
MPJ: MPI-like Message Passing for Java

Bryan Carpenter1, Vladimir Getov2, Glenn Judd3,

Anthony Skjellum4 and Geo�rey Fox1

1NPAC, Syracuse University, Syracuse, USA
2School of Computer Science, University of Westminster, London, UK

3Computer Science Department, Brigham Young University, Provo, USA
4MPI Software Technology, Inc., Starkville, USA

Abstract

Recently, there has been a lot of interest in using Java for parallel programming.

E�orts have been hindered by lack of standard Java parallel programming APIs. To

alleviate this problem, various groups started projects to develop Java message pass-

ing systems modelled on the successful Message Passing Interface (MPI). OÆcial MPI

bindings are currently de�ned only for C, Fortran, and C++, so early MPI-like envi-

ronments for Java have been divergent. This paper relates an e�ort undertaken by a

working group of the Java Grande Forum, seeking a consensus on an MPI-like API, to

enhance the viability of parallel programming using Java.

1 Introduction and Background

A likely prerequisite for parallel programming in a distributed environment is a good message
passing API. Java comes with various ready-made packages for communication, notably an
easy-to-use interface to BSD sockets, and the Remote Method Invocation (RMI) mechanism.
Interesting as these interfaces are, it is questionable whether parallel programmers will
�nd them especially convenient. Sockets and remote procedure calls have been around for
approximately as long as parallel computing has been fashionable, and neither of them has
been popular in that �eld. Both of these communication models are optimized for client-
server programming, whereas the parallel computing world is mainly concerned with a more
symmetric model, where communications occur in groups of interacting peers.

This peer-to-peer model of communication is captured in the successful Message Pass-
ing Interface (MPI) standard, established in 1994 [15]. MPI directly supports the Single
Program Multiple Data (SPMD) model of parallel computing, wherein a group of processes
cooperate by executing identical program images on local data values. Reliable point-to-
point communication is provided through a shared, group-wide communicator, instead of
socket pairs. MPI allows numerous blocking, non-blocking, bu�ered or synchronous commu-
nication modes. It also provides a library of true collective operations (broadcast is the most
trivial example). An extended standard, MPI-2 [16], allows for dynamic process creation
and access to memory in remote processes.

The MPI standard documents provided a language-independent speci�cation as well as
language-speci�c (C and Fortran) bindings [15]. While the MPI-2 release of the standard
added a C++ binding [16], no Java binding has been o�ered or is planned by the MPI
Forum. With the evident success of Java as a programming language, and its inevitable use
in connection with parallel as well as distributed computing, the absence of a well-designed
language-speci�c binding for message-passing with Java will lead to divergent, non-portable
practices. Indeed MPI-like binding for Java were developed independently by several teams.
These will be briey reviewed in the next section.

1



Over the last three years supporters of the Java Grande Forum [8] have been working
actively to address some of the issues involved in using Java for technical computation.
The goal of the forum has been to develop consensus and recommendations on possible en-
hancements to the Java language and associated Java standards, for large-scale (\Grande")
applications. Through a series of ACM-supported workshops and conferences the forum has
helped stimulate research on Java compilers and programming environments. The Message-
Passing Working Group of the Java Grande Forum was formed just over a year ago as a
response to the appearance of the various APIs for message-passing. An immediate goal
was to discuss a common API for MPI-like Java libraries. An initial draft for a common
API speci�cation was distributed at Supercomputing '98 [5]. Since then the working group
met in San Francisco and Syracuse, and a Birds of a Feather meeting was held at Supercom-
puting '99. Minutes of meetings are available at [9, 10]. To avoid confusion with standards
published by the original MPI Forum the nascent API is called MPJ (Message Passing
interface for Java).

2 Earlier Work

At the time the working group was created there were several known e�orts towards the de-
sign of early MPI-like interfaces for Java with three fully functional but di�erent implement-
ations|mpiJava [3], JavaMPI [17], and MPIJ [12]. The implementation of mpiJava is based
on the use of native methods to build a wrapper to existing MPI library (MPICH). A compa-
rable approach has been followed in the development of JavaMPI, but the JavaMPI wrappers
were automatically generated by a special-purpose code generator. A large subset of MPI-
like functions called MPIJ is implemented in pure Java within the DOGMA system for
Java-based parallel programming. MPI Software Technology, Inc. announced a commercial
e�ort to develop a message-passing framework and parallel support environment for Java
called JMPI [6]. Some of these \proof-of-concept" implementations have been available
since 1997 with successful ports on clusters of workstations running Solaris, Windows NT,
Irix, AIX, HP-UX, MacOS, and Linux, as well as the IBM SP2, SGI Origin-2000, Fujitsu
AP3000, and Hitachi SR2201 parallel platforms.

2.1 The mpiJava wrapper

The mpiJava software [3] implements a Java binding for MPI proposed late in 1997. The
API is modeled as closely as practical on the C++ binding de�ned in the MPI 2.0 standard,
speci�cally supporting the MPI 1.1 subset of that standard. In some cases the extra runtime
information available in Java objects allows argument lists to be simpli�ed relative to the
C++ binding. In other cases restrictions of Java, especially the fact that all arguments are
passed by value in Java, forces some changes to argument lists. But in general mpiJava
adheres closely to earlier standards.

