
A Distributed Implementation of a Virtual Machine for

Java

Yariv Aridor, Michael Factor and Avi Teperman�
1 IBM Haifa Research Lab

Matam, Advanced technology Center, Haifa 31905, ISRAEL
PH: +972-4-8296350, FAX: +972-4-8296114,
(E-mail: yarivjfactorjteperman@il.ibm.com)

Abstract

The cluster virtual machine for Java provides a single system image of a traditional
Java Virtual Machine (JVM) while executing in a distributed fashion on the nodes of
a cluster. The cluster VM for Java virtualizes the cluster, supporting any pure Java
application without requiring that application be tailored speci�cally for it. The aim of
our cluster VM is to obtain improved scalability for a class of Java Server Applications
by distributing the application's work among the cluster's computing resources. The
implementation of the cluster VM for Java is based on a novel object model which
distinguishes between an application's view of an object (e.g., every object is a unique
data structure) and its implementation (e.g., objects may have consistent replications on
di�erent nodes). This enables us to exploit knowledge on the use of individual objects
to improve performance (e.g., using object replications to increase locality of access to
objects).
We have already completed a prototype that runs pure Java applications on a cluster

of NT workstations connected by a Myrinet fast switch. The prototype provides a single
system image to applications, distributing the application's threads and objects over the
cluster. We used the cluster VM to run, without change, a real Java Server Application
containing over 10Klocy number of source code lines and achieved high scalability for it
on a cluster. We also achieved linear speedup for another application with a large number
of independent threads. This paper discusses the architecture and implementation of the
cluster VM. It focuses on achieving a single system image for a traditional JVM on a
cluster while describing, in short, how we aim to obtain scalability. Copyright c 1999
John Wiley & Sons, Ltd.

key words: cluster machine, Java, objects, Java Virtual Machine, single system image

1. INTRODUCTION

In this paper we try to address the following questions: What if we wanted to take
advantage of a cluster to improve the performance of an existing multi-threaded Java
application? How would we distribute the work of the application among the nodes
of the cluster? How would we enable the application to be unaware of the fact that

�Correspondence to: E-mail: teperman@il.ibm.com
yKloc means Kilo lines of code - used to describe the size of applications in terms of source lines count.

2

below JVM

JVM

e.g., Java/DSM

above JVM
Voyager, JavaParty

supported in Java e. g.,

our approach:

cluster-enabled JVM

cluster-enabled infrastructue

Figure 1. Three Approaches to Clustered Virtual Machine for Java

it is executing on a cluster? How could we execute an existing application which was
originally developed for a conventional Java Virtual Machine?

The answers to these questions have two parts. By focusing on existing Java
applications, we are constrained to solutions that, to the application, look like a
conventional implementation of a Java Virtual Machine (JVM)[4]. Thus, the �rst
part of the answer, and the paper's main focus is that we must provide a Single
System Image (SSI) view of a cluster to the Java application. In other words, the Java
application will have the illusion that the cluster is a single computing resource [7], even
though the application will execute on the multiple, independent, nodes composing the
cluster.

The second part of the answer is that we must intelligently manage the threads
and objects created by the application in order to achieve a performance bene�t for
a large class of real applications. This paper focuses on the �rst part of the answer,
namely what is required to build an SSI view of a cluster from the perspective of a
Java application.

Three di�erent approaches can enable a Java application to see a cluster as a single
computing resource, as seen in Figure 1. First, we could provide an implementation
above the JVM in Java (e.g., using third-party Java packages). Several others have
taken this approach [8, 10, 3, 17], and in all cases the distributed nature of the
implementation is not completely hidden from the program; the view of a single system
image is incomplete. Second, we could build upon a cluster-enabled infrastructure
below the JVM (e.g., a distributed shared memory), as was done in [13, 21]. Such
an approach is capable of presenting a single system image, however it is inherently
incapable of taking advantage of knowledge of the semantics of Java, as described
in the next paragraph. Finally, we can provide an implementation of a Java virtual
machine, which is itself aware of the underlying cluster, but which completely hides
this fact from the application. This is our approach. To the best of our knowledge, we
are the �rst to implement and report on this approach.

a distributed implementation of a virtual machine for java 3

The cluster Virtual Machine for Java provides a single system image of the cluster
to a Java application. By working at the level of the virtual machine, we provide
optimization opportunities based upon the semantics of Java1. Examples of such
opportunities include: using distinct caching and replication policies both at the level
of individual objects and individual �elds, enabling a Java thread to migrate between
nodes to improve locality of access to objects, analyzing the code to prove that certain
accesses are always local, etc.
The cluster VM for Java executes on a cluster, distributing an application's threads

and objects across the nodes of the cluster and providing correct semantics for any
application written only in pure Java.
The major contributions reported in this work are:

1. The architecture of a single system image of a Virtual Machine for Java on a
cluster.

2. A distributed memory model that supports the cluster Virtual Machine for Java.
3. A novel object model that distinguishes between the application's view of an

object's class and the actual implementation and that enables taking advantage
of knowledge of the use of speci�c objects to improve performance.

