Object Serialization mechanism, method overloading, and it does
not support directly native data types. The benefit of this approach is that the programmer
does not have to define the type of the data being sent to the system. The drawback is that
the programmer must use a wrapper object to send native types.
As in MPI, the following attributes define a message envelope: the tag, the process
identifier, and the group. They are combined into an object of the VData class. Figure 5
presents the (simplified) hierarchy of envelope classes used by the communication
methods.

VData

RTDataSend RTDataGroup RTDataBcast

RTDataGroupInter

RTDataBarrier RTDataInter

RTDataScatter

RTDataSendRecv

RTDataOpRTDataRecv

Figure 5 Envelopes

VData is an abstract class that defines methods to match itself against other envelopes.
public abstract class VData implements java.io.Serializable,Cloneable {

VData(int tag,int sendToID,String sendToGroup,int recvFromID,String recvFromGroup);
public abstract boolean Match(VData d); // exact match
public abstract boolean MatchAnySource (VData d);
public abstract boolean MatchAnyTag(VData d);
public abstract boolean MatchAnyTagSource(VData d);

}
The constructor takes a message tag and 4 arguments that fully define the scope. For an
intragroup message the RTDataSend defines the tag and the sendTo* part, while the
RTDataRecv defines the tag and the recvFrom* part (see Section 3.6.1), and the system
adds the missing data, by default. Each subclass implements the match methods,
depending on the desired behavior. For example, the RTDataBcast class returns false for
all the MatchAny* methods, allowing only the exact match to return a valid result. On the
other hand, a point-to-point send allows matching based on all the criteria. For intergroup
messages the RTDataInter requires all the 5 arguments to be coded. RTDataOp defines
the reduction operation for Reduce methods.

3.2 Remote Thread

Remote threads are the basic building blocks when programming in Visper. They can be
described as protocol and platform independent components that dynamically extend the



functionality available at remote hosts. Similar to applets they are Java application
components that are downloaded, on demand, to a part of the environment where they get
scheduled to run on a Java thread allocated by the worker. Remote threads have the Java
advantage: memory access violations and strong typing violations are not possible, so that
faulty remote threads will not crash processes the way that is common in most C
language environments. A remote thread is any class that implements the RTRunnable
interface:
public interface RTRunnable extends java.io.Serializable {

public void Run(String[] args,RTThreadGroup rttg,RTSession rts);
}
This solution has been chosen to promote code reuse, since Java does not support
multiple inheritance. It allows any Java class to be turned into a remote thread simply by
implementing the interface, rather than forcing the programmer to inherit from a remote
thread class. Therefore, a remote thread is a class, but not all the classes that a remote
thread makes use of or reference are remote threads. They, nevertheless represent this
remote thread context. Upon creation and initialization by the system, such an object
executes its Run method. This method defines the remote thread script or body: the
sequence of actions that it executes while alive. It takes three arguments. The first
argument contains the input arguments (if any) defined by the user. The second argument
is used in those cases when the program makes use of Java threads. All the spawned Java
threads should belong to that thread group for the system to block before all of them join.
The third argument represents the session on which the program executes. When Run
terminates, the remote thread terminates, too. Remote thread termination is unified with
garbage collection, making it unreachable.

3.3 Remote Process and Remote Group

Remote threads provide us with the basic mechanism for parallelism that makes a Java
class runnable in Visper. However, we still need a structured and constrained parallel-
programming model that will allow remote instantiation, execution and control of tasks.
Object-oriented software development methods deal with concurrency according to either
the implicit concurrency model or the explicit concurrency model. In the implicit model,
the objects themselves have concurrent execution capabilities. Each object represents an
autonomous unit that performs a requested service concurrently with other objects. In the
explicit model, there are two abstraction concepts: processes and objects. Objects are
encapsulated inside processes, the latter providing concurrent execution capabilities by
allocating the resources the objects will make use of.
Due to the design of Java described in Section 1.2 our concurrency model is explicit.
Along with being explicit, our model can be classified as sequential since each process
has only one (remote) thread of control. Consequently, there is a one-to-one mapping
between remote threads and processes. As shown in Figure 4, the model comprises four
classes. VProcess is a system class that defines methods to control a remote thread. The
methods are simple as they only return control protocol objects. It has three attributes: the
group, the remote thread class name, and the input arguments.
class VProcess implements java.io.Serializable {