The implementation of mpiJava is through JNI wrappers to native MPI software. In-
terfacing Java to MPI is not always trivial. We often see low-level conicts between the
Java runtime and the interrupt mechanisms used in MPI implementations. The situation is
improving as JDK matures, and the mpiJava software now works reliably on top of Solaris
MPI implementations and various shared memory platforms. A port to Windows NT (based
on WMPI) is available, and other ports are in progress.

Other work in progess includes development of demonstrator applications, and Java-
speci�c extensions such as support for direct communication of serializable objects.

2.2 JavaMPI|automatic generation of MPI wrappers

In principle, the binding of existing MPI library to Java using JNI amounts to either dy-
namically linking the library to the Java virtual machine, or linking the library to the object
code produced by a stand-alone Java compiler. Complications stem from the fact that Java

2



data formats are in general di�erent from those of C. Java implementations will have to use
JNI which allows C functions to access Java data and perform format conversion if neces-
sary. Such an interface is fairly convenient for writing new C code to be called from Java,
but is not adequate for linking existing native code.

Clearly an additional interface layer must be written in order to bind a legacy library
to Java. A large library like MPI has over a hundred exported functions, therefore it is
preferable to automate the creation of the additional interface layer. The Java-to-C interface

generator (JCI) [7] takes as input a header �le containing the C function prototypes of the
native library. It outputs a number of �les comprising the additional interface: a �le of
C stub-functions; �les of Java class and native method declarations; shell scripts for doing
the compilation and linking. The JCI tool generates a C stub-function and a Java native
method declaration for each exported function of the MPI library. Every C stub-function
takes arguments whose types correspond directly to those of the Java native method, and
converts the arguments into the form expected by the C library function.

As the JavaMPI bindings have been generated automatically from the C prototypes of
MPI functions, they are very close to the C binding. However, there is nothing to prevent
from parting with the C{style binding and adopting a Java-style object{oriented approach
by grouping MPI functions into a hierarchy of classes.

2.3 MPIJ|MPI-like implementation in pure Java

MPIJ is a completely Java-based implementation of MPI which runs as part of the Dis-
tributed Object Group Metacomputing Architecture (DOGMA) system. MPIJ implements
a large subset of MPI-like functionality including all modes of point-to-point communica-
tion, intracommunicator operations, groups, and user-de�ned reduction operations. Notable
capabilities that are not yet implemented include process topologies, intercommunicators,
and user-de�ned datatypes but these are arguably needed for legacy code only.

MPIJ communication uses native marshaling of primitive Java types. On Win32 plat-
forms this technique allows MPIJ to achieve communication speeds comparable to, and
in some instances exceeding, native MPI implementations [13]. Our performance evalua-
tion experiments show that Java communication speed would be greatly increased if native
marshaling were a core Java function.

A key feature of a pure Java MPI-like implementation is the ability to function on applet-
based nodes. In MPIJ, this provides a exible method for creating clusters of workstations
without the need to install any system or user software related to the message-passing
environment on the participating nodes.

3 The MPJ API Speci�cation

3.1 Rationale

The MPI standard is explicitly object-based. The C and Fortran bindings rely on \opaque
objects" that can be manipulated only by acquiring object handles from constructor func-
tions, and passing the handles to suitable functions in the library. The C++ binding speci-
�ed in the MPI-2 standard collects these objects into suitable class hierarchies and de�nes
most of the library functions as class member functions. The draft MPJ API speci�cation
follows this model, lifting the structure of its class hierarchy directly from the C++ binding.

The initial speci�cation builds directly on the MPI-1 infrastructure provided by the MPI
Forum, together with language bindings motivated by the C++ bindings of MPI-2. The
purpose of this phase of the e�ort is to provide an immediate, ad hoc standardization for
common message passing programs in Java, as well as to provide a basis for conversion
between C, C++, Fortran 77, and Java. Eventually, support for other parts of MPI-2 also

3



Status

Datatype

Group

Comm

Request

MPJ

mpj Intercomm

Intracomm

Prequest

package

Graphcomm

Cartcomm

Figure 1: Principal classes of MPJ

belong here, particularly dynamic process management1. The position of the working group
was that the initial MPI-centric API should subsequently be extended with more object-
oriented, Java-centric features, although the exact requirements for this later phase have
not yet been established.

The major classes of the MPJ speci�cation are illustrated in Figure 1. The class MPJ
only has static members. It acts as a module containing global services, such as initial-
ization, and many global constants including the default communicator COMM WORLD. The
most important class in the package is the communicator class Comm. All communication
functions in MPJ are members of Comm or its subclasses. As usual in MPI, a communicator
stands for a \collective object" logically shared by a group of processors. The processes
communicate, typically by addressing messages to their peers through the common commu-
nicator. A class that will be important in the following discussion is the Datatype class.
This describes the type of the elements in the message bu�ers passed to send, receive, and
all other communication functions.