4. An implementation of threads which transparently supports distributed stacks.

In the next section, we present relevant background material. This background
includes a brief description of a standard Java Virtual Machine (JVM), highlights
the issues and diÆculties of implementing a JVM on a cluster, provides a de�nition
of a cluster, and describes the type of applications for which we wish to achieve
performance improvement. The following section (CLUSTER VIRTUAL MACHINE
APPROACH) highlights the essential ingredients of the cluster VM for java. The
CLUSTER VIRTUAL MACHINE ARCHITECTURE section describes in detail, the
implementation techniques we used to support running Java applications in a cluster.
The next two sections summarize the status of the cluster VM for Java and describe
related work. In the �nal section, we summarize our major contributions and describe
our directions for future work.

2. BACKGROUND

2.1. The Java Virtual machine

A Java Virtual Machine (JVM) is a platform-speci�c (operating system and
hardware) program that implements a well-de�ned, platform-independent virtual
machine [4]. Currently there are JVM implementations for platforms ranging from
embedded systems to mainframes.
The JVM is a stack machine whose semantics are given by a set of bytecodes. All

code belongs to a method, which in turn belongs to a class; Java and the JVM are very
exible, allowing classes to be dynamically created by an application, loaded, and then
executed in the same application. Java classes are organized in a hierarchy, supporting
single implementation inheritance and multiple interface inheritance. When executed,
these bytecodes change the state of the stack and can mutate objects allocated in a
heap. The JVM is designed to support multiple, concurrent threads of execution. Most

1To be precise, we enable taking advantage of semantics at the level of the Java Virtual Machine.

4

traditional implementations are run on a uniprocessor, where concurrency comes from
time-slicing, while on a multi-processor, true parallelism is possible.
It is important to note that the JVM and Java are not identical; a JVM can support

languages other than Java if they are translated to bytecodes. In addition to the JVM
proper, Java comes with a rich set of run-time core classes that must be supported by
a compliant Java environment. Some of these core classes, as well as application code,
may use native methods { methods implemented in a language other than Java. In
particular these methods are used to interface with the operating system.

The goal of the cluster virtual machine for Java is to produce a JVM, which executes
on a cluster, taking advantage of the cluster for scalability, and which provides the
illusion that the cluster is a single system.

2.1.1. Memory Model

The basic memory model for the data manipulated by an application running on a
Java Virtual Machine consists of stacks and a heap. Each stack consists of a collection
of stack frames, one for each invoked method that did not return, where the frame is
divided into three areas: parameters, variables, and a conventional push-down stack.
The data in each of these three areas consists of primitive types (integer, oating point,
and boolean types) or references to objects.
Objects are allocated in a garbage collected heap via explicit program requests to

create a new object. The request places a reference to the object on the top of the
stack, enabling the object to be further manipulated.

In addition to the heap and the stack, the JVM internally uses system memory for
various resources including meta-data related to the program's classes, the program's
instructions, and the constant pool2. The meta-data associated with a class includes
information such as an object representing the class, the class's name, the class's
superclasses, information on the class methods (kept in method block structure),
etc. Some of this meta-data is represented at run-time as normal Java objects. The
program's instructions are the bytecodes (see below) composing its methods.

2.1.2. Bytecodes

We divide the JVM bytecodes into di�erent groups, based upon the type of memory
they access. Based upon this division, we gain a better understanding of what is
required to ensure the correct semantics of the bytecode in a cluster.
A large set of bytecodes only access the Java stack frame of the current method (e.g.,

load (store) to (from) a stack frame, control ow, or arithmetic operations on values
stored on the stack). It is relatively easy to ensure a single system image for these
bytecodes since the code can be replicated and since a stack frame is only accessed by
a single thread.
A smaller subset of the bytecodes access the constant pool (e.g., push a constant on

the stack). Many of these accesses to the constant pool are only on the �rst invocation,
i.e., to resolve the operand of the bytecode. Once resolved, the bytecode is rewritten
to point to the entry that now contains a binary encoding of the previously symbolic
information. This group is also easy to handle since bytecode resolution is idempotent.

2The constant pool is the Java equivalent to symbol table in languages like C. It maintains linkage information
about, for example, constants and references to other �elds and methods which may not yet be loaded.

a distributed implementation of a virtual machine for java 5

A �nal group accesses objects in the heap (e.g., getfield and putfield to access
a speci�c object's �elds). It is this group that is interesting for a cluster JVM. If two
di�erent nodes access the same object, we need to ensure they see the same values
within the constrains of Java's memory model [22].

2.1.3. Interpreter Loop

The JVM, as a virtual stack machine, is powered by an interpreter loop. This is a
loop in which, on each iteration, the next bytecode is executed, the stack is modi�ed
as speci�ed by the bytecode, the heap is accessed as appropriate, and the program
counter is updated. The interpreter loop can be viewed as a giant switch statement
specifying a distinct action for each of the bytecodes.

Usually, the Java Development Kit (JDK) comes with a Just In Time (JIT)
compiler which compiles frequently invoked Java methods to platform native code.
This signi�cantly boosts the performance of Java applications. Currently, we are
focusing on the SSI aspect of the cluster VM and postpone performance issues like the
JIT to the next phase of our research.

