
1

Java on Netw orks of W orkstations (Ja vaNOW): A Parallel
Computing Frame work Inspired b y Linda and the Messa ge
Passing Interface (MPI)

George K. Thiruvathukal1, Phil M. Dickens2, and Shahzad Bhatti3

DePaul University, JHPC Research Laboratory, School of CTI

Abstract
Networksof workstationsareadominantforcein thedistributedcomputingarena,due
primarily to the excellent price/performance ratio of such systems when compared to
traditionally massively parallel architectures. It is therefore critical to develop
programming languages and environments that canpotentially harness the raw
computational power availab

le on these systems. In this article, we present JavaNOW (Java on Networks of
Workstations), a Java based framework for parallel programming on networks of
workstations.It createsavirtual parallelmachinesimilar to theMPI (MessagePassing
Interface)model,andprovidesdistributedassociativesharedmemorysimilar to Linda
memory model but with a flexible set of primitive operations.

JavaNOW provides a simple yet powerful framework for performing computation on
networksof workstations.In additionto theLindamemorymodel,it providesfor shared
objects, implicit multithreading, implicit synchronization, object dataflow, and
collective communications similar to those defined in MPI. JavaNOW is also a
component of the Computational Neighborhood [63], a Java-enabled suite of services
for desktopcomputationalsharing.Theintentof JavaNOW is topresentanenvironment
for parallel computing that is both expressive and reliable and ultimately can deliver
good to excellent performance. As JavaNOW is a work in progress, this article
emphasizestheexpressivepotentialof theJavaNOW environmentanddoesnotpresent
performance results at this time..

Keywords
Desktop supercomputing, sharing, resource management, contention scheduling, relational databases

1 Intr oduction

Java is rapidly being adoptedas one of the preferred languagesfor writing distributed
applicationsdueto its excellentsupportfor programmingon distributedplatforms.Recently, a
number of distributed frameworks have been developed by Sun, such as RemoteMethod
Invocation(RMI, aclient/serverremoteprocedurecallingframework),JavaSpaces(atuplespace
framework), andJini (a directoryandservicesframework). Perhapsthegreatestbenefitof Java
is its portability; a Java applicationcan be run on any machinewith Java supportwithout
recompilation.Simultaneouslywith theemergenceof Javaasapreferredlanguagefor distributed
programminghasbeentheemergenceof networksof workstationsasa preferredplatform for
distributedcomputation.Theprimaryreasonworkstationclustershave becomesoimportantis
theexcellentprice/performanceratio of suchsystemswhencomparedto traditionalmassively
parallelmulti-computers.It is thusnaturalto exploreapproachesby which Javacanbeusedto

1 Please visit our main web sites athttp://www.jhpc.cs.depaul.edu for more information on CN and our various
activities and projects.

2 Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616
3 PlexObject Technologies, Chicago, IL

2

form a virtual parallelmachineusingordinarynetworksof workstations.JavaNOW is onesuch
attempt.

Whileusingnetworksof workstationsasavirtualparallelcomputerisnotacompletelynew idea,
therearemany featuresof JavaNOW whichmakeit uniqueamongmessagepassingsystemswith
similar features.JavaNOW is apureJava-basedsystemthatcanexecuteonany architecturewith
Java Virtual Machine(JVM) supportwithout recompilation.This is in contrastto othermore
traditionalnetwork-basedframeworks,suchasMPI [43], PVM [59], Network LindaSystem[6],
andMemo[17] thatrequire architecture-specificbinarylibrariesandexecutablesto beinstalled
on eachmachineon which thevirtual parallelcomputer will execute.In additionto traditional
systems, there are a number of competing pure-Java frameworks (most notably Sun
JavaSpaces™)that have also beeninspiredby the Linda tuple spacemodel; however, these
systemshave not beendesignedwith high-performancedistributedcomputingin mind andare
missing some key featuresthat would enablehigher performance,including active tuple
evaluation and collective communication facilities. Additionally, most network-based
frameworksarebasedon heavyweightprocesses,while JavaNOW supportsbothprocess-based
and thread-basedcomputation.Furthermore,most other network-basedsystemsare strictly
message-passingsystems,while JavaNOW provides both a message-passingmodel and a
Linda-like distributed sharedassociative memory for inter-processcommunicationand for
mutuallyexclusive accessto distributedsharedobjects. JavaNOW extendstheLinda model(in
a significant way) by providing a rich set of collective communicationand computation
primitivessimilar to thosefound in MPI. Finally, JavaNOW augmentsbothLinda andMPI by
supporting a data flow model of computation.

In thispaper, weprovideadetaileddiscussionof thedesignandimplementationof theJavaNOW
computationalframework. We begin by comparingJavaNOW to other network-basedand
Linda-like frameworks.We thendiscussthedistributedsharedassociative memoryat thecore
of JavaNOW, andshow how it canbeusedto supportMPI-like collective communicationand
computation,a dataflow modelof computation,andsynchronizationprimitivessuchaslocks,
barriers,andsemaphores.Finally, we presentinformationaboutstatusandavailability of the
implementation.

2 Overview of Ja vaNOW and its Relation to Linda, PVM and MPI

In many respects,JavaNOW canbe viewed asa hybrid system:somePVM (Parallel Virtual
Machine[59]), someLinda [13], someMPI (MessagePassingInterface[44][46]), andsome
experimentalcomponents.From a usagestandpoint,JavaNOW providesa simple facility for
starting tasks that is reminiscentof the PVM software. From a programmingstandpoint,
JavaNOW hasmuchin commonwith Linda andMPI, having a small numberof primitivesto
supportproducer/consumerstylecommunication(asfound in Linda) andcollective operations
that can be performed on shared objects (as found in MPI).

JavaNOW supportsthe notion of virtual processors,a techniquefirst used in data-parallel
computinglanguages,suchasC*, PVM andMPI. This approachis still usedin otherprojects,
suchasGlobus[24] andLegion [34], andthus hasprovenvaluein thecommunityto this day.
(A virtual processoris emulatedasa process--amonga groupof processes--thatarespawned
prior to actuallydoingcommunicationusingthemessage-passingprimitivesof JavaNow.) Thus,
at thecore,JavaNOW supportsaSPMDmodelof computation.It shouldbenotedhowever that
thedecisionto useJava in factenablesthepossibilityof anMPMD styleof programmingsince
a Java programcandynamicallyloadclassesat anytime. This possibilitywill not bediscussed
further in this paper, dueto spaceconsiderationsandbeingslightly beyondtheintendedscope.

3

It shouldalsobenotedthatthedaemonprocessesin JavaNOW spawn light-weightthreadsrather
than heavy-weight processes thus providing parallelism in a much more efficient manner.

2.1 Distrib uted Logicall y-Shared and Associative Memor y

Application processescoordinateand communicatethrough distributed associative shared
memorysimilar to theglobal tuplespacemodelfoundin Linda.We emphasizethat it is only a
similarity sincetherearesignificantdifferencesasdiscussedbelow. In JavaNOW, the shared
objectsarereferredto asEntitiesandtherepositorywheretheseobjectsarestoredis termedthe
EntitySpace. EachEntity in theJavaNOW systemconsistsof two components:thenameof the
Entity andits value.It is importantto notethatnameandvaluebothdenoteJava objects,which
unlike Linda objects, carry both state and behavior information.

Wechoseto incorporateinto JavaNOW aLinda-likememorymodelfor threereasons:First, the
Linda memorymodelhasbeenavailablefor a numberof yearsandhasbeenprovento provide
powerful semanticsfor writing parallel applications.Secondly, it is widely acceptedthat
programmingin a sharedmemorysystemis easierthan programmingin a messagepassing
system.Thirdly, a Linda-like sharedmemorymodelcanbeimplementedmuchmoreefficiently
andprovidebetterperformancethantraditionaldistributedsharedmemoryarchitectures.This is
becausetraditionaldistributedsharedmemorysystemsimplementsharingat thelevel of apage
which can lead to false sharing and prohibitive communication costs [52].