3.2 Example and data types

In general the point-to-point communication operations are realized as methods of the Comm
class. The basic point-to-point communication operations are send and receive. Their use is
illustrated in Figure 2. Consider, for example, the MPJ analogue of the operation MPI SEND.
The method prototype is:

void Comm.send(Object buf, int offset, int count,

Datatype datatype, int dest, int tag)

buf send bu�er array
offset initial o�set in send bu�er
count number of items to send
datatype data type of each item in send bu�er
dest rank of destination
tag message tag

The data part of the message consists of a sequence of count values, each of the type

1Given its spartan implementation in the non-Java space, we may not need the whole of MPI-2.

4



import mpj.* ;

class Hello {

static public void main(String[] args) {

MPJ.init(args) ;

int myrank = MPJ.COMM_WORLD.rank() ;

if(myrank == 0) {

char [] message = "Hello, there".toCharArray() ;

MPJ.COMM_WORLD.send(message, 0, message.length, MPJ.CHAR, 1, 99) ;

}

else {

char [] message = new char [20] ;

MPJ.COMM_WORLD.recv(message, 0, 20, MPJ.CHAR, 0, 99) ;

System.out.println("received:" + new String(message) + ":") ;

}

MPJ.finish();

}

}

Figure 2: Example MPJ program

indicated by datatype. The actual argument associated with buf must be an array with
elements of corresponding type. The value offset is a subscript in this array, de�ning the
position of the �rst item of the message.

The elements of buf may have primitive type or class type. If the elements are ob-
jects, they must be serializable objects. If the datatype argument represents an MPI-
compatible basic type, its value must be consistent with the element type of buf. Thus,
the basic data type values included in the MPJ API speci�cation are MPJ.BYTE, MPJ.CHAR,
MPJ.SHORT, MPJ.BOOLEAN, MPJ.INT, MPJ.LONG, MPJ.FLOAT, MPJ.DOUBLE, and MPJ.OBJECT.
If the datatype value is MPJ.OBJECT the objects in the bu�er are transparently serialized
and unserialized inside the communication operations.

The datatype argument is not redundant in the current speci�cation of MPJ, because
the proposal includes support for an analogue of MPI derived types. The derived types of
MPJ are restricted to have a unique base type, one of the nine types enumerated above. If the
datatype argument of a communication function represents an MPJ derived type, its base
type must agree with the Java element type of the associated buf argument. Alternatively,
if it was decided to remove derived types from MPJ, datatype arguments could be removed
from many functions, and Java runtime inquiries could be used internally to extract the
element type of the bu�er2.

3.3 MPJ as an MPI-like language binding

MPJ does not have the status of an oÆcial language binding for MPI. But, as a matter of
interest, this section will compare some surface features of the Java API with standard MPI
language bindings.

All MPJ classes belong to the package mpj. Conventions for capitalization, etc, in class
and member names generally follow the recommendations of Sun's Java code conventions
[19]. In general these conventions are consistent with the naming conventions of the MPI
2.0 C++ standard. Exceptions to this rule include the use of lower case for the �rst letters
of method names, and avoidance of underscore in variable names.

2Or methods like send could be overloaded to accept bu�ers with elements of the nine basic types. The

disadvantage of this approach is that it leads to a major proliferation in the number of methods.

5



With MPI opaque objects replaced by Java objects, MPI destructors can be absorbed
into Java object destructors (finalize methods), called automatically by the Java garbage
collector. MPJ adopts this strategy as the general rule. Explicit calls to destructor functions
are typically omitted from the Java user code. An exception is made for the Comm classes.
In MPI the destructor for a communicator is a collective operation, and the user must
ensure that calls are made at consistent times on all processors involved. Automatic garbage
collection would not guarantee this. Hence the MPJ Comm class has an explicit free method.

Some options allowed for derived data types in the C and Fortran bindings are absent
from MPJ. In particular, the Java virtual machine does not support any concept of a global
linear address space. Therefore, physical memory displacements between �elds in objects are
unavailable or ill-de�ned. This puts some limits on the possible uses of any analogues of the
MPI TYPE STRUCT type constructor. In practice the MPJ struct data type constructor
has been further restricted in a way that makes it impossible to send mixed basic data types
in a single message. However, this should not be a serious problem, since the set of basic
data types in MPJ is extended to include serializable Java objects.

Array size arguments are often omitted in MPJ, because they can be picked up within
the function by reading the length member of the array argument. A crucial exception is
for message bu�ers, where an explicit count is always given. Message bu�ers aside, typical
array arguments to MPI functions (e.g., vectors of request structures) are small arrays. If
subsections of these must be passed to an MPI function, the sections can be copied to smaller
arrays at little cost. In contrast, message bu�ers are typically large and copying them is
expensive, so it is worthwhile to pass an extra size argument to select a subset. (Moreover,
if derived data types are being used, the required value of the count argument is always
di�erent to the bu�er length.) C and Fortran both have ways of treating a section of an
array, o�set from the beginning of the array, as if it was an array in its own right. Java does
not have any such mechanism. To provide the same exibility in MPJ, an explicit integer
offset parameter also accompanies any bu�er argument. This de�nes the position in the
Java array of the �rst element actually treated as part of the bu�er.