2.1.4. Threads

Java is a multithreaded language; the language provides the programmer with
convenient facilities to de�ne multiple independent threads of execution. In Java,
a programmer creates a new thread of execution by creating an instance of a
java.lang.Thread or its subclass; this object is created in the same way as any
other object. The behavior of the thread is de�ned either by implementing a method
run() in a subclass of java.lang.Thread or by passing to the constructor an object
that implements the java.lang.Runnable interface.

The thread starts executing after the start() method is invoked on the thread's
Java object. Depending upon the implementation of the JVM, this associates the
Java thread with either a system thread or a thread from a thread library (e.g., \green
threads"). On a uni-processor, parallelism between threads is obtained via time-slicing.
On a multi-processor true parallelism is possible.

A key point of Java threads is that the program relates to the threads in the same
way it relates to any other object. Threads therefore are a natural and easy facility
to utilize. Thus, it is much easier to write parallel programs in Java than in more
traditional languages such as C or C++ where the threading model is an extra-lingual
facility.

2.2. Clusters

Our focus is on dedicated computer clusters. We consider a cluster to be a collection
of homogeneous (same operating system and architecture) machines connected by a
fast (i.e., low latency { microseconds and not milliseconds) communications medium.
Each node in the cluster is independent, having its own copy of the operating system.
We assume that, other than the interconnect, there are no physically shared resources
between the nodes of the cluster (i.e., there is no physically shared memory). For
purposes of our prototype, we assumed that there is a logically shared �le system, but
this assumption is not essential. Examples of such a cluster are a set of PCs connected
by a switch or IBM's RS/6000 SP computer. While clusters are used for both scalability

6

and high-availability, in this work, we only look at the issue of scalability.

2.3. Java Server Applications

We are aiming to provide a solution to scale a particular class of Java applications.
We call these applications Java Server Applications (JSAs). These are second tier
applications with the basic structure of a concurrent daemon that:

� Accepts a sequence of requests from clients.
� Typically accesses an external \database" in processing the request.
� Has some interactions (i.e., sharing) among requests.

In very general terms, scalability for a Java Server Application means increasing the
number of client requests it can satisfy per unit time. Since we are interested in
concurrent daemons, we assume the application has been explicitly written to use
Java threads. We are explicitly not trying to parallelize existing serial code.

3. CLUSTER VIRTUAL MACHINE APPROACH

As stated in the introduction, our approach to virtualizing the cluster via a Java
Virtual Machine is to cluster-enable an implementation of the JVM. Even though an
approach built upon a distributed shared memory infrastructure also provides a single
system image view of the cluster, we preferred the cluster-enabled JVM approach.
The reason being that we can optimize the program within the object model by using
information obtained from knowledge of Java. One way to obtain this information is
through code analysis and rewriting. In our prototype work, we started with Sun's
reference implementation for the 1.2 JDK on NT.
Figure 2 shows our basic approach. The upper half shows the threads (boxes) and

objects (circles) of a Java application as seen by the programmer. The application sees
a traditional Java Virtual Machine as depicted by the long box titled as \Traditional
Java Virtual Machine". The lower half of the �gure shows the objects and threads of
the Java application as implemented by the cluster VM. The implementation of the
cluster VM transparently distributes the objects and threads across the nodes of the
cluster in a manner transparent to the programmer and Java application. The arrows
from the �gure's upper half to its lower half show how the cluster VM distributed
the objects and threads among the cluster nodes. Horizontal arrows show interactions
between master and proxy objects.
There is a cluster VM process on each cluster node, where the collection of processes

as a whole constitutes the cluster VM. Each of the processes implements the Java
Virtual Machine interpreter loop while executing part of the Java application's threads
and contains portion of the Java application's objects de�ned by the application.
In the sequel, we describe our approach to the implementation of the following

major components: Object Model, Method Execution, Thread Model, and Memory
Model. While our main focus is on the architecture of the cluster VM, we describe
our approach towards obtaining scalability due to its inuence on the architecture in
the last section.

3.1. Object Model

Our cluster JVM implements a distributed heap. In general, when a new object is

a distributed implementation of a virtual machine for java 7

Java
Thread

Java
Thread

Java
Thread

Java
object

Java
object

Java
object

Java
Thread

Java
object

Java
Thread

Java
objectJava

object

Java
object

Java
Thread

Java
object

Fast
Interconnection

.master
master

master

proxy

proxy

Java Server
Application

cluster nodecluster node

Traditional Java Virtual Machine

cvmj processcvmj process

Figure 2. Cluster Virtual Machine for Java

created, it is created at the cluster node where the request to create the object was
executed. Every object has exactly one master copy located at the node that created
the object; other nodes which access the object, do so via a proxy stored in their local
heap. We discuss this memory model in more detail in Section 4.3. Two of the key
challenges of a cluster virtual machine for Java are:

1. Giving the application the illusion that it is using a single monolithic heap.
2. Hiding the distinction between master and proxy from the application.

We de�ne a new object model to enable the application to be unaware of whether
or not it has a proxy or master copy of an object3. This is required to preserve the
application's illusion that it is executing on a single system. This model allows multiple
implementations for a single method to coexist in a single class, and allows selecting
on a per-object-instance basis the precise code to execute for a given method. We
elaborate on this new object model in the next section.
Changing the object model such that method invocations are transferred to the

master copy of the object is insuÆcient to support the single system illusion with
respect to the heap. As described in the previous section, there is a set of �eld access
and monitor access bytecodes which also access the heap. Since we are providing a
distributed heap, these bytecodes must be modi�ed in order to work correctly. In
principle, each of the bytecodes that access the heap must be modi�ed in order to
determine whether the data it is accessing is located at the node where the bytecode
is executed or located at another node. If the data is located at another node, a remote
access is required.