However, theJavaNOW memorymodelis distinct from thetuplespacemodelfound in Linda.
Onedifferenceis thatJavaNOW allowsmultipleEntitySpacesratherthanthesingletuplespace
supportedby Linda.Thisallowslocalizednamespacesfor shareddataandthecreationof private
channelsfor inter-processcommunication.Also, thedistributionof theEntitySpacein JavaNOW
is quitedistinct from the implementationof the tuplespacein Linda. Conceptually, JavaNOW
employsadistributedhashtableabstractionto implementa transparentsetof entityspaces.It is
importantto notethatakey differencebetweentheJavaNOW abstractionandadistributedhash
table doesexist—the entriesof the hashtable are unordered queuesof objectsand a single
instanceas found in the Java Hashtableclass.JavaNOW also provides excellent supportfor
placementcontrol, which allows for preciseplacementof distributed data structures.This
placementcontrol can be achieved to a large extent becausethe Java languageObject class
provides a default definition of a hashcode()method,which guaranteesthat any intrinsic or
user-defined class that is used to createobjects will producea hash value, albeit not a
well-conditionedhashvalue.Preciseplacementcontrolcanbeveryeasilyachievedin JavaNOW
dueto adesigndecisionthatwasmadeto clearlyisolatethekey from therestof thetuple,which
wasfirst donein previouswork publishedby oneof theauthorson theMemosystem[17][18].
Theway preciseplacementcontrol is achieved(discussedin detail later) is to provide a custom
hashcode()function that can be usedto compute(mod the numberof contexts) the precise
destinationfor anentity. Linda implementationsgenerallyreplicatethe tuplespaceamongthe
available processorsthus incurring the high costsof coherenceprotocolsand unpredictable
latency for even the most basic communication primitives.

We stressthat JavaNOW is not “yet anothertuple space” implementationor “yet another
language.” It occupiesauniquespacein its ability to supportanumberof othermessagepassing
“personalities.” Programmerfamiliar with MPI, PVM, and Actors-derived systems(suchas
Charm++)will find a numberof familiar featuresthat make the systememinentlyusable.We
alsostressthat the choiceof tuple spacesin part is validatedby Sun’s decisionto incorporate
similarprinciplesin theirJavaSpacesandJini designs;however, theseofferingsfrom Sundonot
appearto bea soundbasisfor high-performancecomputingasmany functionsclearlymissing
from theoriginalLindaspecification(active tuples)andMPI (collectiveoperations).Emulating

4

thesemissing operationsis somewhat difficult without primitives that support overlapped
computationand communication,which is directly supportedby active entities, which we
discuss in detail in Section4.2.

2.2 Mutual Exc lusion, Bloc king and Non-Bloc king Primitives

Similar to Linda,MPI, andPVM, theJavaNOW environmentprovidessupportfor blockingand
non-blockingprimitives.In particular, JavaNOW definestwo operations,putandget,thatallow
a producer/consumerrelationshipto beestablishedbetweentwo tasks.Thereis botha blocking
andnon-blockingformof thegetoperation.In theblockingform, thegetoperationisguaranteed
to blockforeverif acorrespondingputmethodis neverposted.In thenon-blockingform, the get
operation will return immediately if no corresponding put operation has been performed.

All put and get operationsthat manipulatethe sameEntity are guaranteedto be mutually
exclusive freeing the programmerfrom concernsrelated to the synchronizationof the
EntitySpace.While a detaileddescriptionof theimplicit synchronizationmechanismis beyond
the scopeof this paper, we notethat it is basedon an abstractioncalleda shareddirectoryof
unorderedqueues(ashareddatastructurethatguaranteesmutualexclusionandhasentrieswith
mutually-exclusiveaccess),whichwasdiscussedin two of ourearlierpapersonMemo[17] and
Enhanced Actors [62].

2.3 Collective Comm unication and Computation Operator s

JavaNOW supportscollective communicationand computationoperatorssimilar to those
definedin MPI. Suchoperationsarearguablyamongthe most importantfeaturesof the MPI
framework and are supported in MPI by the following two features:

1. collective operators – communication + an operation to be performed.

2. communicators – an abstraction that allows a group of processes to participate in a
collective operation.

A predefinedcommunicator, MPI_COMM_WORLD, exists to allow all processes(thenormal
casein MPI programming)to participatein acollectiveoperation.A numberof primitivesexist
to allow new communicatorsto be defined to include/exclude processesin/from a
communicator.

JavaNOW takes a different approachand supportscollective communicationusing what are
termedactiveEntities.An active entity (classActiveEntity in the JavaNOW library), which is
very similar to the notion of a future in data flow languages,is an object that performsa
computation(a detachedtask) and then converts itself into a passiveEntity (or result). We
emphasizethe word similar; as defined here, futures should not be confusedas being
semanticallyequivalentto lazy evaluationandclosures.(We do have plansto supportthis in a
future implementationof JavaNOW. ChristopherandThiruvathukal—oneof the authors—are
discussingfuturesin a forthcomingbook on High PerformanceJava Computing.)The active
entity is similar in principleto a futurein therespectthata readercanblock on thefutureuntil
thevaluehasbeenwritten;however, thedifferenceis thatthevaluecanbewrittenmultipletimes,
which does not follow the establisheddefinition of futures describedin the functional
programmingliterature.Using active entities,collective operationscanbe easilydefined.For
example,thereductionoperatorcanbe implementedasa taskthatawaitsa certainnumberof
Entities.As the Entities are computed,the ActiveEntity can consumethem one at a time to
producea curried result. When the result is finally computed,the ActiveEntity becomesa
passiveEntity (whosevalueis thefinal result)andis insertedinto theEntitySpace.It shouldbe

5

notedthat this exampleis basedon the commonuseof reduce,which supportscommutative
operationssuchasaddition.A slight modificationis requiredfor non-commutative operations
which can also be implementedasynchronouslyand efficiently. JavaNOW also supports
collectivecommunicationoperationssuchasreduce,scatter, gather, andbarrier, all of whichare
implemented using the same notion of active Entities.

2.4 Abstract Pr ovider Ar chitecture

Similar to theMPI implementationdevelopedat ArgonneNationalLaboratory, JavaNOW uses
abstractfactoriesallowing JavaNOW to belayeredontopof any communicationmechanism.In
JavaNOW however, thedesignallows thedecisionof theunderlyingcommunicationschemeto
bedeferreduntil run time.This is similar to whatis donein theMPICH implementationof MPI
with its AbstractDevice Interface.Our early experienceswith this mechanismhave included
TCP/IP sockets, Java RemoteMethod Invocation (RMI), and the CommonObject Request
Broker Architecture (CORBA).

2.5 Data Flo w

JavaNOW alsosupportsfeaturesthatarenot availablein eitherLinda,MPI or PVM. Onesuch
example is a coarse-graineddataflow model of computation.In this model, operationsare
executedwhentheirdatabecomesavailableratherthanwhendictatedbycontrolflow statements.
This supportfor dataflow also comesfrom the conceptof the ActiveEntity which, as noted
above, is very similar to the notion of a future.This similarity is importantsincefutureshave
beenshown to be useful in many programmingparadigms(even outsideof high-performance
computing)suchas suspendedevaluation,lazy evaluation,task graphs,andothercommonly
used techniques for high-performance parallel and distributed computing.

3 Other Related W ork

Severalotherprojectsareusingnetworksof workstationsfor building parallelapplications.Most
of thenetwork-basedparallelprocessingsystemsarebuilt ontopof amessagepassinglayersuch
asPVM [59] or MPI [43]. SuchsystemsincludeORCA[3], Piranha[30] andLegion[34]. Other
systemsarebasedonaglobaladdressspaceor distributed-sharedmemoryandincludeIvy [42],
Munin [12] andTreadMarks[40]. Thesesystemsallow networkedworkstationsto betreatedas
a multiprocessorsystemwith the underlyingsoftwareproviding coherentmemory. However,
suchsystemssuffer from pageshuttling,falsesharing,theneedfor distributedlocking,andthe
lack of fault tolerance [20].

Other parallel frameworks basedon Linda and the sharedtuple spaceinclude C-Linda [48],
Glenda[55], andJavaSpaces[61]. C-Linda is a C basedimplementationof Linda. Glendais a
Linda implementationon top of PVM. Memo is a C library that implementsLinda like data
structuresfor storingassociative-sharedmemory. Noneof thesesystems(exceptJavaSpacesas
discussed below) take advantage of the power and flexibility of the Java language.