The C and Fortran languages de�ne a straightforward mapping (or \sequence associ-
ation") between their multidimensional arrays and equivalent one-dimensional arrays. In
MPI a multidimensional array passed as a message bu�er argument is generally treated like
a one-dimensional array with the same element type. O�sets in the bu�er (such as o�sets
occuring in derived data types) behave like o�sets in the e�ective one-dimensional array. In
Java the relationship between multidimensional arrays and one dimensional arrays is di�er-
ent. An \n-dimensional array" is equivalent to a one-dimensional array of (n�1)-dimensional
arrays. In the MPJ interface message bu�ers are always treated as one-dimensional arrays.
The element type may be an object, which may have array type. Hence, multidimensional
arrays can appear as message bu�ers, but the interpretation and behaviour is signi�cantly
di�erent.

Unlike the standard MPI interfaces, MPJ methods do not return explicit error codes.
Instead, the Java exception mechanism is used to report errors.

3.4 Complete draft API

The appendix of this paper lists the public interfaces of all the classes. Of course this only
de�nes syntax. A more complete description of the semantics of all methods is available in
[5].

4 Open Issues

The API described in [5] is not assumed to be \�nal". It was originally presented as a
starting point for discussion. In this section we will mention some areas we consider to be
open to improvement.

6



4.1 Derived data types

It is unclear whether a Java interface should support MPI-like derived data types. A pro-
posal for a Java-compatible subset of derived types is included in the draft speci�cation
document [5], but deleting it would simplify the API signi�cantly. In particular datatype
arguments for bu�ers could be dropped.

One factor in favor of including MPI-like derived data types in MPJ is the support for
legacy MPI applications. The possible need to interact with native code that uses derived
data types is probably best supported by including derived data types in the MPJ API
speci�cation.

It has been argued that the functionality of derived data types is already provided by
Java objects, and supporting both only adds unneeded complexity. But in fact there are
good reasons to retain some additional functionality of derived data types. Any scienti�c
code, written in Java or otherwise, will bene�t from the ability to eÆciently and conveniently
send sections (subsets) of program arrays. In MPI, this is one of the most useful roles of the
so-called derived data types, and MPJ object data types do not address this requirement.
The discussion of whether derived data types are to be supported in MPJ should therefore
be closely linked with the discussion of how true \scienti�c" (multi-dimensional) arrays,
allowing Fortran-90-like sectioning operations, should be handled.

4.2 Multidimensional arrays

Some speci�c support for communicating multidimensional arrays would be desirable. In the
current proposal, sending a multidimensional array involves either sending one row at a time
or using Java object serialization, both of which will introduce performance bottlenecks. For
instance, our experience has shown that MPIJ sends a 200x200 array of doubles over Fast
Ethernet much faster when multidimensional array support is included than when individual
rows are sent. More detailed analysis of this problem is presented in [4, 13].

Trying to �x the problem for standard Java multidimensional arrays is probably the
wrong approach. There is a deeper problem that the Java \array-of-arrays" model for mul-
tidimensional arrays is not especially well-suited for \scienti�c" computation. This issue is
being actively addressed by other groups in the Java Grande Forum. In particular the work
by IBM on the Array package [18], which has been adopted by the Java Grande Numerics
working group, is very relevant. A more complete MPJ speci�cation should probably in-
clude mechanisms for eÆciently communicating standardized \scienti�c" arrays, and their
sections.

In fact, if a standard like the Array package were adopted, and if it supported description
of array sections (without copying elements), it is quite likely that the remaining arguments
in favour of keeping an MPI-like derived data type mechanism would go away.

4.3 Overloaded communication operations

It has been suggested that many of the communication operations should be overloaded to
provide simpli�ed variants that omit arguments like offset, count (and possibly datatype).
This suggestion is not included in the current proposal, but it could be added. The primary
argument in favor is that it simpli�es user code. For instance,

MPJ.COMM_WORLD.send(message, 0, message.length, MPJ.CHAR, 1, 99);

becomes

MPJ.COMM_WORLD.send(message, MPJ.CHAR, 1, 99);

The obvious counter-argument is that this very signi�cantly increases the total number of
methods in the API. A possible compromise is to provide overloaded versions only of speci�c
common functions such as point-to-point communication functions (the argument against
this, in turn, is that it looks inconsistent).

7



4.4 Other issues

The current draft MPJ speci�cation supports all MPI-like error handling using the Java
exception model. An alternative suggestion that has been put forward is that all MPJ ex-
ceptions be derived from two classes: MPJException and MPJRuntimeException. Subclasses
of MPJException would represent errors that the user would be required to catch whereas
subclasses of MPJRuntimeException would represent uncommon or unusual errors. It has
also been suggested that certain MPJ exceptions could carry subexceptions when the cause
of the error is another exception. Whether, or not, to utilize MPI-like user-de�ned and
prede�ned error handlers is also an open question. In principle, these error handlers could
still serve a purpose in addition to the exception mechanism mentioned above.

