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SUMMARY

cJVM is a Java Virtual Machine (JVM) which provides a single system image of a
traditional JVM while executing in a distributed fashion on the nodes of a cluster.
cJVM virtualizes the cluster, supporting any pure Java application without requiring
that applications be tailored speci�cally for it. The aim of cJVM is to obtain improved
scalability for a class of Java Server Applications by distributing the application's work
among the cluster's computing resources. cJVM is based on a novel object model which
distinguishes between an application's view of an object (e.g., every object is a unique
data structure) and its implementation (e.g., objects may have consistent replications on
di�erent nodes). This enables us to exploit knowledge on the usage of individual objects
to improve performance (e.g., using object replications to increase locality of access to
objects).
Currently, we have already completed a prototype which runs pure Java applications

on a cluster of NT workstations connected via a Myrinet fast switch. The prototype
provides a single system image to applications, distributing the application's threads and
objects over the cluster. We have used cJVM to run without change a real Java Server
Application containing over 10Kloc and achieve high scalability for it on a cluster. We
also achieved linear speedup for another application with a large number of independent
threads. This paper discusses cJVM's architecture and implementation. It focuses on
achieving a single system image for a traditional JVM on a cluster while describing in
short how we aim at obtaining scalability. Copyright c 1999 John Wiley & Sons, Ltd.
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INTRODUCTION

What if we wanted to take advantage of a cluster to improve the performance of an
existing multi-threaded Java application? How would we distribute the work of the
application among the nodes of the cluster? How would we enable the application to
be unaware of the fact that it is executing on a cluster? How could we execute an
existing application which was originally developed for a conventional Java Virtual
Machine? We are trying to address these questions.

�Correspondence to: E-mail: teperman@il.ibm.com
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The answers to these questions have two parts. By focusing on existing Java
applications we are constrained to solutions that look to the application like a
conventional implementation of a Java Virtual Machine (JVM)[4]. Thus, the �rst part
of the answer is that we must provide to a Java application a single system image
(SSI) view of a cluster. In other words, the Java application will have the illusion that
the cluster is a single computing resource [7], even though the application will execute
on the multiple, independent, nodes composing the cluster.
The second part of the answer is that we must intelligently manage the threads and

objects created by the application to achieve a performance bene�t for a large class of
real applications. This paper focuses on the �rst part of the answer, namely what is
required to build a SSI view of a cluster from the perspective of a Java application.
There are three di�erent approaches to enabling a Java application to see a cluster

as a single computing resource, as seen in �gure 1. First, we could provide an
implementation above the JVM in Java, e.g., using third-party Java packages. Several
others have taken this approach (e.g., [8, 10, 3, 17]), and in all cases the distributed
nature of the implementation is not completely hidden from the program. In other
words, the view of a single system image is incomplete. Second, we could build upon
a cluster enabled infrastructure below the JVM, e.g., a distributed shared memory, as
was done in [13, 20]; such an approach is capable of presenting a single system image,
however it is inherently incapable of taking advantage of knowledge of the semantics
of Java as described in the next paragraph. Finally, we can provide an implementation
of a Java virtual machine which is itself aware of the underlying cluster, but which
completely hides that fact from the application. This is our approach. To the best of
our knowledge, we are the �rst to implement and report on this approach.
cJVM provides a single system image of the cluster to a Java application. By working

at the level of the virtual machine, we enable exploiting opportunities for optimizations
based upon the semantics of Java.1 Examples of such opportunities include, using

1To be precise, we enable taking advantage of semantics at the level of the Java Virtual Machine.
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distinct caching and replication policies both at the level of individual objects and
individual �elds, enabling a Java thread to migrate between nodes to improve locality
of access to objects, analyzing the code to prove that certain accesses are always local,
etc.
cJVM executes on a cluster, distributing an application's threads and objects across

the nodes of the cluster and providing correct semantics for any application written
only in pure Java.
The major contributions we report upon in this work are:

1. the architecture of a single system image of a Java Virtual Machine on a cluster
2. a distributed memory model which supports the cluster JVM
3. a novel object model which distinguishes between the application's view of an

object's class and the actual implementation and which enables taking advantage
of knowledge of the usage of speci�c objects to improve performance

4. an implementation of threads which transparently supports distributed stacks.

In the next chapter we present relevant background material. This background
includes a brief description of a standard Java Virtual Machine (JVM) highlighting
the issues and diÆculties of implementing a JVM on a cluster, a de�nition of a cluster
and a description of the type of applications for which we wish to achieve performance
improvement. The following Chapter (cJVM APPROACH) highlights the essential
ingredients of cJVM. The cJVM ARCHITECTURE Chapter describes in detail cJVM,
showing the implementation techniques we used to support running Java application
in a cluster. The following two Chapters summarize the status of cJVM and describe
related work. In the �nal chapter, we summarize our major contributions and describe
our directions of future work.

BACKGROUND

Java Virtual machine

A Java Virtual Machine (JVM) is a platform-speci�c (operating system and
hardware) program that implements a well-de�ned, platform-independent virtual
machine [4]. There are currently implementations of JVMs for a range of platforms
from embedded systems up to mainframes.
The JVM is a stack machine whose semantics are given by a set of bytecodes. All

code belongs to a method which in turn belongs to a class; Java and the JVM are very
exible allowing classes to be dynamically created by an application, loaded, and then
executed in the same application. Java classes are organized into hierarchy supporting
single implementation inheritance and multiple interface inheritance. When executed,
these bytecodes change the state of the stack and can mutate objects allocated in a
heap. The JVM is designed to support multiple concurrent threads of execution; when
most traditional implementations are run on a uniprocessor, concurrency comes from
time-slicing, while on a multi-processor, true parallelism is possible.
It is important to note that the JVM and Java are not identical; a JVM can support

languages other than Java if they are translated to bytecodes. In addition to the JVM
proper, Java comes with a rich set of run-time core classes which must be supported
by a compliant Java environment. Some of these core classes, as well as application
code, may use native methods, methods implemented in a language other than Java.
These methods are used, in particular, to interface with the operating system.
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The goal of cJVM is to produce a compliant JVM which executes on a cluster, taking
advantage of the cluster for scalability, and which provides the illusion that the cluster
is a single system.