VMessage Invoke(java.lang.reflect.Method method,Object[] args);
VMessage IsAlive();
VMessage Join();



VMessage Migrate(int processID);
VMessage Resume();
VMessage Start();
VMessage Stop();
VMessage Suspend();

}
RTRemoteProcess and RTRemoteGroup allow asynchronous creation of remote threads.
Remote threads are started automatically when scheduled for execution, by invoking their
Run methods. Both classes implement the same interface together with the
communication mechanisms between a parent thread and a child thread or threads.
RTRemoteProcess uses TCP/IP, and RTRemoteGroup uses iBus multicast if not talking
to an individual remote thread. RTRemoteProcess has two attributes: the VProcess, and
the process ID. RTRemoteGroup has two attributes: the VProcess, and the list of process
IDs relative to the group, if not homogeneous.
public class RTRemoteProcess implements java.io.Serializable {

public RTRemoteProcess(Class rtclass,String[] args,RTGroup rtg,int processID);
public boolean Invoke(java.lang.reflect.Method method,Object[] args);
public boolean Invoke(String method,Object[] args);
public boolean IsAlive();
public boolean Join();
public boolean Migrate(int processID);
public boolean Resume();
boolean Start();
public boolean Stop();
public boolean Suspend();

}
The RTRemoteProcess constructor takes three arguments. The processID defines the host
relative to the group on which to spawn a new remote thread. When an object owns a
reference to a remote process or a group of processes it is able to control it by invoking
methods. To simplify programming, all the interface methods return a true or false status.
For example, to test if a remote process is still alive (either active or suspended), we use:

IsAlive()
Explicit synchronization with remote process termination is provided by the Join method.
It blocks until the processes or the group of processes completes its execution, i.e. exit
Run. The Invoke method enables method invocation on remote threads. This mechanism
is based on the Java Reflection API [36], which is an example of structural reflection that
gives us an insight into structural aspects of the classes and objects in the current JVM. If
the security policy permits, the Reflection API can be used to construct new class
instances, invoke methods on objects and classes, etc. A more transparent model of
method invocation would require a preprocessor similar to the one used by Java and RMI.
It, nevertheless, allows invocation of methods on processes as well as groups. Also, any
process that holds a reference to another process may invoke methods on it. A subset of
the methods defined by the VProcess class is implemented by the console to control
programs on a world basis (e.g. Stop, Resume).

3.4 Group

A group is an ordered set of processes. It is the smallest form of resource organization in
Visper. A process is instantiated as a member of a group. Groups can be static (i.e.
defined at compile time) or dynamic (i.e. allocated by a resource manager). The group



names are unique, meaning that within a session no two groups can share the same name.
They are system-wide objects, meaning that if a host crashes, all the groups that reference
that host will get notified. RTGroup exports the group size, name, and process ID relative
to itself. By default, each session has a group called RTWorld (Figure 6), that comprises
all the processes employed by the session, whether allocated statically or dynamically.
This differs from the MPI-2 [24] model in which an intercommunicator binds a
dynamically created group to the static. Groups may have a virtual topology, represented
by the RTGraph and RTGrid classes (not implemented yet).

RTGroupRTWorld

RTGrid RTGraph

RTParentRTLocal

Figure 6 Groups

Visper provides two more groups to simplify programming with RTRemoteProcess and
RTRemoteGroup constructs. The idea is to have a programming model that does not
depend on a specific naming convention, or forces the programmer to pass configuration
information when allocating new processes. One group is called RTParent, and has only
one member that is the process that has created the remote process or the remote group of
processes. The other group is called RTLocal and is an alias for the actual group the
process belongs to. Both classes are pseudo groups, since they do not allocate resources.
For example, in a master-worker scenario, a process P1 from Group1 creates a group
called Group2, and populates it with processes (Figure 7). The RTRemoteGroup object is
used when referencing the remote threads it has spawned. After the workers from Group2
perform some calculations, P1 collects the results via an intergroup gather.