3.2. Method Execution

When a node accesses a proxy, our basic approach is method shipping, where the
proxy { transparently to the application { redirects the ow of execution to the node

3Java enables an application at run-time to determine the class of an object instance.

8

where the object's master copy is located. We enhance this basic approach of method
shipping with class and object-speci�c caching and replication policies.
The cluster VM supports pure Java applications; applications with native methods

are not supported since any internal state modi�ed inside them is not exposed to
the cluster VM. However, we modi�ed all native and JNI methods, which are part of
the JDK and which are likely to be used by Java server applications, to be cluster
aware and they are used by our prototype. An example of a JDK package with native
methods that is not supported is java.awt since server-side applications do not use
GUI.

3.3. Thread Model

To provide scalability, di�erent application threads need to execute on di�erent
nodes of the cluster. To distribute the threads, we need to change the way threads are
created. Unlike our base approach for objects, when a new thread object is created,
it is created on the best node as determined by a pluggable load balancing function.
Further, our use of method shipping requires changing the view of a thread as an entity
that executes its set of instructions on a given node; rather a thread itself becomes
distributed. We thus, de�ne a new thread model, which is detailed in the next section.

3.4. Means to Achieve Scalability

To obtain scalability on a cluster, two main issues have to be addressed: reducing
the amount of communication interactions between the nodes of the cluster and
reducing the cost of each individual interaction. For the latter, the cluster VM for Java
integrates with very fast networking media. To reduce the amount of communication,
the cluster VM employs a large combination of (mostly) simple optimizations that
address caching, locality of execution, and object migration. The full range of the
optimizations applied by the cluster VM for Java is described in detail in [2] and are
highlighted in this section.
Caching techniques focus on data that is not mutated during a given program

execution. We look at data at the level of classes, objects, and even individual
object �elds. For classes, we cache their static �elds which are usually set once and
read multiple times. For objects, our cluster VM employs two di�erent approaches.
1) Caching all instances belonging to classes whose instances are read-only and 2)
caching selected arrays reachable from static �nal variables, as these arrays tend not
to be mutated. Finally, the cluster VM applies caching of individual �elds, which are
speculatively identi�ed as immutable ones (e.g., private �elds that can be modi�ed
only by objects of the same class) after the object is initialized.
These caching optimizations provide the biggest performance bene�t when used in

concert with invocation optimizations. Invocation optimizations address the issue of
where a particular method should be executed, going beyond the generic approach of
method shipping (i.e., always executing a method at the master node4). For example,
since the cluster VM caches static �elds with class proxies, we gain performance by
executing static methods locally upon these proxies even though the master class
object is on another node. The same holds for stateless methods, which work only on

4This is made possible by modifying the semantics of the bytecodes to be cluster-aware, as described in the
Object Model section.

a distributed implementation of a virtual machine for java 9

the local thread's stack (e.g., java/lang/Math.min(a,b) method accepts two integer
parameters and returns the smaller one) or methods that access only immutable �elds.
Such a classi�cation of methods is done by intra-procedural analysis at runtime; when
a class is loaded the bytecodes used by each method are examined to �nd the way the
method accesses the heap.
Placement optimizations attempt to place newly created objects on the node where

they will be used. In addition, placement optimizations migrate objects to enhance
their locality with respect to the thread using the object. Since migration can be very
expensive (e.g., providing thread-safeness), the use of this optimization is limited.
Our optimizations are almost all speculative. They utilize knowledge of Java

semantics (e.g., the heap accesses performed by a method) and data usage patterns
(e.g., the typical usage of static data) extracted by analyzing the bytecodes during
class loading to determine which optimization to apply on which datum. To handle
cases where a heuristics decision was \wrong", the optimizations are augmented with
invalidation protocols.
The big bene�t in performance is from the synergy that comes from using a large

set of optimizations at the same time and not from any single isolated optimization.
Beyond these optimizations, we can also take advantage of the fact that we are

modifying the JVM to be cluster-aware and utilize run-time pro�ling information.
For instance, for a given proxy, we can measure the time required for its di�erent
implementations and choose the least expensive one. Run-time pro�ling is the only
feature we describe which we have not yet implemented.
Finally, we apply bytecode rewriting using cluster VM speci�c pseudo-bytecodes5.

This enables us to change the method's implementation to be directly cluster-enabled.
In the next section in the sub-section on Thread Model, we present an example of
this to support distribution of threads towards gaining scalability. In addition, while
analyzing the bytecode of every method, we can determine that a particular heap access
will always be local, (e.g., a master copy of an object can always locally access �elds
stored in itself such as accesses to this). This eliminates the overhead of checks on
certain bytecodes which can access the heap. Such analysis and bytecode rewriting
demonstrate the capabilities, at the level of JVM, to apply implicit solutions for
eÆcient cluster-enabled functionality.