Memory Model

The basic memory model for the data manipulated by an application running on a
Java Virtual Machine consists of stacks and a heap. Each stack consists of a collection
of stack frames, one for each invoked method which did not return, where the frame is
divided into three areas: parameters, variables, and a conventional push-down stack.
The data in each of these three areas consists of primitive types (integral, oating
point, and boolean types) or references to objects.
Objects are allocated in a garbage collected heap via explicit program requests to

create a new object. The request places a reference to the object on the top of the
stack, enabling the object to be further manipulated.
In addition to the heap and the stack, the JVM internally uses system memory for

various resources including meta-data related to the program's classes, the program's
instructions, and the constant pool2. The meta-data associated with a class includes
information such as an object representing the class, the class's name, the class's
superclasses, information on the class methods (kept in method block structure),
etc. Some of this meta-data is represented at run-time as normal Java objects. The
program's instructions are the bytecodes (see below) composing its methods.

Bytecodes

We divide the JVM bytecodes into di�erent groups based upon the type of memory
that they access. Based upon this division, we gain a better understanding of what is
required to ensure the correct semantics of the bytecode in a cluster.
A large set of bytecodes only access the Java stack frame of the current method (e.g.,

load (store) to (from) a stack frame, control ow, or arithmetic operations on values
stored on the stack). It is relatively easy to ensure a single system image for these
bytecodes since the code can be replicated and since a stack frame is only accessed by
a single thread.
A smaller subset of the bytecodes accesses the constant pool (e.g., load (store) to

(from) the stack). Many of these accesses to the constant pool are only on the �rst
invocation, i.e., to resolve the operand of the bytecode. Once resolved, the bytecode is
rewritten to point to the entry which now contains a binary encoding of the previously
symbolic information. This group is also easy to handle since bytecode resolution is
idempotent.
A �nal group accesses objects in the heap (e.g., getfield and putfield to access

a speci�c object's �elds). It is this group that is interesting for a cluster JVM. If two
di�erent nodes access the same object we need to ensure they see the same values,
within the constrains of Java's memory consistency [21].

Interpreter Loop

The JVM as a virtual stack machine is powered by an interpreter loop. This is a
loop in which on each iteration the next bytecode is executed, the stack is modi�ed

2The constant pool is the Java equivalent to symbol table in languages like C. It maintains linkage information
about, for example, constants and references to other �elds and methods which may not yet be loaded.
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as speci�ed by the bytecode, the heap is accessed as appropriate, and the program
counter is updated. The interpreter loop can be viewed as a giant switch statement
specifying a distinct action for each of the bytecodes.

Usually Java Development Kit (JDK) comes with a Just In Time (JIT) compiler
which compiles frequently invoked Java methods to platform native code. This boosts
the performance of Java applications signi�cantly. Currently we are focusing on the
SSI aspect of cJVM postponing performance issues like the JIT to the next phase of
our research.

Threads

Java is a multithreaded language; the language provides the programmer with
convenient facilities to de�ne multiple independent threads of execution. In Java
a programmer creates a new thread of execution by creating an instance of a
java.lang.Thread or its subclass; this object is created in the same way as any
other object. The behavior of the thread is de�ned either by implementing a method
run() in a subclass of java.lang.Thread or by passing to the constructor an object
that implements the java.lang.Runnable interface.

The thread starts executing after the start() method is invoked on the thread's
Java object. Depending upon the implementation of the JVM, this associates the Java
thread with either a system thread or with a thread from a thread library (e.g., \green
threads"). On a uni-processor, parallelism between threads is obtained via time-slicing.
On a multi-processor true parallelism is possible.

A key point of Java threads is that the program relates to the threads in the same
way it relates to any other object. Threads are thus a natural and easy facility to utilize.
Thus, Java makes it much easier to write parallel programs than in more traditional
languages such as C or C++ where the threading model is an extra-lingual facility.

Clusters

Our focus is on dedicated compute clusters. We consider a cluster to be a collection
of homogeneous (same operating system and architecture) machines connected by a
fast (i.e., low latency - microseconds and not milliseconds) communications medium.
Each node in the cluster is independent, having its own copy of the operating system.
We assume that other than the interconnect, there are no physically shared resources
between the nodes of the cluster, i.e., there is no physically shared memory. For
purposes of our prototype we assumed that there is a logically shared �le system,
but this is not essential. Examples of such a cluster are a set of PCs connected by a
switch or IBM's RS/6000 SP computer. While clusters are used for both scalability
and high-availability, in this work we only look at the issue of scalability.

Java Server Applications

We are aiming to provide a solution to scale a particular class of Java applications.
We call these applications Java Server Applications (JSAs). These are second tier
applications with the basic structure of a concurrent daemon that:

� Accepts a sequence of requests from clients.
� Typically accesses an external \database" in processing the request.
� Has some interactions (i.e., sharing) among requests.
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Figure 2. Cluster JVM

In very general terms scalability for a Java Server Application means increasing
the number of client requests it can satisfy per unit time. Note that because we
are interested in applications which are concurrent daemons, we assume that the
application has been explicitly written to use Java threads. We are explicitly not
trying to parallelize existing serial code.

cJVM APPROACH

As stated in the introduction, our approach to virtualizing the cluster via a Java
Virtual Machine is to cluster-enable an implementation of the JVM. Even though an
approach built upon a distributed shared memory infrastructure also provides a single
system image view of the cluster we preferred the cluster-enabled JVM approach.
The reason being that we can optimize the program within the object model by using
information we can obtain from knowledge of Java. One way to obtain this information
is through code analysis and rewriting. In our prototype work, we started with Sun's
reference implementation for the 1.2 JDK on NT.
Figure 2 shows our basic approach. The upper half shows the threads (boxes) and

objects (circles) of a Java application as seen by the programmer. They see a traditional
Java Virtual Machine. The lower half shows the objects and threads of the Java
application distributed transparently (to the Java application) across the nodes of
the cluster by the implementation of cJVM. The arrows from the upper half to the
lower show how the objects and threads have been distributed. Horizontal arrows show
interactions between master and proxy objects.
There is a cJVM process on each cluster node, where the collection of processes as

a whole constitutes cJVM. In other words, each of the processes implements the Java
interpreter loop while executing part of the application's Java threads and containing
portion of the Java objects de�ned by the application.
In the sequel we describe cJVM approach to the implementation of the following

major components: Object Model, Methods Execution, Thread Model and Memory
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Model. Even though this paper focuses on the architecture of cJVM, in the last section
we describe cJVM's approach towards obtaining scalability due to its inuence on the
architecture.