Group1 Group2

P1

RTParent

RTLocal
RTRemoteGroup

Figure 7 Local and Parent Group

The following program excerpts implement the master part:
RTGroup Group2 = new RTGroup(rts); // create new group in this session (rts)



RTRemoteGroup rg = new RTRemoteGroup(Worker.class,null,Group2);
Object[] obj = comms.Gather(new RTDataGroupInter(10,P1,Group1,Group2),null);

and the worker part:
public class Worker implements RTRunnable {

Object result = …; // calculate result
RTGroup parent = new RTParent(rts); // get parent, i.e. P1 of Group1
RTGroup local = new RTLocal(rts); // get local group, i.e. Group2
comms.Gather(new RTDataGroupInter(10,0,parent,local),result);

}
The Gather primitive reads as: collect all the results with tag 10 from Group2 at process
P1 of Group1. Process P1 does not add anything to the result as null is passed into the
gather. At the worker, the system automatically maps group local to Group2, and process
0 of group parent to process P1 of Group1.

3.5 Remote Thread Migration and Checkpointing

In distributed programming, process migration is important since it allows processes to be
restarted from a known state in a different address space. Depending on the application, it
can be used either to offload the host, or to intentionally continue execution on a new
host. Remote threads can migrate only within the same group. Before a migrated thread is
restarted, all the system wide references to it must be updated automatically. In a parallel-
programming environment where programs take long time to complete, we are also
interested in the ability to recover the application in the case of a failure. For a standalone
remote thread that is idle or wants to migrate itself, the scenario is simple since its state is
known at the time of migration, and the migration can be performed immediately. For a
communicating/interactive remote thread, however, we can only restart the thread from a
preserved state, not the current since it is unknown.
To support migration and fault tolerance, Visper provides a checkpointing mechanism
that allows saving state of an object periodically. Checkpointing is implemented at high
level as an API class called RTCheckpoint, since the specification of the JVM prohibits a
migrated object to be restarted from the last execution point transparently. Checkpoints
are inserted at appropriate places in the code, and the already computed operations must
be skipped over when the remote thread resumes execution from a snapshot state in a new
worker. Multiple checkpoint objects may be created, each with a unique name. Each
checkpointed object must have a unique name that is used to recover it. By calling
commit, the checkpoint is marked as complete. Subsequent calls to write form a new
checkpoint.
public class RTCheckpoint {

public RTCheckpoint(RTSession rts,String name);
public boolean Commit(); // mark checkpoint as complete; also a hint to save checkpoint
public boolean Initialize(); // initialize checkpoint
public boolean Recover(); // get last consistent program checkpoint
public boolean RecoverLast(); // get last process checkpoint
public Object Read(String name);
public boolean Write(String name,Object obj);

}
To accommodate for the standalone case, the complete remote thread is checkpointed
upon a request for evacuation, by default. To minimize the cost in time, the process is
synchronous and unbuffered, since the mechanism does not make or maintain in-process
copies of the checkpointed objects. The data are passed locally, through a socket, to the



parent Visper daemon that implements the optimistic checkpointing policy where each
process takes checkpoints independently [10]. The daemon may either buffer in memory
or save checkpoints to file. A message is sent to flush the buffers when the process they
belong to terminates. Upon recovery, the system tries to construct a consistent program
state from the files. Both, the checkpointing and the evacuation are based on the Object
Serialization mechanism and stream compression filters, and they require that all objects
registered with the fault tolerance mechanism are serializable. Objects are serialized to a
byte array to relive the daemon from downloading the class files when reading (i.e.
deserializing) the passed data.

3.6 Example Programs

Visper console provides two modes of execution: the MPI mode and the dynamic RT. In
the MPI mode, the system executes a requested remote thread by sending it to all the
workers in a session (i.e. World). This resembles the static SPMD style as in MPI 1. In
the RT mode the console sends requests only to the first process in a session (the one with
ID 0 relative to the World). That remote thread acts like a bootstrap. To populate other
processes in a session, we use a RTRemoteProcess or a RTRemoteGroup. It is important
to notice that when writing a program, these modes are not relevant. They are simply
primitives provided by the console to simplify program deployment.
Here, we present a simple example program. It consists of two processes, one that sends a
message and the other receives it. The receiving process sends a message to the console
that displays the message (integer number) being sent.

