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Abstract
In this paper, we present briefly the implementation of a Java interface for WMPI, a

Windows-based implementation of MPI. Then, we describe a system that is oriented for
Web-based computing and we present a solution to integrate WMPI with this tool by
making use of a Java bridge component and the Java bindings for WMPI. This solution
allows the execution of meta-applications over a mixed configuration of platforms,
execution models and programming languages. The resulting system provides a way to
solve the problem of heterogeneity and to unleash the potential of diverse computational
resources and programming tools.

1. Introduction
The Java language has achieved an incredible success among the IT community and it has
been largely used in Internet applications, client/server computing, office tools, embedded
systems and business applications [Hoff98]. The nice features of the language, like
portability, robustness and flexibility can also be very interesting for the development of
scientific and parallel applications. Several projects started to use Java in high-
performance and numeric computing and, as a consequence, a JavaGrande Forum
[JavaGrande] was created in order to establish some consensus among the HPC
community that is developing Java-based tools and systems.

One of the goals of the JavaGrande is to define a specification for a Java MPI API and a
position document is available at [Carpenter]. There are some implementations of Java
bindings for MPI, like mpiJava [Baker98], JavaMPI [Mintchev97], MPIJ [Dogma]
and JMPI [Crawford].

Since 1994 we have been involved in the development of MPI and PVM libraries for
Windows NT [Alves95][Marinho98] and both implementations (WPVM and WMPI) have
been highly used.
We also provide a Java-based interface for Windows PVM and MPI. We have ported the
jPVM interface [jPVM] for WPVM and a Java binding for WMPI has been developed from
scratch. In this paper we briefly describe the implementation of the JWMPI interface.



These Java bindings allow the communication with C/C++ applications by using MPI or
PVM. The idea is not to replace all the software written in traditional languages with new
Java programs. On the contrary, the access to standard libraries is essential not only for
performance reasons, but also for software engineering considerations: it would allow
existing Fortran and C code to be reused at a reduced cost when writing new applications
in Java.

The rest of the paper is organized as follows: the next section presents a brief overview of
WPVM and WMPI libraries. Section 3 describes the features of our Java binding for WMPI,
while Section 4 describes how JWMPI has been integrated with another Java-based tool
that is oriented to Web-based computing. Section 5 presents some performance results.
The related work is described in Section 6, while Section 7 concludes the paper.

2. Implementations of PVM and MPI for Windows NT
WPVM and WMPI are full ports of the standard specifications of PVM and MPI, thereby
ensuring that parallel applications developed on top of PVM and MPI can be executed in
the MS Windows operating system, as long as they do not use any special feature of the
underlying operating system. These ports can run in heterogeneous clusters of Windows
95/NT and Unix machines.

WPVM (Windows Parallel Virtual Machine) is an implementation of the PVM message
passing environment as defined in release 3.3 the original PVM package from the Oak
Ridge National Laboratory. WPVM includes libraries for Borland C++ 4.51, Microsoft
VisualC++ 2.0, Watcom 10.5 and Microsoft Fortran PowerStation (v1.3). The library is
available at [WPVM].

On the other hand, WMPI is an implementation of the Message Passing Interface standard
for Microsoft Win32 platforms. It is based on MPICH 1.0.13 with the ch_p4 device from
Argonne National Laboratory/Mississippi State University (ANL). WMPI includes
libraries for Borland C++ 5.0, Microsoft Visual C++ 4.51 and Microsoft Fortran
PowerStation. The library is available at [WMPI].

3. JWMPI: The Java Binding for WMPI
To develop a Java binding we need a programming interface for the native methods. The
JDK release from Sun provides a Java-to-native programming interface, called JNI [JNI].
It allows Java code that runs inside a Java Virtual Machine to interoperate with
applications and libraries written in other programming languages, such as C and C++.

3.1 Overview
All JWMPI classes, constants, and methods are declared within the scope of a wmpi
package. Thus, by importing the wmpi package or using the wmpi.xxx prefix, we can
reference the WMPI Java wrapper. The classes of the wmpi package are those



corresponding to the objects implicitly used by WMPI. An abbreviated definition of the
wmpi package and its member classes is as follows:

package wmpi;
public class JWMPI;
public class MPI_Status;
public class MPI_Comm;
public class MPI_Group;
public class MPI_Datatype;
public class MPI_Op;
public class MPI_Request;
public class MPI_Errhandler;

Figure 1: The wmpi package.