Object Model

Our cluster JVM implements a distributed heap. In general, when a new object is
created, it is created at the cluster node where the request to create the object was
executed. Every object has exactly one master copy located at the node that created
the object; other nodes that access the object do so via a proxy stored in their local
heap. We discuss this memory model in more detail in the next chapter. Two of the
key challenges of cJVM are 1) giving the application the illusion that it is using a
single monolithic heap and 2) hiding the distinction between master and proxy from
the application.
To enable the application to be unaware of whether or not it has a proxy or master

copy of an object3(this is required to preserve the application's illusion that it is
executing on a single system) we de�ne a new object model. This model allows multiple
implementations for a single method to coexist in a single class and allows selecting
on a per-object-instance basis the precise code to execute for a given method. We
elaborate on this new object model in the next chapter.
Changing the object model such that method invocations are transferred to the

master copy of the object is insuÆcient to support the single system illusion with
respect to the heap. As described in the previous chapter, there is a set of �eld access
and monitor access bytecodes which also access the heap. Since we are providing a
distributed heap, these bytecodes must be modi�ed to work correctly. In principle (but
see below), each of the bytecodes that accesses the heap must be modi�ed to determine
if the data it is accessing is located at the node where the bytecode is executed or if
it is located at another node. If the data is located at another node, a remote access
is required.

Method Execution

When a node accesses a proxy our basic approach ismethod shipping, i.e., the proxy -
transparently to the application - redirects the ow of execution to the node where the
object's master copy is located. We enhance this basic approach of method shipping
with class and object speci�c caching and replication policies.
cJVM supports pure Java applications; i.e., applications with native methods are

not supported since any internal state modi�ed inside them is not exposed to cJVM.
However all native and JNI methods which are part of the JDK and which are likely
to be used by Java server applications were modi�ed by us to be cluster aware and
are used by our prototype. An example of a JDK package with native methods which
is not supported is java.awt since server side applications do not use GUI.

Thread Model

To enable a scalability gain, di�erent application threads need to execute on di�erent
nodes of the cluster. To distribute the threads, we need to change the way threads

3Java enables an application at run-time to determine the class of an object instance.
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are created; unlike our base approach for objects, when a new thread object is created
it is created on the best node as determined by a pluggable load balancing function.
Further, our use of method shipping requires changing the view of a thread as an entity
that executes its set of instructions on a given node; rather a thread itself becomes
distributed. We thus de�ne a new thread model which we detail in the next chapter.

Means to Achieve Scalability

To obtain high scalability on a cluster two main issues have to be addressed: reducing
the amount of communication interactions between the nodes of the cluster and
reducing the cost of each individual interaction. For the latter, cJVM integrates with
very fast networking media. To reduce the amount of communication, cJVM employs
a large combination of (mostly) simple optimizations addressing caching, locality of
execution and object migration. The full range of the optimizations applied by cJVM
is described in detail in [2]. In this section we only highlight them.
Caching techniques focus on data which is not mutated during a given program

execution. We look at data at the level of classes, objects and even individual object
�elds. For classes, we cache their static �elds which are usually set once and read
multiple times. For objects cJVM employs two di�erent approached. 1) Caching all
instances belonging to classes whose instances are read-only and 2) caching selected
arrays reachable from static �nal variables, as these arrays tend to not be mutated.
Finally, cJVM applies caching of individual �elds which are speculatively identi�ed as
immutable ones (e.g., private �elds which can be modi�ed only by objects of the same
class) after the object is initialized.
These caching optimizations provide the biggest performance bene�t when used in

concert with invocation optimizations. Invocation optimizations address the issue of
where a particular method should be executed, going beyond the generic approach of
method shipping i.e., always executing a method at the master node4. For example,
since cJVM caches static �elds with class proxies, we gain performance by executing
static methods locally upon these proxies even though the master class object is
on another node. The same holds for stateless methods which work only on the
local thread's stack (e.g., java/lang/Math.min(a,b) method accepts two integer
parameters and returns the smaller one) or methods which access only immutable
�elds. Such a classi�cation of methods is done by intra-procedural analysis at runtime,
when a class is loaded, which look at the bytecodes each method uses to �nd the way
it accesses the heap.
Placement optimizations attempt to place newly created objects on the node where

they will be used. In addition, they migrate objects to enhance their locality with
respect to the thread using the object. Since migration can be very expensive (e.g.,
providing thread-safeness), the use of this optimization is limited.
Our optimizations are almost all speculative. They utilize knowledge of Java

semantics (e.g., the heap accesses performed by a method) and data usage patterns
(e.g., the typical usage of static data) extracted by analyzing the bytecodes during
class loading to determine which optimization to apply on which datum. To handle
cases where a heuristics decision was \wrong" the optimizations are augmented with
invalidation protocols.