JavaSpacesis a Linda-inspiredframework written in Java. JavaSpacesusesa server object to
managea space(which is similar to a tuplespaceor EntitySpace)and,similar to theJavaNOW
system,allows thecreationof multiple spaces;however, JavaSpacesdoesnot offer theconcept
of anactiveentity anddoesnoteasilysupportalternativetransportprotocolsto RemoveMethod
Invocation(RMI). Additionally, JavaSpacessupportsevenfewercommunicationprimitivesthan
Linda, themostnotablebeingprimitivesfor non-blockingcommunication.JavaSpacesalsohas

6

the limitation thatactualobjectsarenot storedin the tuplespace.Instead,user-definedclasses
mustmakeuseof public instancevariablesthatarethenclonedandenteredinto thespace.This
canbearguedto beanimplementationdetail;however, it is a rathersloppy designdecisionthat,
ironically, is not nearlyasclean,elegant,andsimpleastheoriginal Linda C implementations.
Requiringclassesto exposemembervariablesviolatesmany of the principlesof the object
paradigmandcannotbeconsideredmuchdifferentthatprogrammingwith globalvariablesin,
say, FORTRAN or C. Finally, JavaSpacesdoesnot supportmany of themostusefulfeaturesof
JavaNOW, mostnotablyplacementcontrolandcollective communication,which areof proven
valuein high-performancecomputingapplicationswritten usingtheMessagePassingInterface
(MPI) library.

There are a numberof other Java-basedframeworks for parallel computing.Most of these
frameworks can be separated into five different categories. The first category consistsof
frameworks that use Java as a graphical based coordination system to submit parallel
applicationsto specializedhardware.Thesesystemsaregenerallybuilt on topof eitherPVM or
MPI andincludeJavaDC [15], andSARA [1]. The secondcategory usesJava aswrapperfor
existing frameworks. Thesesystemsinclude Java/DSM [65], JavaPVM [64], and the Java
wrapperfor MPI [47]. Thethird categoryconsistsof Javabasedlanguagesandframeworksthat
extendtheJavalanguagewith new keywords.Someof thesesystemsuseapreprocessorto create
Java code, othersuse their own compiler to createJava byte code, and still otherscreate
executableprogramsthatlosetheportabilityof Java.TheseJavabasedlanguagesincludetheE
language[22], JavaParty[51], andTitanium[54]. Thefourthcategoryof Java-basedframeworks
consistsof systemsthatareWeborientedanduseJavaappletsto executeparalleltasks.As Java
appletsexecuteunder strict security requirements,most of thesesystemsuse a broker for
inter-processcommunication.SuchWeb-basedframeworksaremostlytargetedfor large-grained
parallel applicationssince network latency betweenmachinesconnectedover a Wide Area
Network (WAN) is significantly higherthanthe latency for machineslocatedon a local area
network. Thesesystemsinclude ParaWeb [9], Bayanihan[53], IceT [33], Javelin [16] and
Javelin++ [49] and KnittingFactory [5].

The authorsbelieve web-basedcomputingis an interestingdirection that presentsinteresting
problems;however, for web-basedcomputingto becomeviable, the quality of web browser
implementationswill needto increasesignificantly. Most web browsers(including the best
implementations,which all run on theWindows™ operatingsystem)arecrashsuddenlywhen
running Java and embeddedscripts, except for the most trivial computations.Unix
implementationsof Netscapecrashfrequentlywhendoing somethingasmundaneasreading
e-mail,let alonewhenrunningJava.And virtually all implementationsof webbrowsersdo not
supportthe latestversionsof theJava DevelopmentKit, andthis is not likely to changedueto
businesspolitics.JavaNOW is notcurrentlyaweb-basedapproach;however, thereis nothingin
its fundamentaldesignthatwouldprecludeits useto supportweb-basedcomputing(in particular
theserverside).Wehaveno immediateplansto supportweb-basedcomputingusingJavaNOW
until the issues described in this paragraph are overcome.

The fifth category, and the one in which JavaNOW would be placed,consistsof Java-based
frameworks that usepure Java libraries to supportparallel and distributed applications.This
category also includes JavaSpaces [61], JPVM [23], Ninflet [45], and Java//. [10].

4 Fundamental Abstractions

In theprevioussectionweintroducedsomeof thekey ideasbehindtheJavaNOW system.In this
section, we present each of these abstractions in greater detail with some clarifying examples.

7

4.1 Entity

Probablythemostfundamentalconceptin JavaNOW is theEntity. An Entity is thebasicunit of
storagein theJavaNOW systemandis storedin theassociative andlogically-sharedrepository
termedtheEntitySpace.Entitiesconsistof a key anda valueasa pair, whereboththekey and
value canbeaninstanceof any (serializable)Java object. A usercreatesanEntity instanceas
follows:

Integer i = new Integer(10);
String s = new String(“Data component”);
Entity t = new Entity(i, s);

In abovecode,anEntity is definedwith thekey equalto theintegervalue“10” andavalueequal
to thestring“Datacomponent”.Whenthereis aneedto subsequentlyretrievethisEntity, thekey
field (theInteger“10”) is all thatwouldbeneededto matchandretrieveit. It shouldbenotedthat
the above code just creates the Entity and does not add it to the EntitySpace.

We provide a few wordsaboutthesemanticsof creatinga key, suchasnew Integer(10) in the
fragmentof codeshown above.Java’sObjectclassprovidesafunctioncalledhashcode(),which
is usuallydefinedonaperclassbasisandis intendedfor placinginstancesin ahashedcollection,
suchasa Hashtable.We usethe hashcodeto determinea destinationfor the Entity having a
particularkey. On average(from previouswork on Memo)thedistribution achievedby usinga
hashingschemetendsto be nearly uniform in practice.The approachof having a particular
destinationis transparentto users;however, any user-definedEntity canoverridethehashcode()
function to customize precisely how the key is mapped to a destination virtual processor.

4.2 Active Entities

An ActiveEntity is derived from an Entity and definesan abstractmethodexecute()that is
overriddenwith user-definedcomputation.An ActiveEntity is executedas a consequenceof
executingtheeval() operationdiscussedbelow. An instanceof anActiveEntity is passedto the
eval function,indicatingthattheActiveEntityis to beexecuted.Onceits executionis completed,
the ActiveEntity instancebecomesa (passive) Entity, and the result of the user-defined
compuation is stored in the EntitySpace in association with the specified key.

Thefollowing codeshowstheuseof subclassesto createanew kind of ActiveEntitycalledTask.

public class Task extends ActiveEntity {
 public Object execute(Object arg, JavaNOWAPI api) {
 Object o;
 int myid = ((Integer)arg).intValue();
 ...
 return o;
 }
}

This code fragment shows how to evaluate an ActiveEntity:

ActiveEntity task = new Task(new Integer(10));
GetJavaNOWAPI().eval(new EntitySpace(“ESKEY”), task, new Integer(1));

8

Thesemanticsof activeentitiesareabit involved.TheActiveEntitydiffersfromanEntity in only
onemajorrespect:it hasanexecute()method,whichrepresentsthe“active” aspectof theEntity.
We faced two design choices:

• After theexecute()methodhascompletedexecution,just leavetheentireobjectbehindas
the result. (i.e. the ActiveEntity instance itself)

• Alternatively, return the result (an Object) and use it to create a new Entity.

Ultimately, we optedfor the latteroption.Our experiencewith Actors-derivedsystemsandthe
conceptof areplacementoperationledusto theconclusionthatanin-placeoperationis alargely
unfamiliar programmingtechnique,especiallyin scientific programming,where procedural
abstractionremainsthe norm, and programmersare more comfortablewith the notion of an
invocationhaving a returnvalue.It is entirelypossibleto supportbothdesigns;however, weare
hoping to gain more experiencewith actual applicationsbefore adding more featuresthan
necessary.