In the development of this package we tried to provide an MPI-like API. To achieve this
similarity, all the methods corresponding to WMPI functions are defined in class JWMPI
and have the same name and number of parameters. The user just needs to extend the
JWMPI class. In Figure 2 we can see a piece of a WMPI program written in C. In Figure
3 is presented the equivalent program ported to Java using our Java-to-WMPI interface.

#include <mpi.h>
void main(int argc, char ** argv){
   /* initialize MPI system */
   MPI_Init (&argc, &argv);
   MPI_Comm_rank (MPI_COMM_WORLD, &rank);
   MPI_Comm_size (MPI_COMM_WORLD, &size);
   ...
}

Figure 2: C code example using WMPI.

import wmpi.*;
public class MyClass extends JWMPI{
   public static void main(String args[]){
      Integer rank = new Integer();
      Integer size = new Integer();

 /* initialize MPI system */
      MPI_Init(args);

MPI_Comm_rank(MPI_COMM_WORLD,rank);
MPI_Comm_size(MPI_COMM_WORLD,size);

      ...
   }
}

Figure 3: Java code example using the package JWMPI.

3.2 Opaque objects used by WMPI
Opaque objects are system objects that are accessed through a handle. The user knows the
handle to the object but does not know what is inside. Since the MPI does not specify the
internal structure of these objects, there is no way to reconstruct them in Java. So, the best
thing to do is to keep the handle to the object. To do this, we have implemented one Java
class for each opaque object used by WMPI (see Figure 1).



These Java classes hide the handle to the real WMPI opaque objects. The programmer
only has to create new instances of these objects and use them as arguments to JWMPI
methods. In order to fit into some system that has 64 bits pointers, we use a Java long to
store the WMPI object handle.

3.3 MPI_Status structure
Unlike the previous case, the MPI_Status structure fields are fully implemented by a
Java object, as is represented in Figure 4.

    package wmpi;

public class MPI_Status{
  int count;

  public int MPI_SOURCE;
  public int MPI_TAG;
  public int MPI_ERROR;

}

Figure 4: Java representation of the MPI_Status structure.

The field count is not public because the MPI standard specifies that this field
cannot be accessed directly by the user. There are specific methods to access this field.

3.4 Java Datatypes
The following table lists all the Java basic types and their corresponding C/C++ and MPI
datatypes.

Java
datatype

C/C++
Datatype

MPI datatype JWMPI
datatype

byte signed char MPI_CHAR MPI_BYTE

char unsigned short int MPI_UNSIGNED_SHORT MPI_CHAR
short signed short int MPI_SHORT MPI_SHORT
boolean unsigned char MPI_UNSIGNED_CHAR MPI_BOOLEAN
int signed long int MPI_LONG MPI_INT
long signed long long int MPI_LONG_LONG_INT MPI_LONG
float Float MPI_FLOAT MPI_FLOAT
double Double MPI_DOUBLE MPI_DOUBLE

Table 1: JWMPI datatypes.

Because Java is platform independent the size of simple types will be the same in all
platforms. We have defined JWMPI datatypes that map directly to the Java datatypes and
the user does not need to worry about the mapping between Java datatypes and MPI
datatypes.

Beside these datatypes, JWMPI also provides the MPI_PACKED datatype that is used
with packed messages, the MPI_LB pseudo-datatype that can be used to mark the lower
bound of a datatype and MPI_UB that is used to mark the upper bound of a datatype.



3.5 Problems due to strong typing and the absence of pointers
All MPI functions with choice arguments associate actual arguments of different
datatypes with the same dummy argument. Java does not allow this since it has no
pointers and the associated casting. When we have methods with different arguments we
need to use method overloading as shown in Figure 5.

public static native MPI_Send (int[], ...);
public static native MPI_Send (long[], ...);

Figure 5: Example of methods with different argument datatypes.

However, there are many MPI communication functions, e.g. MPI_Send, MPI_Bsend,
MPI_Ssend, MPI_Rsend, etc. If we used this approach, we would have several native
methods for each function and datatype. To overcome this problem we introduce a set of
native methods, called SetData, that performs the polymorphism between different
Java datatypes. These native methods return the starting memory address of the array as a
Java long variable that can be used in the MPI routines.