3.6.1 The MPI Execution Mode

The MPI execution mode version consists of only one class called SendReceiveMPI. It
implements only the Run method as dictated by the RTRunnable interface.
import visper.rt.*;
public class SendReceiveMPI implements RTRunnable {

public void Run(String[] args, RTThreadGroup rttg,RTSession rts)
{

RTComms comms = new RTComms(rts); // use default communications
RTWorld world = new RTWorld(rts); // use default group
if (world.HostID() == 0) {

RTDataSend ds = new RTDataSend(10,1,world);
comms.Send(ds,new Integer(5)); // blocking send

} else if (rts.HostID(world) == 1) {
RTDataRecv dr = new RTDataRecv(10,0,world);
Integer msg = (Integer)comms.Recv(dr); // blocking receive
rts.Out(msg.toString()); // send to console

}
}

}
The program first creates a RTComms called comms, and a default group called world.
They are both registered with the session (rts). Similar to MPI, we use group-based
process identifiers to identify individual processes. In the example, process 0 sends an
Integer object, while process 1 receives it. Both processes use blocking primitives. The
send envelope defines a message tagged as 10, to process 1 of group world. The receive
envelope defines a message tagged as 10, from process 0 of group world.



3.6.2 The RT Execution Mode

This program, when written for RT mode, requires two remote threads, following the
producer-consumer pattern. The producer (i.e. boot) thread is called SendReceiveBoot. It
creates a new remote thread called SendReceiveEcho on process 1 and sends a message to
it. We will extend the program by using a dedicated communication port.
import visper.rt.*;
public class SendReceiveBoot implements RTRunnable {

public void Run(String[] args, RTThreadGroup rttg,RTSession rts)
{

RTComms comms = new RTComms(rts,2000); // use dedicated port
RTWorld world = new RTWorld(rts);
RTRemoteProcess rtrp = new RTRemoteProcess(SendReceiveEcho.class,null,world,1);
rts.GetComms().Barrier(world); // synchronize
RTDataSend ds = new RTDataSend(10,1,world);
comms.Send(ds,new Integer(5));

}
}
public class SendReceiveEcho implements RTRunnable {

public void Run(String[] args, RTThreadGroup rttg,RTSession rts)
{

RTComms comms = new RTComms(rts,2000); // use dedicated port
RTWorld world = new RTWorld(rts);
rts.GetComms().Barrier(world); // synchronize
RTDataRecv dr = new RTDataRecv(10,0,world);
Integer msg = (Integer)comms.Recv(dr);
rts.Out(msg.toString());

}
}
Since we do not use the default communication port, the system will not buffer the
message. Therefore, due to the asynchronous nature of execution, we first synchronize at
the default communication port (rts.GetComms()), before sending a message.

4. Performance

We have measured the basic performance of Visper using: 7 UltraSparc/Solaris2.5 with
256MB RAM, three Pentium200 with 64 MB RAM and two Pentium400 with 128 MB
RAM/NT 4.00.1381, and two HP A9000-780/HP-UX B.10.20 with 512MB RAM
connected with a 10 Mbps Ethernet. On the HP nodes we have used HP-UX Java
C.01.15.05, on the Sun nodes Sun JDK1.1.6, and on the PCs Sun JDK1.2. Since the
Solaris version does not support just-in-time compilation (JIT), the just-in-time compiler
was disabled for the test, except where noted. We have also used MPICH 1.1.1 [25] and
PVM 3.4 [30], built with Sun's C/C++ 4.2 compilers. The non-JIT results are included to
compare Visper (Java) to MPICH (C) on the same hardware.

4.1 Speedup

The speedup test represents a simple Jacobi iteration with 2000 columns and 300 rows
with a maximum of 100 iterations. The graph in Figure 8 displays the average execution
time and speed-up over 8 runs for different number of nodes (from 1 to 10). For a 500 by
500 matrix, the best speedup value was only 2.7 and it peeked at 7 nodes. This is due to



the fact that the computation time was not significantly greater than the communication
time. It is interesting to compare these speedup values to the one obtained by a similar C
program written for MPICH. For the 2000x300 example, the speedup was 2.11 on the 7
UltraSparc machines, and for the 500x500 example it was 2.27. For 1 node, the
computation times were 15.162 seconds (2000x300) and 5.094 seconds (500x500). For 7
nodes, the 2000x300 example took 7.183 seconds to complete, and the 500x500 example
took 2.242 seconds.
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The graph in Figure 9 displays the average execution time and speed-up over 8 runs for a
matrix multiplication problem with 1000 rows and 1000 columns. The PC values were
collected only on the five PCs with JIT, therefore showing significantly better execution
times. The NOW values were collected only on Unix. The speedup lines, however, are
similar, as the problem is course grain.
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4.2 Point-to-Point Communication

Generally speaking, to send a message, the following steps are required:
•  Address resolution,



•  Data marshaling, and
•  Data Transfer.