4.3 Entity Space

An EntitySpacestoressharedEntities and is accessedby a unique key which can be any
(Serializable) Java object. (We enforce the Serializable restriction, becauseour current
implementationrelies on Java Object Serializationand RMI for communication.)As noted
above,thereis no limit to thenumberof EntitySpacesthatcanbedefined.JavaNOW distributes
the contentsof an EntitySpaceamongthe hostsparticipatingin computationusinga simple
hashingscheme.Note that the EntitySpaceitself doesnot provide the actualstoragefor the
Entitiesbut ratherlinks themontolistscalledfolders. Whenanentity is insertedor retrieved,the
EntitySpacehashesits key into anumberthatdeterminesthefolder into whichtheEntity will be
linked.WheneveranEntity is inserted,retrievedor removedfrom afolder it is lockedto support
the mutual exclusion principle discussed earlier.

4.4 JavaNOWApplication

A JavaNOW applicationmustbe derived from the JavaNOWApplication class,which storesa
JavaNOWAPI handle as a member. This handle is accessedby the user application.The
JavaNOWApplicationclassdefinesthetwo following abstractmethodsthatareoverriddenby the
user:

void master()
void slave(int id)

Given N processes,the processwith ID 0 invokesthe master() method, andthe other(N-1)
processesinvoke the slave() method.Note that additionalheavyweight processescannotbe
dispatchedin thepresentdesign.However, additionaltaskscanbecreatedatany timeby creating
aninstanceof anActiveEntitywhich,whenpassedto theeval operator, will createanew thread
to execute the user-defined computation.

The following code demonstrates the use of the JavaNOWApplication class:

public class AnApp extends JavaNOWApplication implements java.io.Serializable {
public static void main(String args[]) {
 AnApp app = new AnApp(args[0]);
 }

public Hello(String propertyFile) {
 super(PropertyFile);
 // local initialization

9

 applicationIsReady();
 }
 public void master() {
 // . .
 }
 public void slave(int myid) {
 //. . .
 }

Theabovecodecanbeconstruedasaskeletonof theminimumcodeonewouldneedto createa
JavaNOW application. After the application completes its initialization, the
applicationIsReady()methodis invoked andtheJavaNOW Spawner(discussedbelow) is used
to create a virtual processor on each host specified by the user.

5 JavaNOW Architecture

JavaNOW is a component-basedarchitecture,whereineachcomponentis designedusinga set
of Java interfaces.This designwaschosento facilitatedifferentimplementationoptionsfor the
samecomponent.One example of this capability was noted above: the Abstract Provider
Architecturecanbe implementedusinga variety of communicationmechanisms.Throughout
thedesignof JavaNOW, similardecisionshavemadeto facilitatedesignchangesandto support
performance tuning.

Theprimarycomponentsof JavaNOW includea lightweightObjectRequestBroker (ORB), a
virtual processor(VP) factory, thespawner, virtual processes,thekernel,andtheapplicationand
userinterfaces.Theoverall structureof JavaNOW is shown in Figure1 andwe discusseachof
these components in the following sections.

10

Figure 1: Java Now Architecture

5.1 Lightweight ORB Component

The RemoteMethodInvocation(RMI) framework providesa simpleandelegant solutionfor
creatingand accessingremoteobjectsand is one approachsupportedin JavaNOW. In this
implementation, JavaNOW usesthe RMI programminginterfacesto register and discover
remoteservers. In the socket-basedimplementation, lower level sockets are usedto build a
lightweight ORB that providesinterfacesto registerandlookup remoteobjects(similar to the
designsusedin RMI andCORBA). As notedabove,JavaNOW canbeextendedto supportother
transport mechanisms as well.

5.2 Factor y Component

TheFactoryComponentis startedon eachmachinethatwill participatein thecomputationand
definesaninterfaceto registerandstartavirtual process(VP) onthelocalmachines.In theRMI
implementationof JavaNOW, whenthefactorycomponentis startedit registersitself in theRMI
registry. In thesocket-basedimplementation,theregistrationtakesplacein acustomizedregistry.

5.3 Spawner Component

Whenausersubmitsanapplicationto JavaNOW, theSpawnerComponentgathersinformation
abouttheuserapplicationincludingthenumberof applicationprocessesandthelist of machines
on which theapplicationprocesseswill beexecuted.Theapplicationis thenassigneda unique
identifier. Next, theSpawner looksfor thefactoryon eachparticipatingmachineandsendsit a
requestto starttheVPsthatwill executeon thatmachine.Thenumberof VPsspawnedby the
JavaNOW Spawneris equalto thenumberof processesspecifiedby theuser(whichmayinvolve
multiplexing morethanoneVP on a givenprocessor).EachVP is thenassigneda logical host

Lightweight ORB

JVP

API JavaNow

Application

JN Factory

JavaNOW Application

Machine 1 Machine 2

Lightweight ORB

JVP

API JavaNow

Application

JN Factory

JN = JavaNOW, JVP = Java Virtual Processor, API = Application Programming Interface

11

number(muchthesameasdonein MPI andothersystems)thatis usedto uniquelyidentify the
VP within theapplication.Theapplicationid andVP id canbeusedto establishauniquecontext
identifier (somethingthat is useful when running multiple applicationsthat may need to
coordinatebeyond the “boundary” of a running application).Finally, a Kernel processis
spawned on each processor involved in the computation.

5.4 Kernel

The Kernel Componentdefines an interface to support the core primitive operationsof
JavaNOW. (It is at this low-level that JavaNOW appearsto be very similar to Linda.) The
following is the list of core operations supported in the Kernel Component:

1. put—InsertsanEntity intoanEntitySpace.RecallthatanEntityconsistsof twocontained
objects,keyandvalue. Multiple valuescanbestoredin associationwith acommonkey.
(Recallfrom theearlierdiscussionthattheentityspaceis animplementationof theshared
directory of unordered queues abstraction, which is a 1 to N associative map that has a
distributed implementation.)

2. eval—The eval operation starts a thread to perform a user-defined operation
asynchronously. The operation is defined by extending the ActiveEntity class and
overriding theexecute() method. The ActiveEntity instance is run (usually, as a separate
thread) and leaves the result of the operation after its execution is complete.

3. get/getIfExists—RemovesanEntity from agivenEntitySpace.If theEntity is notpresent
in the EntitySpace, theget operation blocks until another threadputs the Entity in the
EntitySpace. ThegetIfExists function tries to remove an Entity from the EntitySpace
without blocking. If the Entity does not exist a value of null is returned.

4. read/readIfExists—The read and readIfExists operations are similar to get/getIfExists
except that instead of removing the Entity from the EntitySpace acopyof the Entity is
returned.

5. size—The size operation returns number of Entities in the EntitySpace.

6. clear—The clear operation removes all Entities from the EntitySpace.

5.5 User Interface (UI)

TheUserInterfacecomponentdefinesasetof operationsto manageshareddataandcreatenew
computationtasks.It provides theseservicesby utilizing the Kernel Component.The User
Interface is discussed in detail below.

5.6 User Application

TheUserApplicationis not exactly a componentbut actsasanabstractbaseclassfor deriving
one’s own JavaNOW applications. As notedabove, it definestwo abstractmethodsthat are
implemented by the user: master() and slave().

6 JavaNOW User Interface

TheJavaNOW UserInterfacedefinesa setof operationsthatapplicationsuseto manipulatethe
EntitySpace(s)andto startnew threadsto performuser-definedcomputation.TheUserInterface
in turncallsontheservicesof theJavaNOW Kernelto performtheseprimitiveoperations.Given

12

the importanceof the User Interface it is worth while to elaborateon the many servicesit
provides.

6.1 Defining EntitySpaces and Entities

Theusercandeclaremultiple EntitySpaceseachof which is identifiedby a uniquekey, where
the key canbe any serializableJava object. As an exampleconsiderthe following program
fragment:

EntitySpace ts = new EntitySpace(new “JOBJAR”);

In this example,JavaNOW createsan EntitySpacets with the key “JOBJAR”. An Entity is
created in a similar manner:

Entity e = new Entity(“KEY”, “VALUE”);

In this example an Entity with key “KEY” and value “VALUE” is created.