3.5. Miscellaneous Features

While our base approach for supporting objects in the cluster VM for Java is a
distributed heap with method shipping, we use replication for code. Each node in the
cluster contains an independent copy of the code for the classes it is using. On one
hand, we would like to directly load the code on each node using a class, because this
is a direct way to correctly build the internal data structures supporting the class (e.g.,
constant pool, method blocks, etc.). On the other hand, an application sees a class as
an object, and it needs to see only a single object for a given class, even if the class
is loaded independently on multiple nodes. Further, the class points to other objects
(e.g., its name, its superclass, etc.), which must also maintain the illusion of a single
system. Finally, when a class is initialized, a chunk of application code, the <clinit>

5Pseudo-bytecodes are bytecodes that are speci�c to the cluster VM for Java implementation. They never
appear in a class �le and are never seen outside of the cluster VM, thus they do not make the cluster VM
non-standard.

10

or class initialization method, is executed. It is a mistake to execute this code more
than once. To address these issues, we de�ne a master copy of a class, similar to the
way we de�ne a master for objects. We perform a partial load of the class on any node
that uses the class; for any aspects that must be cluster-enabled, the node contacts
the class's master node which loads the class in the same manner a traditional JVM
loads it.
To support remote accesses, method shipping, and some additional functions, each

cluster VM process contains a set of server threads. These threads, which we manage
as a pool with high and low watermarks, execute an in�nite loop in which they wait
for requests, service the request, and send a response. While a remote DMA approach,
as supported by VIA [11], might be useful in some cases, such as accessing a primitive
�eld of a remote object, it cannot handle other cases, such as locking a remote object.
For simplicity of implementation at this stage of our e�ort, we chose to use a single
implementation instead of the optimal implementation for each speci�c type of remote
access.
As stated in the BACKGROUND section, some of Java core classes use native

methods. We explicitly did not focused on native methods for the following reasons:
1) Most of the native methods6 are related to GUI, which is irrelevant to our target
application; such as with Java Server Applications. 2) Native methods in, for example,
Math, Zip and Jar packages do not need to change since they can be executed locally.
Thus we are left with relatively small number of JNI methods which need to become
cluster aware. There is no silver bullet to solve this problem, i.e., to automatically make
each JNI method cluster aware. We have done that manually for each JNI method in
our code base.
There are number of additional changes required in order to take a JVM and turn

it into a cluster JVM. These changes include modi�cations to the initialization of the
JVM such that only one node executes the application's main method, changes to
JVM termination, changes to numerous native methods, etc. In this paper we do not
elaborate on any of these items.

4. CLUSTER VIRTUAL MACHINE ARCHITECTURE

This section focuses on three of the more novel aspects of the cluster virtual machine
architecture: the object model, the thread model, and the memory model.

4.1. Object Model

The object model of the cluster VM is composed of master objects and proxies. A
master object is the object, as de�ned by the programmer. A proxy is a surrogate
for a remote object through which the remote object can be accessed. While a proxy
is a fundamental concept used in systems supporting location-transparent access to
remote objects [9, 10], we push the idea one step further. Smart proxies are a novel
mechanism, which allow multiple proxy implementations for a given class, while using
the most eÆcient implementation on a per object basis.
To motivate smart proxies, consider three di�erent vector objects, all of which are

accessed by multiple threads of an application:

6719 out of 1156 in the JDK 1.2 code base we use

a distributed implementation of a virtual machine for java 11

� Vector A: This vector is relatively small. Each access is a bursty one and at any
point in time localized to a thread. The accesses involve a mix of read and writes.

� Vector B: This vector is relatively large. The accesses are sparse and are not
localized to a single thread at any point in time. The accesses involve a mixture
of read and write operations

� Vector C: This vector is relatively large. After a period of initialization all of the
accesses are read-only. The accesses are continuous and not localized to a single
thread

It is clear that di�erent proxy implementations for each of the three cases can improve
performance. For vector A, it is bene�cial to use a caching proxy that allows only
exclusive caching. Vector B, requires a simple proxy that ships all accesses to the
master copy, while for vector C, it is bene�cial to use proxies which support multiple
readers and a single writer. This allows, at any point in time during the program
execution, at most one caching proxy to update the vector and propagate the changes
to all other proxies, while applying all read operations locally.
There are two challenges involved in applying smart proxies in the context of single

system image:

� Preserving the application's illusion that is it executing on a single system, while
unaware whether it is using a proxy or a master object.

� Designing eÆcient proxy implementations which do not violate the Java
semantics.