With message-passing systems, the address resolution involves conversion of a logical
process identifier with respect to a communication group into the actual IP address and
port. The data marshaling involves the conversion of the data from the local host format
into the network (i.e. architecture independent) format, and back. The data transfer takes
place over a network, the characteristics of which usually have large impact on the
overall performance of parallel programs. These three steps were included in the time
cost benchmark, below.
Here we present the test results for the COMMS1 (i.e. Ping-Pong) [9] test performed on
the mentioned libraries. The purpose of this benchmark is to measure the basic
communication properties of a message-passing environment: latency and unidirectional
bandwidth. The master process sends a message to the slave process, and the slave
immediately returns it to the master. Messages are of a variable length, and it is assumed
that the amount of time to send a message from the master to the slave is equal to the time
required for a return. The tests were performed for messages of 1, 100, 1000, 10000,
100000, and 1000000 bytes in length. The latency and bandwidth values were calculated
by a linear function via a least squares linear regression.
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As a reference, in Figure 10 (and Table 3 in Appendix) we present the COMMS1 results
taken for 3 native systems: the PVM, the MPICH and the jPVM [44] collected on Sun.
As expected, the PVM and MPICH times are very similar. The jPVM times are
marginally inferior to the PVM times, due to the two causes of overhead: an additional
call to switch between Java and C, and the cost of the Java to native data types
conversion. Figure 10 also shows the RTComms times (HP+JIT, PC+JIT, and Sun
curves) for the three target platforms. The tests were performed between 2 computers of



the same type. The HP and PC results were obtained by using JIT. It is interesting to
notice that although RTComms was built directly on top of the Java Object Serialization
mechanism [40], so the impact of the introduced bytecode is minimal, it is two orders of
magnitude behind jPVM for small messages. This is due to a high socket startup and
serialization cost, and threads scheduling in Java. As messages were getting larger, the
impact of Java on the overall performance has decreased. The slower node dominated the
cross-architecture results. For example, the Sun-to-PC test yielded results similar to the
Sun curve in Figure 10, while the PC-to-HP test produced results slightly better than the
HP curve.

Table 1 Communication Cost (ms)

jPVM MPICH Sun HP+JIT PC+JIT
Latency 0.784 0.905 81.554 51.249 5.782
Time/Byte 0.00098 0.00097 0.0016 0.0013 0.0012

Table 1 shows the communication costs for jPVM and MPICH on Sun, and RTComms
on the three target architectures. The RTComms values reflect the high cost of
networking in Java for small messages. jPVM and MPICH have outperformed Java on
Sun by two orders of magnitude, but it is interesting to notice that JIT has significantly
reduced the PC latency, while on HP the impact was only marginal. Good time-per-byte
values can be explained by the fact that as messages were getting larger, the differences
in times were getting smaller, for all the three JVMs.

0

0.2

0 .4

0 .6

0 .8

1

1 .2

1 100 1000 10000 100000 1000000

B ytes Sent

M
B/

s

jPVM
PC+JIT
Sun
M PICH
H P+JIT

Figure 11 Bandwidth (MB/s)

As a result of the rather poor latencies, the effective bandwidth is reduced for small
messages in RTComms compared to jPVM and MPICH by one to two orders of



magnitude (Figure 11 and Table 4 in Appendix). Again, the HP results are rather
surprising regarding the fact that all the tests were performed with JIT compilation. On
the other hand, our implementation and tests have proved that a pure Java message-
passing library, though inferior in performance to the systems based on native code, is a
viable option. A more detailed presentation and discussion can be found in [34].