6.2 Inserting an Entity in the EntitySpace

TheJavaNOW UserInterfacedefinesaput operationto insertanEntity into anEntitySpace.The
prototype of theput operation is:

void put(EntitySpace es, Entity e)

This operation could be used as follows:

EntitySpace es = new EntitySpace(“SHARED DATA”);
Entity e = new Entity(“KEY”, new Integer(100));
getJavaNOWAPI().put(es, e);

ThegetJavaNOWAPI() methodis definedin theJavaNOWApplicationclassandreturnsahandle
to the JavaNOW User Interface. The machineon which the insertedEntity will reside is
determined by a simple hashing function as previously discussed.

6.2 Retrie ving an Entity fr om the EntitySpace

A usercaneitherretrieveandremoveanEntity from anEntitySpaceor simplyretrieveacopy of
the Entity. (Retrieving a copy dependson whetherthe operationis determinedto be local or
remote--transparentto theuser. In thecaseof localadeep-cloneis performed;otherwise,Object
Serialization is used to serialize and deserialize the object from its remote location.)

The following form of the get function actually removes the Entity:

Entity get(EntitySpace es, Entity e)

Theget function can be used as follows:

EntitySpace es = new EntitySpace(“SHARED DATA”);
Entity ek = new Entity(“KEY”);
Entity e = getJavaNOWAPI().get(es, ek);
Integer I = (Integer) e.getEntityValue();

TheabovecodedefinesanEntitySpacewith thekey “SHARED DATA” andattemptsto remove
anEntity with thekey “KEY” from thatEntitySpace.Thegetoperationis ablockingoperation,
soif theEntitydoesnotexist in theEntitySpacetheoperationwill blockuntil theEntitybecomes

13

available. If, on the other hand,thereare multiple Entities matchingthe Entity key, the get
operation will return the Entity in FIFO order.

The JavaNOW User Interfacealso provides a non-blockingversionof the get operationthat
returnstheEntity if it exist in theEntitySpaceandotherwisereturnsnull. Hereis theprototype
for the non-blockinggetoperation:

Entity getIfExists(EntitySpace es, Entity e)

The following code illustrates the use of thegetIfExists operation:

EntitySpace es = new EntitySpace(“SHARED DATA”);
Entity ek = new Entity(“KEY”);
Entity e = getJavaNOWAPI().getIfExists(es, ek);
if (e != null) {
 Integer I = (Integer) e.getEntityValue();
}

In this example, the getIfExists function tries to find an Entity with the key “KEY” in an
EntitySpace with the key “SHARED DATA” and returns null if there is no matching Entity.

Anotherusefuloperationdefinedin JavaNOW is thereadoperationwhichreturnsacopy of the
requestedEntitybutdoesnotremoveit fromtheEntitySpace.Theprototypefor thisoperationis:

Entity read(EntitySpace es, Entity e)

The following is an example of how thereadoperation can be used:

EntitySpace es = new EntitySpace(“SHARED DATA”);
Entity ek = new Entity(“KEY”);
Entity e = getJavaNOWAPI().read(es, ek);
Integer I = (Integer) e.getEntityValue();

The read operationis a blocking operation,so if the soughtafter Entity doesnot exist in the
EntitySpace, the caller will block until the Entity becomes available.

The JavaNOW User Interface also defines a non-blocking version of theread operation:

Entity readIfExists(EntitySpace es, Entity e)

The readIfExists operationis usedin a manneranalogousto the readoperationexceptthat it
does not block is the Entity does not exist.

6.3 Using an ActiveEntity to Create Ne w Threads of Ex ecution

JavaNOW provides theeval operation to spawn a thread to execute user-defined computation:

void eval(EntitySpace es, ActiveEnttiy e, Object arg)

Theuserdefinesthecomputationby providing theexecutemethodwithin theActiveEntityclass.
The eval operationis thenpassedan instanceof ActiveEntity which containsthe user-defined
method. The following example illustrates how a new thread is created and executed:

public class ATask extends ActiveEnttiy {
 public Object execute(Object arg, JavaNOWAPI JavaNOW) {
 //...
 return someObject;
 }
}

EntitySpace es = new EntitySpace(“SHARED DATA”);

14

ATask task = new ATask(“KEY”);
GetJavaNOWAPI().eval (es, task,”USER ARGUMENT”);
Integer I = (Integer) getJavaNOWAPI().get(es, ek).getEntityValue();

Theabovecodecreatesaninstanceof theActiveEntityclassandpassesthatinstanceto theeval
operation.Theeval operation createsa threadto processtheuser-definedexecutemethodand
thenstoresthe resultasthevalueof thatEntity. Theuserthenretrievesthe resultby issuinga
blockingget operation.

6.4 Data flo w

The JavaNOW User Interface provides operationsthat simulate a data flow model of
computation.In a dataflow computation,anoperationis executedassoonas its databecomes
available. The prototypesfor the two dataflow operationsprovided in JavaNOW areshown
below.

void putDelayed(EntitySpace es1, EntitySpace es2, Entity e)
void evalDelayed(EntitySpace es1, EntitySpace es2, Entity e, ActiveEntity task)

TheputDealyedmethodperformsablockinggetoperationto retrievesomeEntity e from some
EntitySpace es1, and after retrieving Entity e stores it in EntitySpace es2.

TheevalDelayedmethodwaitsfor someEntity e in someEntitySpacees2,to becomeavailable.
Whenit arrives, theoperationremovese from es2.Next, theeval operationis called with an
AactiveEntity object(denotedby taskin this example), usingEntitySpacees1andpassingthe
value of e as the argument to theeval operation.

6.5 Collective Comm unication and Computation

TheJavaNOW UserInterfacealsodefinesasetof collectivecommunicationsandcomputations
across EntitySpaces. In this section, we briefly describe these operations.

Thebroadcastoperationallowsaninstanceof anEntity to bedepositedin multipleEntitySpaces.
Thescatteroperationtakesasparametersanarrayof EntitySpacesand anarrayof Entities.It
removesthenthEntity from theEntity arrayandinsertsit in thenthelementof theEntitySpaces
array. The gather operation provides the ability to retrieve multiple Entities from a set of
EntitySpaces. It takes as parametersa destinationEntitySpaceand an array of source
EntitySpaces.Theoperationtakesthenth Entity from thenth EntitySpace(i.e. Entity onefrom
EntitySpaceone,Entity two from EntitySpacetwo andsoforth) andplacesthatEntity into the
destinationEntitySpace.Theconcatoperationstakesanarrayof Entitiesandcopiesthatarray
into multiple EntitySpaces.Finally, the User Interfaceprovides an index operationwhich is
similar to the transpose operation on a matrix.

JavaNow alsoprovidesa reduceoperatorto facilitatecollective computation.This operationis
effectively equivalentto performinganeval operationonasetof Entities.Thecombineoperation
is similar to the reduceoperationexcept that it storesits result in multiple EntitySpaces.The
prefix operationis alsosimilar to the reduceoperationexcept that it storesa partial result in
multiple EntitySpaces.

15

6.6 Other Operations

In additionto theoperationsdiscussedabove, theJavaNOW UserInterfaceprovidesa barrier
routineto blockaprocessuntil somespecifiednumberof processeshavesimilarly executedthe
barrier , aroutineto determinethenumberof activeprocessesandaroutineto halt theexecution
of all processes.

7 Distrib uted Idioms and P atterns in Ja vaNOW

Over thecourseof theyearsof researchin parallelanddistributedsystemsa numberof idioms
and patternshave been developed to promote inter-processcommunicationand the safe
manipulationof shareddatastructures.Our goal is not to re-inventtheseusefultechniquesbut
ratherto incorporatetheminto theJavaNOW framework. In this section,we demonstratehow
some of the classical IPC mechanisms can be incorporated into JavaNOW.

7.1 Inter -process Comm unication

JavaNOW differs from MPI and PVM in that it does not provide direct point-to-point
inter-processcommunication(IPC)primitivesbut ratherprovidesaproducer/consumermodelof
IPC.This is muchthesamemodelthat is supportedin theCommunicatingSequentialProcesses
(CSP) model defined by C. A. R. Hoare (the seminal research on the topic of IPC).

To supportIPC, anEntity is createdwith a key agreeduponby both thesenderandreceiver (
this is similarto thenotionof anamedchannelor anamedpipefoundin operatingsystems).The
valuesto becommunicatedareplacedin thevaluefield of theEntity. Thesendercanissueas
many sendcallsasdesired,creatinganEntity instancefor eachobjectto be transmittedto the
receiver. Thereceivermaypostasmany getoperationsasdesired,allowing for thepossibilityof
multiple communications.