4This is made possible by modifying the semantics of the bytecodes to be cluster-aware, as described in the
Object Model section.



a single system image of a jvm on a cluster 9

The big bene�t in performance is not from any single isolated optimization but
rather from the synergy that comes from using a large set of optimizations at the
same time.
Beyond these optimizations, we can also take advantage of the fact that we are

modifying the JVM to be cluster-aware to utilize run-time pro�ling information.
For instance, for a given proxy, we can measure the time required for its di�erent
implementations and choose the least expensive one. Run-time pro�ling is the only
feature we describe which we have not yet implemented.
Finally, we apply bytecode rewriting using cJVM-speci�c pseudo-bytecodes;5 This

enables us to change the method's implementation to be directly cluster-enabled. In the
next chapter in the section on Thread Model we present an example of this to support
distribution of threads towards gaining scalability. In addition, while analyzing the
bytecode of every method, we can determine that a particular heap access will always
be local, e.g., a master copy of an object can always locally access �elds stored in
itself (i.e., accesses to this), eliminating the overhead of checks on certain bytecodes
which can access the heap. Such analysis and bytecode rewriting demonstrate the
capabilities, at the level of JVM to apply implicit solutions for eÆcient cluster-enabled
functionality.

Miscellaneous Features

While our base approach for supporting objects in cJVM is a distributed heap with
method shipping, for code we use replication. Each node in the cluster contains an
independent copy of the code for the classes it is using. On the one hand, we would like
to directly load the code on each node using a class as this is a direct way to correctly
build the internal data structures supporting the class, e.g., constant pool, method
blocks, etc. On the other hand, an application sees a class as an object, and it needs
to see only a single object for a given class, even if the class is loaded independently on
multiple nodes. Further, the class points to other objects, e.g., its name, its superclass,
etc., which also must maintain the illusion of a single system. Finally, when a class is
initialized, a chunk of application code, the <clinit> or class initialization method,
is executed. It is a mistake to execute this code more than once. To address these
issues, we de�ne a master copy of a class, similar to the way we de�ne a master for
objects. We perform a partial load of the class on any node that uses the class, and
for any aspects which must be cluster-enabled, the node contacts the class's master
which loads the class in the same way a traditional JVM loads it.
To support remote accesses, as well as to support method shipping and some

additional functions, each cJVM process contains a set of server threads. These
threads, which we manage as a pool with high and low watermarks, execute an in�nite
loop in which they wait for requests, service the request, and send a response. While
a remote DMA approach, as is supported by VIA [11], might be useful in some cases,
e.g., accessing a primitive �eld of a remote object, it cannot handle other cases, e.g.,
locking a remote object. For simplicity of implementation at this stage of our e�ort,
we chose to use a single implementation instead of the optimal implementation for
each speci�c type of remote access.

5Pseudo-bytecodes are bytecodes that are speci�c to the cJVM implementation. They never appear in a class
�le and are never seen outside of cJVM, thus they do not make cJVM non-standard.
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As stated in the BACKGROUND chapter some of Java core classes use native
methods. We are explicitly not focused on native methods for the following reasons.
Most of the native methods6 are related to GUI which is irrelevant to our target
application; i.e., Java Server Applications. Native methods in, e.g., Math, Zip and Jar
packages do not need to change since they can be executed locally. This leaves us with
relatively small number of JNI methods which need to become cluster aware. There
is no silver bullet to solve this problem, i.e., to automatically make each JNI method
cluster aware. We have done that manually for each JNI method in our code base.
There is a large number of additional changes we need to make to a traditional JVM

to turn it into a cluster JVM. These changes include modi�cations to the initialization
of the JVM such that only one node executes the applications main method, changes
to JVM termination, changes to numerous native methods, etc. We do not elaborate
on any of these items.

cJVM ARCHITECTURE

This section focuses on the three of the more novel aspects of cJVM's architecture:
the object model, the thread model and the memory model.

Object Model

The object model of cJVM is composed of master objects and proxies. A master
object is the object, as de�ned by the programmer. A proxy is a surrogate for a
remote object through which that remote object can be accessed. While a proxy is a
fundamental concept used in systems supporting location-transparent access to remote
objects [9, 10], we push the idea one step further. Smart proxies are a novel mechanism
which allows multiple proxy implementations for a given class while using the most
eÆcient implementation on a per object basis.
To motivate smart proxies, consider three di�erent vector objects, all of which are

accessed by multiple threads of an application:

� vector A: this vector is relatively small, each access is a bursty one and at any
point in time localized to a thread, and the accesses involve a mix of read and
writes

� vector B: this vector is relatively large, the accesses are sparse and not localized
to a single thread at any point in time, and the accesses involve a mixture of read
and write operations

� vector C: this vector is relatively large, after a period of initialization all of the
accesses are read-only, and the accesses are continuous and not localized to a
single thread

It is clear that di�erent proxy implementations for each of the three cases can improve
performance. For vector A, it would be bene�cial to use a caching proxy which allows
only exclusive caching. Vector B, requires a simple proxy which ships all accesses to
the master copy, while for vector C, it would be bene�cial to use proxies which support
multiple readers, single writer (e.g., allowing, at any point in time during the program
execution, at most one caching proxy to update the vector and propagate the changes
to all other proxies, while applying all read operations locally).

6719 out of 1156 in the JDK 1.2 code base we use
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There are two challenges applying smart proxies in the context of single system
image:

� preserving the application's illusion that is it executing on a single system, being
unaware whether it is using a proxy or a master object.

� designing eÆcient proxy implementations which do not violate the Java
semantics.