The �rst challenge is met by 1) implementing proxy objects with the same internal
representation (e.g. object header, method tables) as their master objects and 2)
having all the proxy implementations coexist within a single class object.
Figure 3 describes our implementation of the new object model based on Sun's

JVM for Windows NT where various arrows represent pointers to data structures.
Speci�cally, the virtual method table of a class is logically extended into an array of
virtual method tables, as seen in Figure 3. In addition to the original table of method
code, each of the other tables refer to the code for a particular proxy implementation.
All the virtual tables and the code for the proxy implementations, are created by the
cluster VM on-the-y during class loading. Thus, every class has an array of at least
two virtual tables: one for the original method code and one for the code of a simple
proxy implementation. The code generated for the methods of simple proxy is straight
forward. The cluster VM for Java introduced a new pseudo-bytecode, execute remote,
whose implementation does method shipping to the master object. Thus the code of
each simple proxy method is as follows:

execute_remote

<x>return

where <x> represents the type of object returned by the original method. In addition
to simple proxy, classes can also maintain other proxy implementations such as one that
collects run-time statistics if the program is running in a pro�ling mode, or multiple
implementations that are changed dynamically based on run-time information (i.e.,
object locality). An example is given later in this section.
Upon creation of a master object or a proxy, the method table pointer points to the

correct virtual table of its implementation, which distinguishes it from other proxies

12

data
method table

data
method table

data
method table

simple proxy

array of virtual method tables

method block

method block

method block

bytecode

bytecode

bytecode

method table

read-only proxy

master object

class object

classdescriptor

classdescriptor

classdescriptor

Figure 3. cVMJ Object Model

as well as from its master object; this distinction is only visible from within the
implementation of the cluster VM for Java - the application cannot distinguish between
the master and the proxies. It should be noted that it is possible to change proxy
implementations during run-time. A particular set of implementations may constrain
changing to other implementations only in the event that there are no active methods
executing on the instance (e.g., during garbage collection). However, at the level of a
mechanism, the cluster VM is architected without any such constraints.
To help address the second challenge of designing eÆcient proxy implementations

which maintain the Java semantics, we analyze every class during class loading in
order to classify the methods based upon the way they access object �elds. We use
this information to help choose the most eÆcient proxy implementation for every
method.
Examples of proxy implementations we have already implemented are:

simple proxy: this is the default implementation which always transfers all
operations to the master.

read-only proxy: this implementation applies the operation locally, based on the
fact that it is guaranteed to access only �elds which are never changed (e.g.,
�elds that are only written in the constructor) so the proxy maintains replicas of
these �elds.

proxy with locally invoked stateless methods: We consider a method as state-
less if it does not access �elds of its object. While, it is semantically correct to
apply any kind of method directly on a proxy,7 there is a clear performance gain
in doing so for stateless methods. In general, a method would have to access

7Since all bytecodes have been cluster enabled, it is semantically correct to execute the method containing
them locally; the operation is shipped to the master object.

a distributed implementation of a virtual machine for java 13

object �elds remotely, overwhelming any performance gained by invoking this
method locally.

These are representatives of a large set of possible implementations whose logic can
range from actions that are always bene�cial to performance (e.g., replicating read-
only �elds and stateless methods), to actions whose worthiness depends upon run-time
conditions (e.g., caching an object at the node where it is being used).
An example of one of such analysis consider the identi�cation of methods which do

not mutate the heap but work only on the stack. Such stateless methods can easily be
detected during class loading by scanning the bytecodes of the method and determining
that there are no �eld modi�cation bytecodes. If such a method is detected it can be
marked as always executed locally since it does not a�ect the heap. See [18] for more
details on proxy types and statistics.
Proxy implementations, based on analysis of the code, are not always suÆcient for

gaining the best scalability for applications because they cannot take advantage of
run-time behaviour. For example, we are currently designing a proxy implementation
that determines whether to apply methods locally or remotely based on run-time
conditions. Another case where run-time behaviour provides better scalability is in
a case where a method accesses only static data. In this case, its implementation
determines, at run time, if the master object is co-located with the class's master
object. If so, it invokes the method remotely on the master object so the static data is
accessed locally. Otherwise, it safely invoke this method locally, saving the overhead
of a remote method call.
Thus, we can construct proxies whose logic depends both upon pro�ling information

and upon code analysis. This is exactly the advantage of working at the level of JVM,
we can uniquely exploit both static and dynamic knowledge about speci�c objects,
classes, and about the Java language itself.
The cluster VM object model (smart proxies mechanism) is signi�cantly di�erent

from subclassing in the following aspects:

� Subclassing cannot be used to change the behavior of an existing object.
� Subclassing requires explicit programmer action to de�ne the subclasses and such
actions violate the single system image property of the cluster VM (e.g., letting
Java applications run on a cluster without any source modi�cations).

� All proxies of the same subclass still behave the same (e.g., cache the same data),
while smart proxies enable using a proxy on a per instance object basis.

Thus, subclassing is a static mechanism (at the level of programmers) while smart
proxies is at the level of run-time (VM) systems and is transparent to the application.

4.2. Thread Model

To gain scalability on a cluster, objects and threads need to be distributed among
the cluster nodes to 1) utilize less loaded nodes while dynamically balancing load and
2) improve locality to other objects they access. As we stated, the cluster VM for
Java uses a distributed heap; the thread model needs to allow for the accessing of an
object whose master copy is on another node. Naturally, this is not supported by a
traditional JVM so we need to extend the thread model in the context of a cluster.
There are three main alternatives for allowing a thread to access a remote object. In

thread migration, when a thread accesses a remote object, the execution of a thread is