For example, in Figure 6 we can see the original WMPI call to MPI_Send in C/C++,
followed by the equivalent Java call using our JWMPI interface.

MPI_Send(array, 10, MPI_DOUBLE, 0, TAG, MPI_COMM_WORLD);
MPI_Send(SetData(array), 10, MPI_DOUBLE, 0, TAG, MPI_COMM_WORLD);

Figure 6: Equivalent C/C++ and Java calls to MPI_Send.

Another variant of these methods was also implemented. This variant has one additional
argument that specifies an index into the array. Figure 7 shows an example of this use.

MPI_Send(&array[5], 10, MPI_DOUBLE, 0, TAG, MPI_COMM_WORLD);
MPI_Send(SetData(array,5), 10, MPI_DOUBLE, 0, TAG, MPI_COMM_WORLD);

Figure 7: Equivalent C/C++ and Java calls to MPI_Send using an index.

3.6 Mapping between WMPI and JWMPI arguments
Table 2 presents the mapping between WMPI and JWMPI arguments. There are some
exceptions to the mapping scheme presented in the Table. The methods MPI_Pack,
MPI_Unpack, MPI_Attach_buffer and MPI_Dettach_buffer use a byte array
instead of the value returned by the method SetData. This is due to the particular
behaviour of these routines. When we are packing and unpacking data or declaring a
memory zone to be attached to WMPI is much more efficient to use an array of bytes.



WMPI argument JWMPI argument
Int int

int* java.lang.Integer

int[] int[]

void[] SetData(type[])

MPI_Aint long

MPI_Aint* java.lang.Long

MPI_Aint[] long[]

MPI_Status (or *) MPI_Status

MPI_Datatype (or *) MPI_Datatype

MPI_Comm (or *) MPI_Comm

MPI_Group (or *) MPI_Group

MPI_Request (or *) MPI_Request

MPI_Op (or *) MPI_Op

MPI_Errhandler (or *) MPI_Errhandler

Table 2: Mapping between WMPI and JWMPI arguments.

4. Integrating Web-based Computing with JWMPI
In this section we will describe how JWMPI has been integrated with another tool that
exploits the idea of parallel computing using Web-based computing and Java applets.
This tool is called JET and is described in [Silva97].

Originally the JET system was strictly oriented for volunteer computing over the Web.
However, in the recent version of JET it became possible to use some other existing
high-performance computing resources, like cluster of workstations or parallel machines.
The basic idea is to allow existing clusters of machines running PVM or MPI to inter-
operate with a JET computation. The next sub-sections present an overview of the JET
project and briefly describe the JET-Bridge, a software module that allows the
integration of JET with WPVM/WMPI applications [Silva98].

4.1 A General Overview of the JET Project
JET is a Java software infrastructure that supports parallel processing of CPU-intensive
problems that can be programmed in the Master/Worker paradigm. There is a Master
process that is responsible for the decomposition of the problem into small and
independent tasks. The tasks are distributed among the Worker processes that execute a
quite simple cycle: receive a task, compute it and send the result back to the master. The
Master is responsible for gathering the partial results and to merge them into the problem
solution. Since every task is independent from each other, there is no need for
communication between worker processes. The Worker processes execute as Java applets
inside a Web browser. The user just needs to access a Web page by using a Java-enabled



browser. Then, she just has to click somewhere inside the page and one Worker applet is
downloaded to the client machine. This applet will communicate with a JET Master that
executes on the same remote machine where the Web page came from. Figure 8 presents
the structure of the JET virtual machine. The volunteer machines may join and leave the
computation at any instant of time. Thereby, the execution environment is completely
dynamic. The JET system provides mechanisms to tolerate failures in the applications
and include support for dynamic task distribution. These mechanisms are used for fault-
tolerance and load-balancing purposes.
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   Clusters of Workstations running PVM or MPI
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                           Figure 8: The Structure of the JET virtual machine.

4.2 The JET-Bridge
The JET-Bridge component assumes that the application that will execute in the
cluster selects one of the processes as the Master. Usually this is the process with rank 0.
The Master process is the only one that interacts with the JET-Bridge. Inside the
cluster the application may follow any programming paradigm although we have only
used the JET-Bridge with Task-Farming applications.