The �rst challenge is met by (1) implementing proxy objects with the same internal
representation (e.g. object header, method tables) as their master objects and (2)
having all the proxy implementations coexist within a single class object.
Figure 3 describes our implementation of the new object model based on Javasoft's

JVM implementation for Windows NT 4.0 where various arrows represent pointers to
data structures. Speci�cally, the virtual method table of a class is logically extended
into an array of virtual method tables, as seen in �gure 3. In addition to the original
table of method code, each of the other tables refers to the code for a particular proxy
implementation. All the virtual tables and the code for the proxy implementations are
created by cJVM on the y during class loading. Thus, every class has an array of at
least two virtual tables: one for the original method code and one for the code of the
most eÆcient proxy implementation. The code generated for the methods of simple
proxy is straight forward. cJVM introduced a new pseudo-bytecode, execute remote,
whose implementation does method shipping to the master object. Thus the code of
each simple proxy method is as follows:

execute_remote

<x>return

where <x> represents the type of object returned by the original method. In addition
to simple proxy, classes can, as well, maintain other proxy implementations such as
one that collects run-time statistics, if the program is running in a pro�ling mode, or
multiple implementations that are changed dynamically based on run-time information
(i.e. object locality). An example is given later in this section.
Upon creation of a master object or a proxy, it points to the correct virtual table of

its implementation which distinguishes it from other proxies as well as from its master
object; this distinction is only visible from within the implementation of cJVM - the
application cannot distinguish between the master and the proxies. It should be noted
that it is possible to change proxy implementations during run-time. A particular
set of implementations may constrain changing to other implementations to occur
only if there are no active methods executing on the instance (e.g., during garbage
collection). However, at the level of a mechanism, cJVM is architected without any
such constraints.
To help address the second challenge of designing eÆcient proxy implementations

which maintain the Java semantics, we analyze every class during class loading,
to classify methods based upon the way they accesses object �elds. We use this
information to help choose the most eÆcient proxy implementation for every method.
Examples of proxy implementations we have already implemented are:

simple proxy: This is the default implementation which always transfers all
operations to the master.
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Figure 3. cJVM Object Model

read-only proxy: This implementation applies the operation locally, based on the
fact that it is guaranteed to access only �elds which are never changed (e.g., �elds
that are only written in the constructor) so the proxy maintains replicas of these
�elds.

proxy with locally invoked stateless methods: We consider a method as state-
less if it does not access �elds of its object. While, it is semantically correct to
apply any kind of method directly on a proxy,7 there is a clear performance gain
in doing so for stateless methods, while in the general case, a method would
have to access object �elds remotely, overwhelming any performance gained by
invoking this method locally.

These are representatives of a large set of possible implementations whose logic can
range from actions that are always bene�cial to performance (e.g., replicating read-
only �elds and stateless methods) to actions whose worthiness depends upon run-time
conditions (e.g., caching an object at the node where it is being used).
As an example of one of such analysis consider the identi�cation of methods which

do not mutate the heap but work only on the stack. Such stateless methods can
easily be detected during class loading by scanning the bytecodes of the method and
determining that there are no �eld modi�cation bytecodes. If such method is detected
it can be marked as always executed locally since it does not a�ect the heap. See [18]
for more details on proxy types and statistics.
Proxy implementations based on analysis of the code are not always suÆcient for

gaining the best scalability for applications. For example, we are currently designing a
proxy implementation which determines whether to apply methods locally or remotely
based upon run-time conditions. For example, in case a method accesses only static
data, its implementation will determine, at run time, if the master object is co-located

7Since all bytecodes have been cluster enabled, it is semantically correct to execute the method containing
them locally; the operation is shipped to the master object.
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with the class's master object. If so, it will invoke the method remotely on the master
object so the static data will be accessed locally. Otherwise, it will safely invoke this
method locally, saving the overhead of a remote method call.
Thus we can construct proxies whose logic depends both upon pro�ling information

and upon code analysis. This is exactly the advantage of working at the level of JVM,
we can uniquely exploit both static and dynamic knowledge about speci�c objects,
classes and about the Java language itself.
cJVM's object model (smart proxies mechanism) is signi�cantly di�erent from sub-

classing in the following aspects:

� Sub-classing cannot be used to change the behavior of an existing object
� Sub-classing requires explicit programmer action to determine the subclasses and
such actions violate cJVM's property of single system image (e.g. letting Java
applications to run on a cluster runs without any source modi�cations)

� All proxies of the same subclass still behave the same (e.g. cache the same data)
while with smart proxies, it really enables using a proxy on a per instance object
basis.

Thus, sub-classing is a static mechanism (at the level of programmers) while smart
proxies is at the level of run-time (VM) systems and is transparent to the application.

Thread Model

To gain scalability on a cluster, objects and threads need to be distributed among
the cluster nodes to (1) utilize less loaded nodes while dynamically balancing load
and (2) improve locality to other objects they access. cJVM, as we stated, uses a
distributed heap; the thread model needs to allow accessing an object whose master
copy is on another node. Naturally, this is not supported by a traditional JVM so we
need to extend the thread model in the context of cJVM.
There are three main alternatives for allowing a thread to access a remote object. In

thread migration, when a thread accesses a remote object, the execution of a thread
is halted, its execution environment (e.g., program counter, stack) is serialized and
moved to the host containing the master copy of the object, and the thread is then
re-instantiated and its execution resumed. In object migration [14], threads never
migrate. Rather, whenever a thread accesses a remote object (or a copy of the object)
the object is brought to the node where the thread is executing. A third approach is
method shipping [15] in which neither threads nor objects migrate. Instead, operations
on proxies are redirected to the nodes where their master object resides and handled
locally by special service threads. In cJVM, we chose method shipping as our base
approach since it is easier to extend method shipping with object-shipping-like function
(e.g., caching) than the opposite. Method shipping avoids all this. Method shipping is
implemented internally as an RPC from one node to another and is used for remote
operations like: remote method invocation, remote monitor operations and remote
�eld access. It drastically di�ers from the standard RMI( [9]) since it is transparently
invoked at the level of the JVM.
In cJVM, we use method shipping for the following reasons:

1. In object migration, it is necessary to coordinate between multiple threads on
di�erent nodes using the same object. This can be expensive and diÆcult to
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ensure in a language such as Java where multiple threads can read and write
�elds of the same object without explicit synchronization. (see [20] for a Java
implementation that does this.) In addition, we believe it is harder to extend
an object migration mechanism with caching and replication (as described in
the previous section on Object Model) than it is to extend a method migration
mechanism.