It has been suggested that the speci�cation of user-de�ned operations could be sim-
pli�ed. In the current proposal, which is modelled after a procedural approach, a more
complex or unique operation can be created in two phases. Initially users de�ne functions
and then create a new operation class (Op). This results in the creation of an extra class
(UserDefinedOperation) which is not really necessary. An alternative approach would be
to simply have users de�ne subclasses of the class Op with a named method (for example,
call). This design would also eliminate the overhead associated with method invocation.

A pro�ling interface for MPJ has not yet been de�ned. A possible general design ap-
proach is for pro�ling class and method names to exactly match those of the non-pro�ling
classes and methods. Implementors would then place the compiled binary �les in di�erent
locations. As Java linking is always dynamic, this would allow users to enable or disable
pro�ling simply selecting the appropriate codebase (e.g. by changing the CLASSPATH
environment variable).

5 Discussion and Conclusion

An initial goal of the Java Grande Message Passing working group was to promote a stan-
dardized MPI binding for Java. It became apparent that this road was likely to produce a
collision of interest with the existing MPI community, and the name of the new API was
changed to MPJ. MPJ was designated an \MPI-like" speci�cation. The current speci�ca-
tion is available in [5]. This speci�cation is essentially complete and self-contained, but as
discussed in section 4, it is not necessarily considered \�nal".

Because the proposed API was designed on object-oriented principles, most of the orig-
inal MPI speci�cation actually maps very naturally into Java. So long as one accepts the
Java Grande premise that Java is an excellent basis for technical computing, an MPI-like
approach to parallel computing seems very promising|more promising than some have
assumed. But there remain non-obvious issues about supporting basic MPI functionality.
Some of the more diÆcult ones boil down to the lack of a good model of scienti�c arrays
in Java. This issue is somewhat outside the purview of this working group, but is being
actively discussed by the Java Grande Numerics working group [11].

Reference implementations of the MPJ speci�cation are currently (March, 2000) under
development. An implementation based on JNI wrappers to native MPI will be created by
adapting the mpiJava wrappers [3]. While this is a good approach in some situations, it has
various disadvantages and conicts with the ethos of Java, where pure-Java, write-once-run-
anywhere software is the order of the day. A design for a pure-Java reference implementation
of MPJ has also been outlined [2]. In this case, design goals were that the system should
be as easy to install on distributed systems as we can reasonably make it, and that it be
suÆciently robust to be useable in an Internet environment.

Back in 1994, MPI-1 was originally designed with relatively static platforms in mind. To
better support computing in volatile Internet environments, modern message passing designs
for Java will have to support (at least) features such as dynamic spawning of process groups
and parallel client/server interfaces as introduced in the MPI-2 speci�cation. In addition,
a natural framework for dynamically discovering new compute resources and establishing

8



connections between running programs already exists in Sun's Jini project [1], and one line
of investigation is into MPJ implementations operating in the Jini framework.

Closely modelled as it is on the MPI standards, the existing MPJ speci�cation should
be regarded as a �rst phase in a broader program to de�ne a more Java-centric high perfor-
mance message-passing environment. In future a detachment from legacy implementations
involving Java on top of native methods will be emphasized. We should consider the possibil-
ity of layering the messaging middleware over standard transports and other Java-compliant
middleware (like CORBA). In a sense, the middleware developed at this level should o�er
a choice of emphasis between performance or generality, while always supporting portabil-
ity. We note an opportunity to study and standardize aspects of real-time and fault-aware
programs, drawing on the concepts learned in the MPI/RT activity [14]. For performance,
we should seek to take advantage of what has been learned since MPI-1 and MPI-2 were �-
nalized, or ignored in MPI standardization for various reasons|for instance drawing on the
body of knowledge completed within the MPI/RT Forum. From here we may at least glean
design hints concerning channel abstractions, and the more direct use of object-oriented
design for message passing than was seen in MPI-1 or MPI-2. The value of this type of
messaging middleware in the embedded and real-time Java application spaces should also
be considered.

Of course, a primary goal in the above mentioned, both current and future work, should
be the aim to o�er MPI-like services to Java programs in an upward compatible fashion.
The purposes are twofold: performance and portability.

References

[1] Ken Arnold, Bryan O'Sullivan, Robert Scheier, Jim Waldo, and Ann Wollrath. The
Jini Speci�cation. Addison Wesley, 1999.

[2] Mark Baker and Bryan Carpenter. MPJ: A proposed Java message-passing API and
environment for high performance computing. In International Workshop on Java for

Parallel and Distributed Computing, Cancun, Mexico, May 2000. To be presented.

[3] Mark Baker, Bryan Carpenter, Geo�rey Fox, Sung Hoon Ko, and Xinying Li.
mpiJava: A Java interface to MPI. In First UK Workshop on Java for

High Performance Network Computing, September 1998. mpiJava Home Page:
http://www.npac.syr.edu/projects/pcrc/HPJava/mpiJava.html.