The following code illustrates this form of IPC in JavaNOW.

// Sending Process
. . .
EntitySpace esk = new EntitySpace(“ESKEY”);
Integer n = new Integer(100);
Entity e = new Entity(“key”, n);
getJavaNOWAPI().put(esk, e);

// Receiving Process
. . .
EntitySpace esk = new EntitySpace(“ESKEY”);
Entity e = new Entity(“key”);
String msg = (String) getJavaNOWAPI().get(esk, e);

7.2 Loc ks, Mute xes, and Binar y Semaphores

AlthoughJava providesa monitor-like abstraction(aspartof the languageproper)that canbe
usedto supportthesynchronizationof threads,thesemanticsof this abstractionarelocal rather
than distributed. Thus, data that is sharedbetweentwo threads(or processes)executingon
different processors cannot be easily protected.

JavaNOW guaranteesatomicoperationsat the level of anEntity. Thusa givenkey canbeused
to supportabasiclock discipline.For example,aninitializationprocess(themaster)candeposit
anEntity into anEntitySpace,whichreflectsalock thatcanbeusedanywherein theapplication.

16

Theprocessthatneedsto performa lock operationwill simply issueablockinggetoperationto
acquiretheEntity (representingthe lock) from theEntitySpace.Oncetheprocessreturnsfrom
theget operationit entersinto its critical section.Whenleaving thecritical section,the lock is
released(or returned)to theEntitySpacevia amatchingput operation.If anotherprocessneeds
the lock, it mustalsoissuea blocking get operationforcing it to wait until the processwhich
controlsthe lock performsthematchingput operation.Otherpopularlock semantics(suchas
the trylock primitive found in pthreads)arealsopossible,usingthe non-blockingput andget
primitives defined in JavaNOW.

Note that this framework supportsan unboundednumberof locks sincelocks arenothingbut
Entitieswith pre-defined(andagreedupon)commonkeys. Thefollowingexampleillustratesthe
use of locks in JavaNOW.

public void initLock() {
 EntitySpace esk = new EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”, new Object());
 getJavaNOWAPI().put(esk, e);
}

public void lock() {
 EntitySpace esk = new EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”);
 getJavaNOWAPI().get(esk, e);
}

public boolean tryLock() {
 EntitySpace esk = new EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”);
 return (getJavaNOWAPI().getIfExists(esk, e) != null);
}

public void unlock() {
 EntitySpace esk = new
 EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”, new Object());
 getJavaNOWAPI().put(esk, e);
}

7.3 Semaphores

Semaphoresareanotheruseful synchronizationmechanismthat is supportedin JavaNOW in
muchthesamemannerasthelock mechanism.Theprimarydifferencebetweenthelock andthe
semaphoreis in the initialization. In particular, N Entities(whereN is the semaphorecount),
ratherthanasingleEntity, aredepositedin theEntitySpace.Thedown andupoperationson the
semaphoreareperformedusingthegetandput operationsrespectively usingthesemaphorekey.
Here is an example of how semaphores can be created and used in JavaNOW.

public void initSemaphore(int n) {
 EntitySpace esk = new EntitySpace(“SYNC”);
 for (int i=0; i<n; i++) {
 Entity e = new Entity(“mutex”, new Object());
 getJavaNOWAPI().put(esk, e);
 }
}

public void down() {
 EntitySpace esk = new EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”);
 getJavaNOWAPI().get(esk, e);
}

17

public boolean tryAllocateSemaphore() {
 EntitySpace esk = new EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”);
 return (getJavaNOWAPI().getIfExists(esk, e) != null);
}

public void up() {
 EntitySpace esk = new EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”, new Object());
 getJavaNOWAPI().put(esk, e);
}

7.4 Producer/Consumer

TheProducer/Consumerproblemis oneof themostfundamentalsynchronizationproblemsin
computerscience,andmany problemsin parallelcomputingdegenerateinto aspecialcaseof a
producer/consumerrelationshipamong tasks.Here is a solution to both the boundedand
unbounded producer/consumer in JavaNOW.

// Unbounded Producer Process
void unboundedProducer() {
 EntitySpace esk = new EntitySpace(“BUFFER”);
 while (true) {
 Object data = produceData();
 Entity e = new Entity(“key”, data);
 getJavaNOWAPI().put(esk, e);
 }
}
// Bounded Producer Process
void boundedProducer(int maxBuffer) {
 EntitySpace esk = new
 EntitySpace(“BUFFER”);
 while (true) {
 while (getJavaNOWAPI().getSize(esk)
 == maxBuffer) {
 synchronized (this) {
 try {
 wait();
 } catch (InterruptedException e) {}
 } // synchronized
 } // while buffer exceeds bound
 Object data = produceData();
 Entity e = new Entity(“key”, data);
 getJavaNOWAPI().put(esk, e);
 } // while forever
}

// Unbounded Consumer
. . .
void unboundedConsumer() {
EntitySpace esk = new EntitySpace(“BUFFER”);
 while (true) {
 Entity e = new Entity(“key”);
 String msg = (String) getJavaNOWAPI().get(esk, e);
 }
}
// Bounded Consumer
void boundedConsumer(int maxBuffer) {
EntitySpace esk = new EntitySpace(“BUFFER”);
 while (true) {
 Entity e = new Entity(“key”);
 String msg = (String) getJavaNOWAPI().get(esk, e);
 if (getJavaNOWAPI().getSize(esk) == maxBuffer-1) {

18

 synchronized (this) {
 notify();
 }
 } // if
 } // while
}

8 Significance and Conc lusions

This paperhaspresentedJavaNOW, a framework for enablingboth a message-passingand
shared-memorymodel of computation.JavaNOW is designedprimarily for networks of
workstations,and provides a framework to harnessthe (relatively cheap)raw computational
power availableon suchsystems.Although written in Java, a relatively youngandunproven
languagein many respects,JavaNOW hasnot beendesignedin a vacuum.Many of the ideas
presentedin this papergo back as far as the late 1960’s and 1970’s, when actorswere first
introducedasa modelof computation.Theemergenceof Java hasmadeit possibleto bring a
practicalimplementationto ideassuchascoarse-grainedactorsanddataflow. Theuseof Javahas
alsomadeit possibleto compactly implementa powerful androbustlibrary of communication
primitives. In fact, the current version of JavaNOW numbers in the low thousandsof
non-commented lines of code (NLOC).

JavaNOW bringsto theJavaandHigh-PerformanceComputingcommunitya framework thatis
reminiscentof the MessagePassingInterface(MPI). However, many aspectsof MPI arenot
necessaryin a Java environment,suchasderiveddatatypesanddetachedprocesses,sinceJava
alreadysupportstheseconceptsquitewell. Of courseanimportantissuefor any suchframework
is the level of supportprovided for the interoperabilityof existing codes.Our view is that
CORBA (theCommonObjectRequestBrokerArchitecture)providesamuchbettermechanism
thantheMPI framework for suchinteroperability. In particular, CORBA addressesthedifficult
issuesof mappingdatastructuresbetweendissimilarlanguagesmuchbetterthantheframework
introduced by MPI. (MPI derived datatypes,for example, cannot handle aggregation of
heterogeneousdatastructuresvery well.) Having said that however, JavaNOW provides full
supportfor thecollective communicationandcomputationoperationsprovidedby MPI, which
are often argued to be among the major research contributions of the MPI effort.

A questionremains:WhowoulduseJavaNOW?WebelieveJavaNOW will beof greatestuseto
two general classes of programmers:

• Peoplewhowantto useJava to developcompletelynew codesandmakeuseof all of the
modern features available in the language.

• People who have existing kernels (FORTRAN and C) and wish to use JavaNOW as a
coordinationenvironmentthusenablingthereuseof alreadyprovencodes.Asanexample,
we have an active project underway to use JavaNOW as a coordination language for
existing CFD codes. We have found that using the Java Native Interface (JNI), it is
relatively straightforward to support such legacy codes.