2. Thread migration is an appropriate mechanism to use when remote accesses are
infrequent and coarse-grained. For such uses, the overhead of migration does
not overwhelm the speedup gained by distributing the application's threads.
However, the Java Server Applications which we aim at scaling do not have
the characteristic of relatively infrequent and coarse-grained remote accesses.
Rather, each invocation of a method on a shared object (we assume some degree
of sharing) is a remote access, and in Java method invocations are often �ne-
grained computations.

The method shipping approach changes the application's view of a thread as being
an active object executing its set of instructions on a single node. To maintain a single
system image we need to provide implicit ways to enable remote thread creation.
Otherwise threads will never be distributed over the cluster nodes. Further, given
that we distribute threads and use method shipping, we need to maintain a uniform
thread identi�cation and uniform access to its stack even though the stack may be
distributed.

Thread Creation

It is very important for us to distribute the application's threads since this is the only
way cJVM can obtain scalability improvements. We thus need to consider how threads
are created in Java. As describe in the BACKGROUND chapter, there are two ways
in the Java language to specify the code to be executed by a Java thread. It is either
speci�ed by a subclass of the java.lang.Thread class or by a class implementing
java.lang.Runnable (see �gure 4), an instance of which is passed to the constructor
of a Thread. In both cases, we need to be able to create the instances of these classes
remotely to allow distribution of the application's threads. In the �rst case, the thread
itself will be distributed via a load balancing function while in the later case, the
thread will be co-located (see below) with the instance of the class specifying its code,
distributed via a load balancing function.
Figure 5 shows the original bytecodes generated from the source code in �gure 4.

Objects are created by the new bytecode, whose single operand is a reference to the
class for which an instance should be created. The set of bytecodes immediately after
the new opcode, pushes the parameters (if any) and invokes the constructor of this
new object (via the invokespecial bytecode).
To support remote thread creation, we modi�ed the semantics of the new

opcode. Speci�cally, when each class is loaded it is analyzed and marked as
java.lang.Runnable if it implements the Runnable interface8. For every new opcode,
we �rst check the class which is the parameter of the opcode. If the class is not agged
as java.lang.Runnable then the opcode new is rewritten to new quick, following the

8The class java.lang.Thread implements the java.lang.Runnable interface
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class Target implements java.lang.Runnable {

public Target () { }

public void run() { }

}

class Foo {

public Foo () { }

}

public class Test {

public static void main (String[] argv) {

new Foo();

Runnable r = new Target();

new Thread();

new Thread(r);

}

}

Figure 4. Bytecode Rewriting for Remote Thread Creation: source code

Method void main(java.lang.String[])

0 new #1 <Class Foo>

3 invokespecial #6 <Method Foo()>

6 new #4 <Class Target>

9 dup

10 invokespecial #9 <Method Target()>

13 astore_1

14 new #3 <Class java.lang.Thread>

17 invokespecial #8 <Method java.lang.Thread()>

20 new #3 <Class java.lang.Thread>

23 aload_1

24 invokespecial #10 <Method java.lang.Thread(java.lang.Runnable)>

27 return

Figure 5. Bytecode Rewriting for Remote Thread Creation: original bytecode

standard behavior of the JVM as described in [4]. This is the case for creation of the
object of type Foo as seen in line 0 of �gure 6.
If the parameter of the new implements java.lang.Runnable, then the new

opcode is rewritten into remote new pseudo bytecode (�gure 6, lines 6, 14 and 20).
remote new is a pseudo-bytecode that is private to the implementation of cJVM.
When executed, it determines the best node in the cluster on which to create the new
java.lang.Runnable; this determination is based upon a pluggable load-balancing
routine. It then sends this node a request to create the instance of the class at that
node. A proxy for that instance is created at the node executing the opcode,9 and its
reference is pushed on the stack, allowing the application to behave as if the original
new opcode was executed. Upon subsequent executions, each of the rewritten bytecodes
will directly and correctly apply either local or remote object creation.

9Unless the node which is selected happens to be this node.
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Method void main(java.lang.String[])

0 new_quick #1 <Class Foo>

3 invokespecial #6 <Method Foo()>

6 remote_new #4 <Class runnable>

9 dup

10 invokespecial #9 <Method runnable()>

13 astore_1 <pop the target host to a temporary variable>

14 remote_new #3 <Class java.lang.Thread>

17 invokespecial #8 <Method java.lang.Thread()>

20 remote_new #3 <Class java.lang.Thread>

23 aload_1 <push the target host onto the stack>

24 invokespecial #10 <Method java.lang.Thread(java.lang.Runnable)>

27 return

Figure 6. Bytecode Rewriting for Remote Thread Creation: rewritten bytecode

One case of thread creation which we cannot support with this localized bytecode
rewriting is co-locating a thread with a given target Runnable (see last source line in
�gure 4). We are currently investigating ways to do such co-location based on method
analysis which provides some information about static object connections.
Such analysis and bytecode rewriting demonstrate the capabilities, at the level of

JVM to apply implicit solutions for cluster-enabled functionality.

Distributed Stacks

Applying method shipping causes the stack of a Java thread to be distributed across
the multiple system threads (handling the remote operations) at di�erent hosts. This
is shown in �gure 7 where the upward arrow in each node describe stack growth
direction. Thus, the thread model of a traditional JVM needs to be modi�ed to
maintain the application's illusion of a thread running all its code on one host and
its stack although distributed, can be accessed as single entity. Speci�cally, that new
model should guarantee that:

� The Java thread's stack can be traversed even though it is distributed10

� A consistent and correct value is returned by Thread.currentThread(),
regardless of on which host it was invoked11.

� The Java thread is identi�ed as the owner of monitors obtained by the frames
of the distributed stack, regardless of which system thread was the one to enter
these monitors.

� A change in the state (i.e., running or suspended) of a system thread involved
in method shipping (i.e. due to methods like stop()), must apply to all of the
system threads involved.