5. Related Java Systems

The WWW has the potential to be the infrastructure in integrating heterogeneous and
remote computer systems into a global computing resource. There is a growing body of
work on how to utilize best this new technology. Metacomputing systems, even on a local
area network, are complex software and hardware structures and their development is a
difficult, but challenging task. The issues that have to be addressed comprise scalability,
heterogeneity, security, resource management, fault-tolerance, multi-language support,
extensibility, interoperability and ease of use. While the systems mentioned in Section 1.1
address some if not all of these issues, the research work in Java has been progressing in
three directions. One direction, represented by the so-called Java-enabled systems, has
taken advantage of the Java Native Interface to enable execution of Java programs on top
of a native system. This way, a parallel Java program takes advantage of the entire
underlying infrastructure, while utilizing the platform independence and portability of
Java. For example, NexusJava [13] provides Java bindings for Nexus, for creating and
exchanging global pointers and performing remote service requests to methods defined in
objects referenced by these global pointers. The binding also allows interoperability of
Java and Nexus programs written in other languages. The efforts to enable message-
passing libraries like the MPI and PVM to run under the JVM include jPVM [44] and
MPI Java [6]. Similar to NexusJava, they both provide wrappers for the C-calls. Because
Java types do not map easily to native types (e.g. C), the Java-MPI API [3] has been
defined in an effort to standardize the interoperability. The approach of Netsolve [5] is
somewhat different, but rather than implementing a new message-passing system, it
opens up the existing resources to public. Netsolve implements a Java based system for
exporting computational resources and libraries of preconfigured modules to solve
computationally intensive problems. The user communicates with the system via a GUI
that provides a set of available modules, an input window to specify the input data and an
output window to view the results. Upon receiving the problem name and input data, the
Netsolve system automatically allocates resources to carry out the computation and sends
back a result.
The second direction is represented by the early pure Java systems taking advantage of
Java applets running in WWW browsers to achieve distribution and parallelism. For
example, KnittingFactory [2] is an infrastructure to facilitate building collaborative and
parallel computations on the WWW. Load balancing and fault masking are provided by
the runtime system transparent to the programmer. Due to the Java security policy of
host-of-origin, direct applet-to-applet communication uses Remote Method Invocation
[41]. In Javelin [7] there are three components: brokers, clients and hosts. A client is a
process that seeks computing resources to solve a task. A host is a process offering
computing resources. A broker is an HTTP server that coordinates the supply and
demand for computing resources, based on the registrations of intentions by hosts and



tasks by clients. All communication must be routed through the server, which makes a
single server a bottleneck. This model is suitable for solving large, decomposable
problems such as the RSA factoring [31]. The main drive behind these projects was the
recognition of the write once run many capability of Java.
The third direction is represented by the Java systems that do not rely on the WWW
browsers and Java applets, but rather implement standalone parallel environments. Such
systems are built either by extending the language with new keywords [27], or by
providing a pure Java API for parallel processing. While these systems are relatively new,
they are better described as prototypes or ongoing work than complete when compared to
the native systems of Section 1.1. We concentrate here only on pure Java systems among
which we classify Visper, since new keywords require nonstandard Java components.
JPVM [11] is a PVM library written in Java, but misses some important PVM features,
e.g.: dynamic process group, group broadcast and barrier synchronization. JPVM utilizes
Java mainly for heterogeneity, since it lacks the ability to download application code
from network, and fault tolerance is weak. Consequently, its applicability is limited to
local networks. IceT [17, 21] is also a PVM like environment for parallel processing, but
enhanced with classes for collaborative work where multiple users can work together.
DOGMA [8] is a metacomputing system designed for running parallel programs on
networks and supercomputers (IBM SP/2) based on the MPI model. It provides a
communication library, the MPIJ that implements MPI completely in Java. Unlike the
RTComms in Visper, the MPIJ implementation of MPI is based on the MPI C++
bindings as much as possible, and the programming style in DOGMA resembles closely
the one found in MPI. There is no support for passing objects, since the authors have
concentrated on native types and efficiency. Ninflet [43] is a Java based global
computing environment that builds on the experience acquired by the Ninf system.
Similar to Javelin, Ninflet is a three-tier architecture that comprises the dispatcher, the
server and the ninflet. A ninflet is a schedulable client program that executes on the
Ninflet system. Ninflets interact by invoking methods based on the RMI. None of the
systems has referenced the Pasadena Workshop recommendations [26].