The Master process of a WPVM/WMPI cluster needs to create an instance of an object
(JetBridge) that implements a bridge between the cluster and the JET Master. This



object is responsible for all the communication with the JET Master. The Master process
from a WPVM/WMPI cluster gets some set of jobs from the JET Master, and maintains
them in an internal buffer. These jobs are then distributed among the Workers of the
cluster. Similarly, the results gathered by the WPVM/WMPI Master process are placed in a
separate buffer and will be sent later to the JET Master. This scheme is represented in
Figure 9.

WPVM WPVM WPVM WMPI WMPI WMPI

WPVM Master

Cluster

Sender Receiver Sender Receiver

Cluster

WMPI Master

TCP/IP Network

JET Master

 Figure 9: Interoperability of JET with WPVM/WMPI clusters.

The Master is the only process of the cluster that connects directly with the JET machine.
This process is the only one that needs to be written in Java. The Worker processes can be
implemented in any of the languages supported by WMPI/WPVM libraries (i.e. C, Fortran
and Java) and all the heterogeneity is solved using the Java bindings. In the next section
we present some performance results that show the effectiveness of this approach.

5. Performance Results
In this section we present some performance results of the two Java bindings that we have
implemented: JWMPI and JWPVM. We also present some results of an experimental study
that made use of JET-Bridge together with our Java bindings, to show the
effectiveness of combining WPVM and WMPI with Web-based computations. All the
measurements were taken with the NQueens benchmark with 14 queens in a cluster of
Pentiums 200MHz running Windows NT 4.0, which are connected through a non-
dedicated 10 Mbit/sec Ethernet.



The next Table presents the legend to some versions of the NQueens benchmark that we
have implemented in our study. This legend will be used in some of the Figures that are
presented in the rest of the section.

Versions of Nqueens Benchmark

Legend Description
CWMPI
CWPVM

C version.

JWMPI
JWPVM

Java version.

JWMPI (Native)
JWPVM (Native)

Java version where the real computation is done by a native method written in C.

Table 3: Legend to the different versions of NQueens benchmark.

5.1 Java Bindings
In the first experiment, that is presented in Figure 10. we compare the performance of the
Java against the C version of the NQueens benchmark. Both versions were using WMPI
and WPVM libraries to communicate. The Java processes are executing with a Just-in-
Time compiler by using the Symantec JIT that is distributed with JDK1.1.4. It uses our
Java bindings to access the WMPI/WPVM routines.
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Figure 10: The performance of Java versus C.

As can be seen in Figure 10, just-in-time compilation cannot achieve the performance of
C compiled code. It is about two times slower, which actually is not that bad. The Figure
also presents a Java version of the NQueens benchmark that uses a native method
written in C to compute the kernel of the algorithm. The results obtained with this Java
(native) version allow us to conclude that practically no overhead is introduced by our
Java bindings.

In Figure 11 we present several different combinations of using WMPI and an
heterogeneous configuration of processes, where some of them were written in Java,
other processes were written in C and the remaining were using Java and native code.



These experiments are quite interesting since they show we can have real heterogeneous
computations by using our Java bindings.

NQueens Benchmark (WMPI)
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Figure 11: Heterogeneous clusters of processes using the WMPI library.

In our implementations of the NQueens benchmark the jobs are delivered on demand,
allowing the faster workers to compute more jobs than the slower ones. All the
computations that include C processes or Java processes that use the native version of the
kernel present the best performance.

The next sub-section presents some performance results of an experimental study that
combines Web-based computations with PVM/MPI clusters.

5.2 Heterogeneous Parallel Computing
In Figure 12 we compare the performance results of four different computations. The first
two columns represent the execution time of a JET computation in a cluster of 8
machines running the Java WMPI/WPVM versions of the NQueens benchmark. The third
column presents a JET computation with 8 Java applets running inside the Netscape
Navigator 4.0. The last column presents a heterogeneous computation that combines a
cluster of 3 JWMPI processes, a cluster of 3 JWPVM processes and 2 Java applets.



NQueens Benchmark (WMPI + WPVM + JET)
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Figure 12: The performance of Cluster computing and applet-based computing.