All said,JavaNOW is verymuchawork in progress.It is, muchlike therestof Java technology,
a prototype.Thuswe have been carefulin this paperto focuson theinnovationsandflexibility
of theJavaNOW modelof computationratherthanmakingclaimsabouthighperformanceof the
currentsystem(althoughwehopeto beableto dosoin thefuture). A numberof improvements
are planned for the next generation of JavaNOW, including the following:

19

Completeness: A valid concernhasbeenraisedduringthereview processthattherehave been
few, if any, assurancesof the completenessof the API in terms of what is neededfor
high-performancecomputing.TheJavaNow systemhasbeenderived from theLinda andMPI
systems.We have includedall of theprogramminginterfacesfound in theseenvironmentsand
addeda numberof new elementswith theemphasison supportingobject-orientedcoordination
in a Java-onlycontext. Thusa numberof featuresin MPI, suchasderiveddatatypes,have been
omitted,becauseJava (andotherobjectlanguages)supportderived datatypesasa part of the
language.We have employed object-orienteddesign throughoutthe processof developing
JavaNow and(in makingdecisions)havereliedonatechnique,known asfactorization,to reduce
functionalcomplexity (without lossof expressivepotential)andbetterexploit theJava language
itself. Westressthatclaimsabout“languageequivalence”and“completeness”oftendegenerate
into formally undecidableproblemsandthushave madeno suchclaims in this paper. We do
claim,however, thatourapproachof acoherentsmallsetof functionscertainlylendsitself better
to practical use.

Performance: Thecurrentreleaseof JavaNOW is implementedprimarily asaproofof concept,
andwe have yet to pursueany significantperformancetuning. Performanceissueswill be of
paramountimportancein future releases.In retrospect,many of our designdecisions,suchas
supportingtheeasyplug-and-playof differenttransportlayers,acomponent-basedarchitecture,
etc.do comeat a cost.It maybe thecasethat, in order to optimizeperformance,we have to
retro-fit servicesback into the kernel in much the sameway that has beendone in some
Microkernel operating systems such as Windows NT.

Dynamic resource management: The current releaseof JavaNOW requiresthat the user
staticallyspecifythe list of machineson which the applicationwill run. In the next release,
JavaNOW will allow usersto add/deletemachinesdynamically. This is animportantstepin the
integrationof JavaNOW with anotherframework we aredevelopingtermedtheComputational
Neighborhood(CN) (see[63] for a thoroughdiscussionof this proposedframework). TheCN
supportsdynamicresourcediscoveryandallocationin adrag-and-dropmannerallowing jobsto
be started, seamlessly and transparently, on a collection of resources.

Dynamic load balancing: Thecurrentreleaseof JavaNOW usesa simplehashingschemefor
loadbalancing.While this approachseemsto work well for thelimited numberof applications
we have testedthusfar, we do not yet know if it will work well in thegeneralcase.If not, then
we will be forced to implement a dynamic load distribution scheme in the future.

Fault tolerance: As thenumberof machinesparticipatingin aJavaNOW applicationincreases,
the probability of a networking or other type of failure also increases.The current
implementationof JavaNOW, similar to othermessage-passingsystems,doesnot recover from
such errors.

Availability : JavaNOW is available from the Java andHigh-PerformanceComputingGroup,
http://www.jhpc.org. For moreinformationonJHPC,pleasecontactGeorgeK. Thiruvathukalat
the e-mail or postal address mentioned on the first page.

9 Ackno wledgments

We wish to acknowledge the reviewers for their many constructive comments.We have
endeavoredto incorporateevery suggestionmadefor improvementwith thehopeof producing
anarticleof highquality. Wealsowish to thankNinaWilfred, JohnShafaee,andArti Singhfor
their help in reviewing and editing the final version of this paper.

20

Bib liograph y

1 G. Aloisio, M. Cafaro, P. Messina, and R. Williams, “A distributed Web-based metacomputing
environment,” Proceedings of HPCN ‘97, Vienna, Austria, April 1997.

2 T. E. Anderson,D. E. Culler, andD. A. Patterson. “A casefor NOW,” IEEEMicro, February1995.

3 H. E. Bal and M. F. Kaashoek, “Object-Distribution in Orca using Compile-Time and Run-Time
Techniques,” Proceedingsof Object-OrientedProgrammingSystems,LanguagesandApplications
(OOPSLA ’93), pages 162-177, Washington, D.C., 1993.

4 J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer, “ATLAS: An Infrastructure for Global
Computing,” Proceedingsof7th ACMSIGOPSEuropeanWorkshop:Systemsupportfor Worldwide
Applications, Connemara, Ireland, September 1996.

5 A. Baratloo, M. Karaul, H. Karl, and Z. Kedem, “An Infrastructure for Network Computing with
JavaApplets,” Proceedingsof ACM WorkshoponJavafor ScienceandEngineeringComputation,
February 1998.

6 R. Bjornson, C. Kolb and A. Sherman, “Ray Tracing with Nework Linda,” SIAM News, 1(24),
January 1991.

7 R.Bjornson,“Linda ondistributedmemorymultiprocessors,” Ph.D.Thesis,YaleUniversity, 1992.
YALEU/DCS/RR-931.

8 R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, H. Randall, and Y. Zhou, “Cilk: An
Efficient Multithreaded Runtime System,” Proceedings of the 5th ACM SIGPLAN Symposium on
Principles of Parallel Programming, 1995.

9 T. Brecht, H. Sandu, M. Shan, and J. Talbot, “ParaWeb: Towards World-Wide Supercomputing,”
Proceedings of the Seventh ACM SIGOPS European Workshop on System Support for Worldwide
Applications, 1996.

10 D. Caromel,W. Klauser, J.Vayssiere,“TowardSeamlessComputingandMetacomputingin Java,”
Concurrency: Practice and Experience ed. by G. C. Fox, September-November, 1998, Wiley, pp.
1043-1061.

11 N. Carriero, and D. Gelernter, Linda in Context, CACM, 32:4, Apr. 1989.

12 J. B. Carter and J. K. Bennett and W. Zwaenepoel, “Implementation and Performance of Munin,”
Proceedings of the 13th ACM Symposium on Operating Systems Principles, pages 152-164, Oct.
1991.

13 N. Carriero and D. Gelernter. How to write parallel programs, The MIT Press, Cambridge,
Massachusetts, pp. 45-49.

14 B. Carpenter, G. Zhang, G. Fox, X. Li, and Y. Wen, “HPJava: Data Parallel Extensions to Java,”
Proceedingsof ACM WorkshoponJavafor ScienceandEngineeringComputation, February1998.

15 Z. Chen, K. Maly, P. Mehrotra, R. K. Vangala, and M. Zubair, “Web Based Framework for
Distributed Computing,” Proceedings of ACM Workshop on Java for Science and Engineering
Computation, Las Vegas, NV, June 1997.

16 B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, and K. E. Schauser, Javelin:
Internet-Based Parallel Computing Using Java. In Proceedings of ACM Workshop on Java for
Science and Engineering Computation, Las Vegas, NV, June 1997.

17 W. T. O'Connell, G. K. Thiruvathukal, and T. W. Christopher, “Distributed Memo: A
Heterogeneously Parallel and Distributed Programming Environment,” Proceedings of the 23rd
International Conference on Parallel Processing, August 1994.

18 W. T. O'Connell, G. K. Thiruvathukal and T. W. Christopher. “The Memo Programming
Language,” Proceedings of the International Conference on Parallel and Distributed Computing
Systems, October 1994.

19 P. E. CrandallandM. J.Quinn.DataPartitioning for NetworkedParallel Processing, IEEEPress,
1993, pp. 376-379.

21

20 P. Dasgupta, Z. Kedem, and M. Rabin, “Parallel processing on networks of workstations;
Fault-toleranthighperformanceapproach,” Proceedingsof 15th IEEEInternationalConferenceon
Distribute Computing Systems, 1995.

21 J. Dongarra, A. Geist, R. Manchek, and V. Sunderam, “Integrated PVM Framework Supports
HeterogeneousNetworkComputing,” Computersin Physics. April 1993,Vol. 7,No.2,pp166-175.

22 The Original-E Extensions to Java,http://www.erights.org/.

23 A. Ferrari,“JPVM: Network ParallelComputingin Java,” Proceedingsof ACM WorkshoponJava
for Science and Engineering Computation, February 1998.