[4] Bryan Carpenter, Geo�rey Fox, Sung Hoon Ko, and Sang Lim. Object serialization for
marshalling data in a Java interface to MPI. In ACM 1999 Java Grande Conference.
ACM Press, June 1999.

[5] Bryan Carpenter, Vladimir Getov, Glenn Judd, Anthony Skjellum, and Geo�rey Fox.
MPI for Java: Position Document and Draft Speci�cation. Technical report, Java
Grande Forum, November 1998. http://www.javagrande.org/reports.htm.

[6] George Crawford III, Yoginder Dandass, and Anthony Skjellum. The JMPI
commercial message passing environment and speci�cation: Requirements, de-
sign, motivations, strategies, and target users, December 1997. http://www.mpi-
softtech.com/publications/JMPI 121797.html.

[7] Vladimir Getov, Paul Gray, Sava Mintchev, and Vaidy Sunderam. Multi-language pro-
gramming environments for high performance java computing. Scienti�c Programming,
7(2):139{146, 1999.

[8] Java Grande Forum. http://www.javagrande.org.

[9] Java Grande Message Passing Working Group. Minutes of Jun 14, 1999 meeting in San
Francisco. http://www.npac.syr.edu/projects/java-mpi/jul99/msg00000.html.

9



[10] Java Grande Message Passing Working Group. Minutes of Oct 1, 1999 meeting in
Syracuse. http://www.npac.syr.edu/projects/java-mpi/oct99/msg00000.html.

[11] Java Grande Numerics Working Group. http://math.nist.gov/javanumerics/.

[12] Glenn Judd, Mark Clement, and Quinn Snell. DOGMA: Distributed Object Group
Metacomputing Architecture. Concurrency: Practice and Experience, 10(11/13):977{
983, 1998. MPIJ Home Page: http://ccc.cs.byu.edu/DOGMA/.

[13] Glenn Judd, Mark Clement, Quinn Snell, and Vladimir Getov. Design issues for eÆcient
implementation of mpi in java. In Proceedings of ACM 1999 Java Grande Conference,
pages 58{65. ACM Press, 1999.

[14] Arkady Kanevsky, Anthony Skjellum, and Anna Rounbehler. MPI/RT|an emerg-
ing standard for high-performance real-time systems. In 31st Hawaii International

Conference on System Sciences, volume III, January 1998. MPI/RT Home Page:
http://www.mpirt.org.

[15] Message Passing Interface Forum. MPI: A message-passing interface standard. Inter-
national Journal of Supercomputer Applications, 8(3/4), 1994.

[16] Message Passing Interface Forum. MPI-2: Extension to the message passing interface.
Technical report, University of Tennessee, July 1997. http://www.mpi-forum.org.

[17] Sava Mintchev and Vladimir Getov. Towards portable message passing in Java: Binding
MPI. In M. Bubak, J. Dongarra, and J. Wa�sniewski, editors, Recent Advances in PVM

and MPI, volume 1332 of Lecture Notes in Computer Science, pages 135{142. Springer
Verlag, 1997. JavaMPI Home Page: http://perun.hscs.wmin.ac.uk/JavaMPI/.

[18] Jose Moreira, Sam Midki�, Manish Gupta, and Rick Lawrence. High performance
computing with the array package for Java: A case study using data mining. In Super-

computing 99, November 1999.

[19] Sun Microsystems. Java code conventions. http://java.sun.com/docs/codeconv/.

A Public Interface of Classes in MPJ Draft Speci�ca-

tion

A.1 MPJ

public class MPJ {

public static Intracomm COMM_WORLD;

public static Datatype BYTE, CHAR, SHORT, BOOLEAN, INT, LONG,

FLOAT, DOUBLE, OBJECT, PACKED, LB, UB ;

public static int ANY_SOURCE, ANY_TAG ;

public static int PROC_NULL ;

public static int BSEND_OVERHEAD ;

public static int UNDEFINED ;

public static Op MAX, MIN, SUM, PROD, LAND, BAND,

LOR, BOR, LXOR, BXOR, MINLOC, MAXLOC ;

public static Datatype SHORT2, INT2, LONG2, FLOAT2, DOUBLE2 ;

public static Group GROUP_EMPTY ;

10



public static Comm COMM_SELF ;

public static int IDENT, CONGRUENT, SIMILAR, UNEQUAL ;

public static int GRAPH, CART ;

public static ErrHandler ERRORS_ARE_FATAL, ERRORS_RETURN ;

public static int TAG_UB, HOST, IO ;

// Buffer allocation and usage

public static void bufferAttach(byte [] buffer) throws MPJException {...}

public static byte [] bufferDetach() throws MPJException {...}

// Environmental Management

public static String [] init(String[] argv) throws MPJException {...}

public static void finish() throws MPJException {...}

public static String getProcessorName() throws MPJException {...}

public static double wtime() throws MPJException {...}

public static double wtick() throws MPJException {...}

public static boolean initialized() throws MPJException {...}

...