As we can see, the results obtained with the WMPI and WPVM cluster running Java
applications are slightly better from the results obtained with Java applets. Nevertheless,
the execution time in the last configuration (JWMPI+JWPVM+applets) seems very
competitive with the results taken in pure clusters. In Table 4 we present the distribution
of jobs among the different workers in this last heterogeneous configuration. These
results are an average of 3 experiments. The applet workers compute fewer jobs than the
cluster workers (both in WMPI and WPVM).

NQueens benchmark Average
Machine Process No of Jobs

#1 applet 19.33
#2 applet 19.00
#3 JWPVM(JIT) 21.00
#4 JWPVM(JIT) 20.67
#5 JWPVM(JIT) 21.00
#6 JWMPI(JIT) 21.00
#7 JWMPI(JIT) 21.00
#8 JWMPI(JIT) 21.00

Total Time (sec): 61.723
Table 4: Distribution of jobs in a heterogeneous JET computation.

In Figure 13 we present several different combinations of heterogeneous WMPI
configurations. This experiment shows the importance of the JET-Bridge and the Java
bindings: combining these two modules allow the user to exploit the potential of a
heterogeneous computation. In the same application we could have processes executing
as Java applets, processes running JWMPI and C processes running WMPI.
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Figure 13: Performance results of heterogeneous configurations using WMPI.

This last heterogeneous configuration results in a sort of meta-application. Table 5
presents the distribution of jobs among the different types of workers in this computation.
It presents the average results of 3 experiments.

NQueens benchmark Average
Machine Process No of Jobs

#1 JWMPI (JIT) 14.00
#2 JWMPI (JIT) 14.00
#3 Applet 13.00
#4 applet 12.67
#5 JWMPI(Native) 26.67
#6 JWMPI(Native) 26.67
#7 CWMPI 27.00
#8 CWMPI 26.67

Total Time (sec): 42.332
Table 5: Distribution of jobs among different WMPI processes in a JET computation.

As we can see from the Table, the majority of the jobs are performed by the C version and
by the Java version that uses the native method. This sort of Master-Worker applications
is automatically load-balanced, where the faster workers are able to compute more jobs
than the slower ones.



6. Related Work
There are some other examples of Java bindings for MPI. In [Baker98] is presented
mpiJava an object-oriented implementation of a Java interface for MPI. This Java
binding are [Baker98] is very similar to our binding and it also runs on top of WMPI. A
different approach is presented in [Mintchev97] where the Java wrappers are
automatically generated from the C MPI header by using a Java-to-C interface generator
tool (JCI). This same tool was also used to bind PBLAS and ScaLAPACK to Java. A
full implementation of MPI written in Java has been made in the DOGMA Project
[Dogma]. This strategy departs from the previous one since the MPI core was re-
implemented in Java, leading to a potentially poor performance. Finally, MPI SoftTech
Technologies has announced a Java binding for their commercial implementation of MPI
[Crawford].

In the area of Web-based computing there are some other projects that present some
similar goals to the JET Project. Examples include the Javelin project [Capello97],
Charlotte [Baratloo96], Albatross [Bal98], Ninflet [Takagi98], ParaWeb [Brecht96] and
Popcorn [Camiel96]. However, none of these projects has shown the same level of
effectiveness in the merging of Web-based computing with cluster-based computing and
in the interoperability of Java-based WMPI  and WPVM together with C code written in
those libraries.

7. Conclusions
Providing access to standard libraries often used in high-performance and scientific
programming seems imperative in order to allow the reuse of existing code that was
developed with MPI and PVM.

In this paper, we have briefly described the implementation of a Java interface for WMPI
and we compared the performance of a parallel benchmark when using the JWMPI,
JWPVM and the corresponding C versions. The first results are quite promising and show
the effectiveness of our Java bindings. The second set of results were taken in a mixed
configuration where some of the processes were executing in Java and others in C. Those
experiments show that it is possible to achieve really heterogeneous computations where
we can have processes of the same parallel application running in different languages.
More than the heterogeneity of the language we have presented a solution that masks the
heterogeneity at the platform level. With the use of the Java bindings for WMPI and the
software JET-Bridge component it became possible to execute meta-applications
using different tools: some tasks are executed in a Web-based computing tool (as Java
applets) while the other tasks can be executed in a cluster platform running WMPI.

It is our belief that Java will be the dominant language in the coming years and that it can
also be used for high-performance and scientific computing provided there are the right
tools to achieve this goal. The Java components that were described in this paper can be a
small but useful contribution to that goal.
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