24 I. T. Foster and C. Kesselman, “The Globus Project,” http://www.globus.org/.

25 G. C. Fox and K. Dincer, “Using Java and JavaScript in the Virtual Programming Laboratory: A
Web-Based Parallel Programming Environment,” Concurrency: Practice and Experience,
9:485-508, 1997.

26 G. A. Geist and V. S. Sunderam. “Network Based Concurrent Computing on the PVM System,”
Journal of Concurrency: Practice and Experience, 4, 4, pp 293--311, June, 1992.

27 G.A. Geist and V.S. Sunderam, “The Evolution of the PVM Concurrent Computing System,”
Proceedings of 26th IEEE COMPCON Symposium, pp. 471-478, San Fransisco, February 1993.

28 D. Gelernter, “Generative Communication in Linda,” ACM TOPLAS, 7:1, Jan. 1985.

29 D. Gelernter, “Multiple tuplespacesin Linda,” In E.Odijk,M. Rem,andJ.C.Syre, editors,PARLE
’89: Parallel Architectures and Languages, pages 20-27. Springer-Verlang, Lecture Notes in
Computer Science Volume 366, 1989.

30 D. Gelernter and D. Kamisnsky, “Supercomputing out of Recycled Garbage: Preliminary
Experience with Piranha,” Proceedings of Sixth ACM International Conference on
Supercomputing, Washington D.C., July 1992.

31 G. K. Thiruvathukal, “An Enhanced Actors Model for Parallel and Distributed Computing,”
Proceedings of First International Conference on Parallel Computing (HiPC) 1994, Bangalore
India, December 1994.

32 G. K. Thiruvathukal,“An EnhancedActorsModel for ParallelandDistributedComputing,” Ph.D.
Thesis, Illinois Institute of Technology, Chicago, IL, 1995.

33 P. A. Gray and V. S. Sunderam, “IceT: Distributed Computing and Java,” Proceedings of ACM
Workshop on Java for Science and Engineering Computation, June 1997.

34 A. S. Grimshaw and W. A. Wulf, “The Legion Vision of a Worldwide Virtual Computer,”
Communications of the ACM, pp. 39-45, volume 40, number 1, January, 1997.

35 S. C. Hupfer, “Melinda: Linda with multiple spaces,” Technical Report YALEU /DCS/RR-766,
Yale University, 1990.

36 L. V. Kale and J. M. Yelon, “Threads for Interoperable Parallel Programming,” Proceedings of
Languages and Compilers for Parallel Computing, 1996.

37 L. V. Kale, M. Bhandarkar, and T. Wilmarth, “Design and Implementation of Parallel Java with
Global Object Space,” Proceedings of Parallel and Distributed Processing Technology and
Applications, Las Vegas, Nevada, 1997.

38 L. V. Kale,M. Bhandarkar, R.BrunnerandJ.Yelon.“MultiparadigmMultilingual Interoperability:
Experience with Converse,” Proc. ofSecond Workshop on Runtime Systems for Parallel
Programming (RTSPP), March 1998.

39 H. Karl, “Bridging the Gape between Distributed Shared Memory and Message Passing,”
Proceedingsof ACM WorkshoponJavafor ScienceandEngineeringComputation, February1998.

40 P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel, “TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating Systems,” Proceedings of the 1994 Winter
Usenix Conference, pages 115-132, January 1994.

41 LAM/MPI – Local Area MPI,http://www.mpi.nd.edu/lam/

42 K. Li, “IVY : A SharedVirtual MemorySystemfor ParallelComputing,” Proceedingsof the1988
International Conference on Parallel Processing, pages II:94-101, Aug. 1988.

22

43 B. Gropp, R. Lusk and T. Skjellum,Using MPI: Portable Parallel Programming with the
Entity-Passing Interface, 1994.

44 L. Clarke, I. Glendinning, and R. Hempel, MPI: A Message-Passing Interface Standard,The
International Journal of Supercomputer Applications and High Performance Computing, 8(3),
1994.

45 H. Takagi,S.Matsuoka,H. Nakada,S.Sekiguchi,M. Satoh,U. Nagashima,Concurrency: Practice
and Experience ed. by G. C. Fox, September-November, 1998, Wiley, pp. 1063-1078.

46 MPI-2: Extensions to the Message-Passing-Interface,
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html

47 MPI-Java Home Page,http://www.npac.syr.edu/projects/pcrc/HPJava/mpiJava.html.

48 J. Narem. “An Informal Operational Semantics of C-Linda V2.3.5,” Technical Report 839, Yale
University Department of Computer Science, Dec. 1990.

49 M. O.Neary, S.P. Brydon,P. Kmiec,S.Rollins,P. Capello,“Javelin++:ScalabilityIssuesin Global
Computing,” Proceedings of the ACM Java Grande 1999 Conference, June 12-14, 1999, San
Francisco, California.

50 S. W. Otto, M. Snir, and D. Walker. “An Introduction to the MPI Standard” In J. Dongarra,
CS-95-274, January 1995.

51 M. PhilippsenandM. Zenger, “JavaParty:TransparentRemoteObjectsin Java,” Proceedingsof the
ACMPpoPPWorkshopononJavafor ScienceandEngineeringComputation, LasVegas,NV, June
1997.

52 M. C. Rinard,D. J.Scales,andM. S.Lam,“Jade:A High-Level, Machine-IndependentLanguage
for Parallel Computing,” IEEE Computer, 1993.

53 L. F. G. Sarmenta, S. Hirano, and S. Ward, “Towards Bayanihan: Building an Extensible
Framework for Volunteer Computing Using Java,” Proceedings of the 2nd Intl. Conference on
Worldwide Computing and its Applications, Tsukuba, Japan, March 1998.
http://www.cag.lcs.mit.edu/bayanihan.

54 K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger, S.
Graham, D. Gay, P. Colella, and A. Aiken, “Titanium: A High-Performance Java Dialect,”
ProceedingsofACM1998WorkshoponJavafor High-PerformanceNetworkComputing, Stanford,
California, February 1998.

55 Seyfarth, J. Bickham and S. Arumugham.Glenda,
http://sushi.st.usm.edu/~seyfarth/research/glenda.html

56 A. Sinha and L. V. Kale, “A Load Balancing Strategy For Prioritized Execution of Tasks,”
International Symposium on Parallel Processing, Newport Beach, CA, April 1993.

57 Ahuja, Sudhir, Carriero, and Gelernter, “Linda and Friends,” IEEE Computer, Aug. 1986.

58 V. S.Sunderam,“PVM: A Framework for ParallelDistributedComputing,” Concurrency:Practice
and Experience, 2, 4, pp 315--339, December, 1990.

59 G. A. Geist and V. S. Sunderam, “Network Based Concurrent Computing on the PVM System,”
Journal of Concurrency: Practice and Experience, (4), pp. 293-311, June 1992.

60 V. Sunderam, J. Dongarra, A. Geist, and R Manchek. “The PVM Concurrent Computing System:
Evolution,Experiences,andTrends,” Parallel Computing, Vol. 20,No.4,April 1994,pp531-547.

61 Sun MicroSystems, Inc.,JavaSpaces Specification, http://java.sun.com/products/javaspaces/

62 G. K. Thiruvathukal, “Toward non-von Neumann Computation: An Enhanced Actors Model for
Parallel and Distributed Processing,” Proceedings of the First HiPC Conference (Workshop),
Bangalore, India, 1994.

63 G. K. Thiruvathukal,B. Cameron,T. Christopher, L. Oliveira,andJ.Shafaee,TheComputational
Neighborhood,Proceedingsof ICSWorkshoponJava,Rhodes,Greece.Toappearin aspecialissue
of FGCS, edited by V. Getov.

64 D. A. Thurman. JavaPVM: The Java to PVM Interface, Decemeber 1996.
http://www.isye.gatech.edu/chmsr/jPVM.

23

65 W. Yu andA. Cox.“Java/DSM:A Platformfor HeterogeneousComputing,” Proceedingsof ACM
Workshop on Java for Science and Engineering Computation, Las Vegas, NV, June 1997.