}

A.2 Comm

public class Comm {

// Communicator Management

public int size() throws MPJException {...}

public int rank() throws MPJException {...}

public Group group() throws MPJException {...} // (section "Group management" of spec)

public static int compare(Comm comm1, Comm comm2) throws MPJException {...}

public Object clone() {...}

public void free() throws MPJException {...}

// Inter-communication

public boolean testInter() throws MPJException {...}

public Intercomm createIntercomm(Comm localComm, int localLeader,

int remoteLeader, int tag) throws MPJException {...}

// Caching

public Object attrGet(int keyval) throws MPJException {...}

11



// Blocking Send and Receive operations

public void send(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) throws MPJException {...}

public Status recv(Object buf, int offset, int count,

Datatype datatype, int source, int tag) throws MPJException {...}

// Communication Modes

public void bsend(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) throws MPJException {...}

public void ssend(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) throws MPJException {...}

public void rsend(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) throws MPJException {...}

// Nonblocking communication

public Request isend(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) throws MPJException {...}

public Request ibsend(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) throws MPJException {...}

public Request issend(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) throws MPJException {...}

public Request irsend(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) throws MPJException {...}

public Request irecv(Object buf, int offset, int count,

Datatype datatype, int source, int tag) throws MPJException {...}

// Probe and cancel

public Status iprobe(int source, int tag) throws MPJException {...}

public Status probe(int source, int tag) throws MPJException {...}

// Persistent communication requests

public Prequest sendInit(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) throws MPJException {...}

public Prequest bsendInit(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) throws MPJException {...}

public Prequest ssendInit(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) throws MPJException {...}

public Prequest rsendInit(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) throws MPJException {...}

public Prequest recvInit(Object buf, int offset, int count,

Datatype datatype, int source, int tag) throws MPJException {...}

// Send-receive

public Status sendrecv(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,

int dest, int sendtag,

12



Object recvbuf, int recvoffset, int recvcount, Datatype recvtype,

int source, int recvtag) throws MPJException {...}

public Status sendrecvReplace(Object buf, int offset, int count, Datatype datatype,

int dest, int sendtag,

int source, int recvtag) throws MPJException {...}

// Pack and unpack

public int pack(Object inbuf, int offset, int incount, Datatype datatype,

byte [] outbuf, int position) throws MPJException {...}

byte[] pack(Object inbuf, int offset, int incount, Datatype datatype)

throws MPJException {...}

public int unpack(byte [] inbuf, int position,

Object outbuf, int offset, int outcount, Datatype datatype)

throws MPJException {...}

public int packSize(int incount, Datatype datatype) throws MPJException {...}

// Process Topologies

int topoTest() throws MPJException {...}

// Environmental Management

public static void errorhandlerSet(Errhandler errhandler) throws MPJException {...}

public static Errhandler errorhandlerGet() throws MPJException {...}

void abort(int errorcode) throws MPJException {...}

...

}

A.3 Intracomm and Intercomm

public class Intracomm extends Comm {

public Object clone() { ... }

public Intracomm create(Group group) throws MPJException {...}

public Intracomm split(int colour, int key) throws MPJException {...}

// Collective communication

public void barrier() throws MPJException {...}

public void bcast(Object buffer, int offset, int count,

Datatype datatype, int root) throws MPJException {...}

public void gather(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,

Object recvbuf, int recvoffset, int recvcount, Datatype recvtype,

int root) throws MPJException {...}

public void gatherv(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,

Object recvbuf, int recvoffset, int [] recvcount, int [] displs,

Datatype recvtype, int root) throws MPJException {...}

public void scatter(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,

Object recvbuf, int recvoffset, int recvcount, Datatype recvtype,

int root) throws MPJException {...}

13



public void scatterv(Object sendbuf, int sendoffset, int [] sendcount, int [] displs,

Datatype sendtype,

Object recvbuf, int recvoffset, int recvcount, Datatype recvtype,

int root) throws MPJException {...}

public void allgather(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,

Object recvbuf, int recvoffset, int recvcount, Datatype recvtype)

throws MPJException {...}

public void allgatherv(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,

Object recvbuf, int recvoffset, int [] recvcounts, int [] displs,

Datatype recvtype) throws MPJException {...}

public void alltoall(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,

Object recvbuf, int recvoffset, int recvcount, Datatype recvtype)

throws MPJException {...}

public void alltoallv(Object sendbuf, int sendoffset, int [] sendcount, int [] sdispls,

Datatype sendtype,

Object recvbuf, int recvoffset, int [] recvcount, int [] rdispls,

Datatype recvtype) throws MPJException {...}

public void reduce(Object sendbuf, int sendoffset, Object recvbuf, int recvoffset,

int count, Datatype datatype, Op op, int root) throws MPJException {...}

public void allreduce(Object sendbuf, int sendoffset, Object recvbuf, int recvoffset,

int count, Datatype datatype, Op op) throws MPJException {...}

public void reduceScatter(Object sendbuf, int sendoffset,

Object recvbuf, int recvoffset,

int [] recvcounts, Datatype datatype,

Op op) throws MPJException {...}

public void scan(Object sendbuf, int sendoffset, Object recvbuf, int recvoffset,

int count, Datatype datatype, Op op) throws MPJException {...}

// Topology Constructors

public Graphcomm createGraph(int [] index, int [] edges,

boolean reorder) throws MPJException {...}

public Cartcomm createCart(int [] dims, boolean [] periods,

boolean reorder) throws MPJException {...}

...