To enable traversing a stack and changing the state of system threads along the
chain, all the local fractions of that stack are concatenated, as seen in �gure 7. In

10A stack is accessed by the methods printStackTrace(), countStackFrames(), fillInStackTrace() and
dumpStack()
11This Java method always returns a reference to the thread object which invokes it
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Cluster Node #1 Cluster Node #2

stack frames

previous node

previous thread

system thread

stack frames
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Figure 7. A Distributed Stack

addition, the implementation of those methods which changes a thread's state and
access stack frames are modi�ed.

To help maintain thread identi�cation, every Java thread is assigned a logical
identi�er; this is a reference to the Java thread object which initiated the method
shipping. We thus pass with every remote operation the global address of the Java
thread initiating the remote operation. Due to our memory model (see section on
Memory Model below) logical identi�ers are translated in every host into local
references to proxies to the master thread object or to that object itself (see example
below).
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Figure 8. using Logical Identi�ers in cJVM
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Figure 9. cJVM Distributed Heap

cJVM uses these logical identi�ers to identify the owner of an object's monitor
and to refer to current threads. Figure 8 demonstrate how logical identi�ers maintain
the thread identity over multiple hosts. In this �gure dashed lines denote method
invocations, dotted lines denote proxy-master relationship and bold lines denote logical
identi�ers. The �gure shows a scenario in which a system thread A, bound to a Java
application thread, invokes a method (M) upon proxy #2. Consequently, the method
is shipped to node 2 and invoked upon the master object #2 by system thread B.
During execution of the method, method (M1) is invoked upon proxy #3. Again, the
method is shipped; it is applied by system thread C on node #1 where the master
object #3 resides. With logical identi�ers,

1. if Thread.currentThread() is invoked by thread B it will return a reference to
the proxy of the Java thread implemented by system thread A, through which
the master Java thread is referred.

2. although two threads are involved, system thread C is able to enter the monitor
of object #1 which is already being locked by system thread A, since their logical
identi�ers are equal12.

Memory Model

While the cJVM object model provides uniform access to proxies and master objects,
a new memory model is required to (1) enable all proxies to locate and refer to
the master object and (2) provide an application with an illusion of using a single
monolithic heap.
cJVM maintains a distributed heap built on top of the local heap implementations

found in a traditional JVM. Thus, new objects (both master objects and proxy objects)
are allocated in the local heaps, the same way it is done in traditional JVMs. Each
node independently manages its portion of the distributed heap. Figure 9 shows two
cluster nodes with their local heaps. Objects are noted by empty circles while proxies
are grayed out.
However, when a local object is passed, for the �rst time, as an argument to a remote

node, it becomes global. A remote node may now invoke methods on this object and

12Recall that Java allows the same thread to acquired the same lock (monitor) more then once, while blocks
other Java threads from acquiring the same monitor until it is freed.
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resolve (GAO, GAC) returns <object reference>:

{

local_object_ref = translate (GAO);

if (local_object_ref == null)

{ // no such master object or proxy is found.

class_local_object_ref = translate(GAC);

if (class_local_ref==NULL)

{ // class object is not found

class_local_ref=<create a proxy to the master class object>;

}

// create a proxy for the object with a GAO global address.

return new_proxy(class_local_ref,GAO);

}

return local_ref;

}

Figure 10. Resolution of a Global Address

access the data of this object; the remote node will create a proxy for the object.
The local address of the master object and the local address of the proxy have no
necessary relationship to one another. In order for the nodes to communicate about
objects, objects which are used by more than one node are given global addresses.

A global address is an identi�er of a global object which is unique over the cluster. It
is generated the �rst time that object is passed as an argument to a remote operation
by combining the node id (a number) and a node unique counter which is incremented
each time its value is used. Every time an object is passed between two nodes in the
cluster, we pass a two-tuple containing the global address of the object (GAO) and
the global address of its class (GAC). At the target node, these two global addresses
are resolved as shown in �gure 10. In this �gure, translate(GA) returns a reference to
a local object (either a master or a proxy) with the same global address GA, if found;
this translation is supported by a hash table.

As seen in �gure 10, using a two-tuple of the form (GAO, GAC) we can construct a
new proxy without additional messages to determine the class of the proxy, as would
be expected if we sent only the global address of the object. However, when the same
remote object is passed as argument more than once to the same node, the two-
tuple form incurs a slightly higher overhead due to locating and packaging the global
address of the class object, which is not needed. We still don't have enough experience
to evaluate that tradeo� in real applications.

As stated above each node independently manages its portion of the distributed
heap using its local garbage collection (GC). Distributed Garbage Collection is a well
known diÆcult problem which we are not addressing in this research. We did however
enhance the GC to free proxies while avoiding collecting master objects with global
address (i.e., they may have a master or proxy on another node) even if no local objects
refers to them since objects on other nodes may.
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STATUS

Currently we have a prototype which runs pure Java applications on a cluster of IBM
Intellistation stations running Windows NT, connected via a Myrinet fast switch.
Our communication is via MPI [5] which we use for portability, implemented over
HPVM [1]. The prototype provides a single system image of a Java Virtual Machine
to applications, distributing the application's threads and objects over the cluster.
The prototype supports all of the core classes with pure Java implementation and a
portion of the core classes with native implementations. The prototype is based upon
the Java 1.2 implementation from Sun for Windows NT.
On an embarrassingly parallel application, one with limited interactions between

the applications threads, cJVM achieves super linear speedups on a small cluster. The
super-linear speedup is not surprising since by using the cluster we are running fewer
threads on a node and thus reducing underlying operating system contention. From
this experiment, we learn that cJVM does not add signi�cant overhead in those cases
where interactions between the threads is not required.
We used cJVM to run an unmodi�ed version of the Portable Business Object

Benchmark (pBOB). pBOB is a kernel of business logic, inspired by the TPC-C
benchmark speci�cation. In accordance with the TPC's fair use policy, we note that
pBOB deviates from the TPC-C speci�cation and is not comparable to any oÆcial
TPC result. pBOB creates warehouses representing customers, stocks orders etc. upon
which multiple threads apply transaction. The idea is to increase the throughout of
their threads (representing clients) by running these threads in parallel on multiple
nodes.
We chose pBOB as it is a large (10Kloc), self-contained, pure Java application which

only depends on the Java core APIs. Running pBOB on four nodes cJVM cluster we
achieved 3.2 speedup as compared to running pBOB on one node, using the interpreter
(not JIT) in both runs. See [18] for more details.
One item we have intentionally not addressed is supporting a Just-In-Time (JIT)

compiler. The reason we have implemented cJVM without JIT support is due to
limited resources; We do not believe there are any inherent reasons why cJVM could
not be integrated with a JIT compiler, and we would like to add JIT support after
our code stabilizes.