14

halted, its execution environment (e.g., program counter, stack) is serialized and moved
to the host containing the master copy of the object. The thread is then re-instantiated
and its execution resumed. In object migration [14], threads never migrate. Rather,
whenever a thread accesses a remote object (or a copy of the object), the object
is brought to the node where the thread is executing. A third approach is method
shipping [15] in which neither threads nor objects migrate. Instead, operations on
proxies are redirected to the nodes where their master object resides and are handled
locally by special service threads. In cluster VM for Java , we chose method shipping
as our base approach since it is easier to extend method shipping with object-shipping-
like function (e.g., caching) than vice versa. Method shipping is implemented internally
as an RPC from one node to another and is used for remote operations like: remote
method invocation, remote monitor operations and remote �eld access. It drastically
di�ers from the standard RMI([9]) since it is transparently invoked at the level of the
JVM.
In cluster VM for Java, we use method shipping for the following reasons:

1. In object migration, it is necessary to coordinate between multiple threads on
di�erent nodes using the same object. This can be expensive and diÆcult to
ensure in a language such as Java, where multiple threads can read and write
�elds of the same object without explicit synchronization. (See [21] for a Java
implementation that does this.) In addition, we believe it is harder to extend
an object migration mechanism with caching and replication (as described in
the previous section on Object Model) than it is to extend a method migration
mechanism.

2. Thread migration is an appropriate mechanism to use when remote accesses are
infrequent and coarse-grained. For such uses, the overhead of migration does
not overwhelm the speedup gained by distributing the application's threads.
However, the Java Server Applications that we aim at scaling, do not have
the characteristic of relatively infrequent and coarse-grained remote accesses.
Rather, each invocation of a method on a shared object (we assume some degree
of sharing) is a remote access, and in Java method invocations are often �ne-
grained computations.

The method shipping approach changes the application's view of a thread as being an
active object, executing its set of instructions on a single node. To maintain a single
system image we need to provide implicit ways to enable remote thread creation.
Otherwise, threads will never be distributed over the cluster nodes. Further, given
that we distribute threads and use method shipping, we need to maintain a uniform
thread identi�cation and uniform access to its stack, even though the stack may be
distributed.

4.2.1. Thread Creation

It is very important for us to distribute the application's threads since this is the only
way the cluster VM can obtain scalability improvements. We therefore,need to consider
how threads are created in Java. As described in the BACKGROUND section, the Java
language has two ways to specify the code to be executed by a Java thread. It is either
speci�ed by a subclass of the java.lang.Thread class or by a class implementing
java.lang.Runnable (see Figure 4), an instance of which is passed to the constructor

a distributed implementation of a virtual machine for java 15

of a Thread. In both cases, we need to be able to create the instances of these classes
remotely to allow distribution of the application's threads. In the �rst case, the thread
itself is distributed via a load balancing function, while in the later case, the thread
is co-located (as explained in the sequel) with the instance of the class specifying its
code, distributed via a load balancing function.
Figure 5 shows the original bytecodes generated from the source code in Figure 4.

Objects are created by the new bytecode, whose single operand is a reference to the
class for which an instance should be created. The set of bytecodes immediately after
the new opcode, pushes the parameters (if any) and invokes the constructor of this
new object (via the invokespecial bytecode).

class Target implements java.lang.Runnable {

public Target () { }

public void run() { }

}

class Foo {

public Foo () { }

}

public class Test {

public static void main (String[] argv) {

new Foo();

Runnable r = new Target();

new Thread();

new Thread(r);

}

}

Figure 4. Bytecode Rewriting for Remote Thread Creation: source code

Method void main(java.lang.String[])

0 new #1 <Class Foo>

3 invokespecial #6 <Method Foo()>

6 new #4 <Class Target>

9 dup

10 invokespecial #9 <Method Target()>

13 astore_1

14 new #3 <Class java.lang.Thread>

17 invokespecial #8 <Method java.lang.Thread()>

20 new #3 <Class java.lang.Thread>

23 aload_1

24 invokespecial #10 <Method java.lang.Thread(java.lang.Runnable)>

27 return

Figure 5. Bytecode Rewriting for Remote Thread Creation: original bytecode

To support remote thread creation, we modi�ed the semantics of the new

opcode. Speci�cally, when each class is loaded, it is analyzed and marked as

16

Method void main(java.lang.String[])

0 new_quick #1 <Class Foo>

3 invokespecial #6 <Method Foo()>

6 remote_new #4 <Class runnable>

9 dup

10 invokespecial #9 <Method runnable()>

13 astore_1 <pop the target host to a temporary variable>

14 remote_new #3 <Class java.lang.Thread>

17 invokespecial #8 <Method java.lang.Thread()>

20 remote_new #3 <Class java.lang.Thread>

23 aload_1 <push the target host onto the stack>

24 invokespecial #10 <Method java.lang.Thread(java.lang.Runnable)>

27 return

Figure 6. Bytecode Rewriting for Remote Thread Creation: rewritten bytecode

java.lang.Runnable if it implements the java.lang.Runnable interface8. For every
new opcode, we �rst check the class which is the parameter of the opcode. If the class is
not agged as java.lang.Runnable, then the opcode new is rewritten to new quick,
following the standard behavior of the JVM as described in [4]. This is the case for
creation of the object of type Foo as seen in line 0 of Figure 6.
If the parameter of the new implements java.lang.Runnable, then the new opcode is

rewritten into remote new pseudo bytecode (Figure 6, lines 6, 14 and 20). remote new

is a pseudo-bytecode that is private to the implementation of the cluster VM for
Java. When executed, it determines the best node in the cluster on which to create
the new java.lang.Runnable; this determination is based upon a pluggable load-
balancing routine. It then sends this node a request to create the instance of the class
at that node. A proxy for that instance is created at the node executing the opcode,9

and its reference is pushed on the stack, allowing the application to behave as if the
original new opcode was executed. Upon subsequent executions, each of the rewritten
bytecodes will directly and correctly apply either local or remote object creation.
One case of thread creation which we cannot support with this localized bytecode

rewriting is co-locating a thread with a given target Runnable (see last source line in
Figure 4). We are currently investigating ways to do such co-location based on method
analysis which provides some information about static object connections.
Such analysis and bytecode rewriting demonstrate the capabilities, at the level of