Table 2 Comparison

Feature DOGMA JPVM IceT Ninflet Visper
Scalability N N Y Y
Scheduling Y N N Y Y
Load Balancing N N N Y N
Fault-Tolerance N N N Y Y
Extensibility N N N N Y
Interoperability N N Y N
Migration N N Y Y Y
Data Scheme Y N N N N
Clusters Y N N Y N

Table 2 summarizes the more important features implemented so far. It is based on the
list of runtime goals and programming interface that DOGMA seeks to meet. Ninflet is
included primarily as a fairly complete parallel processing system, as it lacks message-
passing primitives. Scalability in DOGMA and JPVM is questionable, since both systems



use persistent communication channels to improve performance. While the performance
results of MPIJ justifies the approach, in JPVM they depend very much on thread
scheduling [34]. In pure Java, load balancing is an open issue due to a rather limited
interface to the OS and, depending on the approach, may require some native code.
Interoperability requires resolving two main problems. One is the initialization of the
native PVM or MPI virtual machine from the Java system and vice-versa, and the other is
in the data representation. As a proof of concept, IceT managed to soft-install C-based
MPI processes on remote environments and dynamically install FORTRAN-base PVM.
The support for clusters in DOGMA is part of its hierarchical system topology. In Visper,
the network is a flat resource that is organized into sessions. However, all the nodes can
be manually ordered in a group dialog (Figure 2) if the user wants to group them in a
particular order. In all the systems security, if addressed, is based on the
java.lang.SecurityManager class. While all the mentioned systems have been tied to the
ideas and the style of the native parallel processing that they follow, Visper is perceived
primarily as an environment that allows different programming styles, models and
applications to be exercised within the same extensible framework. Therefore the support
for parallel processing in Visper is just a service, not the ultimate goal.

6. Conclusion

Visper is a Java based tool for SPMD parallel programming. It combines the novel
features provided by Java such as object serialization and reflection, with the standard
message-passing practices and techniques pioneered by systems like the MPI and PVM.
It allows remote execution of Java bytecodes, by transforming a network of machines
into a virtual parallel computer. A parallel program executes as a group or groups of
asynchronous remote threads that communicate by sending messages. In the shared
variable paradigm, processes communicate by writing to and reading from shareable
memory locations. This paradigm although simple violates the principles of abstraction
and encapsulation, making it difficult to implement large systems reliably [1]. The
problems with such implementations include the mutual exclusion, the condition
synchronization and the lack of control over communication modes for better
performance. On the other hand, remote threads are autonomous, interacting computing
elements that encapsulate data and procedure. They can be dynamically created and
configured, thus providing flexibility in organizing their activity.
Visper is designed as a two-layer system, where system services and system
configuration are cleanly decoupled from the message-passing API. It provides secure,
object-oriented, peer-to-peer message-passing environment in which programmers can
compose, run and test parallel programs within persistent sessions. The communication
primitives represented by the RTComms class follow the primitives of the MPI standard.
They provide synchronous and asynchronous modes of communication between
processes. The programmer can choose between point-to-point and collective
communications. Visper supports synchronous and asynchronous modes of execution and
primitives to control processes and groups of processes as if they were real parallel
computers. The performed tests have shown that Java is a viable option for parallel
processing, especially when enhanced at runtime by a JIT compiler. However, Java is
more suitable for coarse-grained parallel applications, due to the high latency and the



high cost of object serialization on which the RTComms relies. Visper will be made
available from the following site: http://www.comp.mq.edu.au/~nstankov.
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Appendix

Table 3 presents numerically the values drawn out in Figure 10.

Table 3 COMMS1 Times (ms)

Bytes Sent HP+JIT PC+JIT Sun PVM jPVM MPICH
1 12 8 63 0.563 0.95 0.603
100 13 8 60 0.766 1.1 0.709
1000 13 8 60 2.363 2.65 2.203
10000 106 18 121 10.41 10.8 10.21
100000 237 118 236 95.84 97.6 103.1
1000000 1089 1192 1230 966.3 985.05 1026

Table 4 presents numerically the values drawn out in Figure 11.

Table 4 Bandwidth (MB/s)

Bytes Sent jPVM MPICH Sun HP+JIT PC+JIT
1 0.001 0.002 1.60E-05 8.30E-05 1.30E-04
100 0.091 0.145 0.002 0.007 0.013
1000 0.377 0.465 0.017 0.077 0.125
10000 0.926 0.986 0.083 0.094 0.556
100000 1.024 1.018 0.424 0.422 0.847
1000000 1.015 1.036 0.813 0.918 0.839
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