RELATED WORK

Java on distributed machines has been extensively studied since Java was announced.
From a programmer's point of view, tools and infrastructure supporting Java
applications on a cluster ranges from completely explicit solutions to implicit solutions
similar to cJVM.
Explicit approaches [10, 9] assume an architecture of multiple JVMs while handling

remote objects and threads at the level of the Java language and external frameworks.
Most of these frameworks have very little relevance to cJVM. Above all, unlike
cJVM, they do not hide from the application the complexity of distributing the Java
application. From a technical perspective, they don't support transparent remote class
objects. In addition, for example, proxy classes in Voyager or JAVA/RMI are created
manually by the programmer. In addition, Voyager programs are always mapped to
speci�c network con�gurations de�ned in advance (e.g., every node runs a daemon
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with a speci�c port). With DO! [3], special framework classes are used to restructure
the Java program, to cluster objects to improve object locality.
Another work in this category (of multiple JVMs) with some relevance to cJVM is

JavaParty [8]. It focuses on transparent support of remote objects in Java. The only
extension to pure Java is the use of an explicit remote attribute to distinguish classes of
remote objects. In JavaParty remote objects are created on nodes selected implicitly
based on load, bandwidth or other criteria. JavaParty also allows the programmer
to provide a placement strategy himself. In addition, it supports monitoring of
objects' interactions during program execution and when appropriate, schedules object
migration to enhance locality. To summarize, JavaParty does not completely hide the
underlying network from the programmer; in other words the application has to be
aware of the cluster, which is not the case in cJVM.
A �nal work in this category is ProActive [17] where a programmer can create an

object on a remote node by invoking a utility method on a run time support class,
providing the type of the object, the parameters to its constructor, and the node on
which the object should be created. After creating the remote object, the programmer
can treat it as a normal object; however, if the programmer uses Java's run-time
introspection s/he will see the type of the proxy. As with the other approaches based
upon a run-time library, ProActive does not support a single system image.
In contrast with the aforementioned frameworks, Java/DSM [13] is an implicit

approach, at the level of infrastructure. It is a modi�ed JVM whose heap is
implemented in a distributed shared memory. Objects are allocated from the shared
(DSM) region. Conceptually, Java/DSM supports SSI; its implementation, however,
is incomplete. It supports most of the Java API but it does not support thread
migration and a thread's location is not transparent. In addition it does not support
wait() and notify() between threads on di�erent processors although it does support
synchronized methods. Compared to cJVM, using DSM technology (shipping pages of
memory between nodes), it does not take advantage of Java semantics to gain better
performance; on the contrary, it can potentially cause false sharing which degrades
performance.
Another project which builds upon a cluster-enabled infrastructure is Hyperion [20];

this is probably the work most related to cJVM. This can be categorized as an
implementation of a JVM on top of an object-based distributed shared memory; in
some respects Hyperion uses a hybrid design, containing both elements of a cluster-
enabled JVM and of a JVM on top of a cluster-enabled infrastructure. Hyperion takes
a JIT-like approach, compiling Java bytecodes into C and then compiling the C code
into machine code prior to execution.13 Hyperion has several features in common with
cJVM. The heap is distributed and there is a master copy of an object on the node
where the object is created.14 Objects are created on the node where new is executed,
except for Java threads which are created on a node chosen by the system based upon
a load balancing function. But there are several signi�cant di�erences between cJVM
and Hyperion. In Hyperion, each node is statically assigned a portion of the address
space which it can use to create new objects, unlike in cJVM where each node is
free to manage its heap independently. More importantly, Hyperion uses an object
shipping model, in which a copy of a remote object is brought to the accessing node.
The accessing node uses this local cached copy which is written back to the server at

13It is unclear if the compilation is done on-the-y or must be done as an explicit step in building the program.
14In Hyperion they use the term local instead of master.
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Java synchronization points as required by Java's memory semantics (see Chapter 17
of [19]). This homogeneous approach should be contrasted with cJVM's uses of smart
proxies which allows e.g., di�erent kinds of proxies for objects of the same class.
Compared with these works, the work on cJVM has its own uniqueness in terms of (1)

full Java compliant implementation, that is single system image and (2) a novel object
model supporting replications and caching of objects towards high performance.

CONCLUSIONS and FUTURE WORK

This paper presents an approach and implementation of a single system image
for a JVM on cluster machines - cJVM. In its essence, there is an object model
which distinguishes between an application view of an object (e.g. every object is
a unique data structure) and its implementation (e.g. objects may have consistent
replications), enabling to exploit knowledge on the usage of individual objects to
improve performance (e.g. using object replications to increase locality of access to
objects).
It should be noted that the mechanisms discussed in this paper, although tailored for

Java semantics, can be utilized and are also valid in a broader context of distributed
systems.
Having completed a prototype of cJVM that supports SSI, our next step is addressing

the issues of de�ning and handling multiple kinds of implementations for objects
towards gaining high performance of real Java server applications. To that end we
plan to address several speci�c issues including: analyze application classes to detect
behavior patterns (e.g., read only �elds) where performance can be improved by using
new types of proxies, and incorporate them in cJVM. Furthermore we would like to use
run-time pro�ling to detect behavior change in objects and switch proxies during run-
time for better performance. Another item we would like to improve is the performance
of the communication layer to reduce latency times.
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