}

public class Intercomm extends Comm {

public Object clone() { ... }

// Inter-communication

public int remoteSize() throws MPJException {...}

public Group remoteGroup() throws MPJException {...}

public Intracomm merge(boolean high) throws MPJException {...}

...

}

A.4 Op

public class Op {

Op(UserFunction function, boolean commute) throws MPJException {...}

14



void finalize() {...}

...

}

A.5 Group

public class Group {

// Group Management

public int size() throws MPJException {...}

public int rank() throws MPJException {...}

public int [] translateRanks(Group group1, int [] ranks1) throws MPJException {...}

public static int compare(Group group1, Group group2) throws MPJException {...}

public static Group union(Group group1, Group group2) throws MPJException {...}

public static Group intersection(Group group1, Group group2) throws MPJException {...}

public static Group difference(Group group1, Group group2) throws MPJException {...}

public Group incl(int [] ranks) throws MPJException {...}

public Group excl(int [] ranks) throws MPJException {...}

public Group rangeIncl(int [] [] ranges) throws MPJException {...}

public Group rangeExcl(int [] [] ranges) throws MPJException {...}

public void finalize() {...}

...

}

A.6 Status

public class Status {

public int index ;

// Blocking Send and Receive operations

public int getCount(Datatype datatype) throws MPJException {...}

public int getSource() throws MPJException {...}

public int getTag() throws MPJException {...}

// Nonblocking communication

public int getIndex() throws MPJException {...}

// Probe and Cancel

public boolean testCancelled() throws MPJException {...}

// Derived datatypes

public int getElements(Datatype datatype) throws MPJException {...}

...

}

15



A.7 Request and Prequest

public class Request {

// Nonblocking communication

public Status wait() throws MPJException {...}

public Status test() throws MPJException {...}

public Request() throws MPJException {...}

public void finalize() {...}

public boolean isVoid() throws MPJException {...}

public static Status waitAny(Request [] arrayOfRequests) throws MPJException {...}

public static Status testAny(Request [] arrayOfRequests) throws MPJException {...}

public static Status [] waitAll(Request [] arrayOfRequests) throws MPJException {...}

public static Status [] testAll(Request [] arrayOfRequests) throws MPJException {...}

public static Status [] waitSome(Request [] arrayOfRequests) throws MPJException {...}

public static Status [] testSome(Request [] arrayOfRequests) throws MPJException {...}

// Probe and cancel

public void cancel() throws MPJException {...}

...

}

public class Prequest extends Request {

// Persistent communication requests

public void start() throws MPJException {...}

public static void startAll(Request [] arrayOfRequests) throws MPJException {...}

...

}

A.8 Datatype

public class Datatype {

// Derived datatypes

public Datatype contiguous(int count) throws MPJException {...}

public Datatype vector(int count, int blocklength, int stride) throws MPJException {...}

public Datatype hvector(int count, int blocklength, int stride) throws MPJException {...}

public Datatype indexed(int [] arrayOfBlocklengths,

int [] arrayOfDisplacements) throws MPJException {...}

public Datatype hindexed(int [] arrayOfBlocklengths,

int [] arrayOfDisplacements) throws MPJException {...}

public static Datatype struct(int [] arrayOfBlocklengths,

int [] arrayOfDisplacements,

Datatype [] arrayOfTypes) throws MPJException {...}

16



public int extent() throws MPJException {...}

public int size() throws MPJException {...}

public int lb() throws MPJException {...}

public int ub() throws MPJException {...}

public void commit() throws MPJException {...}

public void finalize() {...}

...

}

A.9 Classes for virtual topologies

public class Cartcomm extends Intracomm {

public Object clone() { ... }

// Topology Constructors

static public dimsCreate(int nnodes, int [] dims) throws MPJException {...}

public CartParms get() throws MPJException {...}

public int rank(int [] coords) throws MPJException {...}

public int [] coords(int rank) throws MPJException {...}

public ShiftParms shift(int direction, int disp) throws MPJException {...}

public Cartcomm sub(boolean [] remainDims) throws MPJException {...}

public int map(int [] dims, boolean [] periods) throws MPJException {...}

}

public class CartParms {

// Return type for Cartcomm.get()

public int [] dims ;

public booleans [] periods ;

public int [] coords ;

}

public class ShiftParms {

// Return type for Cartcomm.shift()

public int rankSource ;

public int rankDest ;

}

public class Graphcomm extends Intracomm {

public Object clone() {...}

// Topology Constructors

public GraphParms get() throws MPJException {...}

public int [] neighbours(int rank) throws MPJException {...}

public int map(int [] index, int [] edges) throws MPJException {...}

}

17



public class GraphParms {

// Return type for Graphcomm.get()

public int [] index ;

public int [] edges ;

}

18