JVM to apply implicit solutions for cluster-enabled functionality.

4.2.2. Distributed Stacks

Applying method shipping causes the stack of a Java thread to be distributed across
the multiple system threads (handling the remote operations) at di�erent hosts. This
is shown in Figure 7 where the upward arrow in each node describes stack growth
direction. Thus, the thread model of a traditional JVM needs to be modi�ed to
maintain the application's illusion of a thread running all its code on one host and its

8The class java.lang.Thread implements the java.lang.Runnable interface
9Unless the node which is selected happens to be this node.

a distributed implementation of a virtual machine for java 17

stack although distributed, can be accessed as a single entity. Speci�cally, that new
model should guarantee that:

� The Java thread's stack can be traversed even though it is distributed10.
� A consistent and correct value is returned by Thread.currentThread(),
regardless of the host upon which it was invoked11.

� The Java thread is identi�ed as the owner of monitors obtained by the frames
of the distributed stack, regardless of which system thread was the one to enter
these monitors.

� A change in the state (i.e., running or suspended) of a system thread involved
in method shipping (i.e., due to methods like stop()), must apply to all of the
system threads involved.

Cluster Node #1 Cluster Node #2

stack frames

previous node

previous thread

system thread

stack frames

system thread

Figure 7. A Distributed Stack

To enable traversing a stack and changing the state of system threads along the
chain, all the local fractions of that stack are concatenated, as seen in Figure 7. In
addition, the implementation of those methods which change a thread's state and
access stack frames, are modi�ed.
To help maintain thread identi�cation, every Java thread is assigned a logical

identi�er; this is a reference to the Java thread object which initiated the method
shipping. Thus, with every remote operation we pass the global address of the Java
thread initiating the remote operation. Due to our memory model (see the section
on Memory Model below) logical identi�ers are translated in every host into local
references to proxies to the master thread object or to that object itself.
The cluster VM uses these logical identi�ers to identify the owner of an object's

monitor and to refer to current threads. Figure 8 demonstrates how logical identi�ers
maintain the thread identity over multiple hosts. In this �gure dashed lines denote
method invocations, dotted lines denote proxy-master relationship and bold lines
denote logical identi�ers. The �gure shows a scenario in which a system thread

10A stack is accessed by the methods printStackTrace(), countStackFrames(), fillInStackTrace() and
dumpStack()
11This Java method always returns a reference to the thread object which invokes it

18

Cluster Node #1 Cluster Node #2

Legend:

Proxy Master Relation

Remote Method Invocation

Logical Identifiers

monitor owner

#1

#3

proxy

Java
thread

proxy

master

#2

proxy

#2

logical thread

SYSTEM

logical thread

SYSTEM
THREAD A

logical thread

SYSTEM

THREAD C

THREAD B

INVOKE M1

INVOKE M

#3

thread
Java

master

master

Figure 8. Using Logical Identi�ers in cVMJ

A, bound to a Java application thread, invokes a method (M) upon proxy #2.
Consequently, the method is shipped to node 2 and invoked upon the master object
#2 by system thread B. During execution of the method, method (M1) is invoked
upon proxy #3. Again, the method is shipped; it is applied by system thread C on
node #1 where the master object #3 resides. With logical identi�ers,

1. If Thread.currentThread() is invoked by thread B it will return a reference to
the proxy of the Java thread implemented by system thread A, through which
the master Java thread is referred.

2. Although two threads are involved, system thread C is able to enter the monitor
of object #1 which is already being locked by system thread A, since their logical
identi�ers are equal12.

4.3. Memory Model

While the object model of the cluster VM provides uniform access to proxies and
master objects, a new memory model is required to 1) enable all proxies to locate and
refer to the master object and 2) provide an application with the illusion of using a
single monolithic heap.
The cluster VM for Java maintains a distributed heap built on top of the local

heap implementations found in a traditional JVM. Thus, new objects (both master
objects and proxy objects) are allocated in the local heaps, the same way it is done
in traditional JVMs. Each node independently manages its portion of the distributed

12Recall that Java allows the same thread to acquire the same lock (monitor) more then once, while blocking
other Java threads from acquiring the same monitor until it is freed.

a distributed implementation of a virtual machine for java 19

X4

X8

X5

X7 X8X9 X1

LOCAL HEAP LOCAL HEAP

X2

X3

Node #1 Node #2

X2
X6 X3 X6

X9

X4X7

X1X5

Figure 9. cVMJ Distributed Heap

heap. Figure 9 shows two cluster nodes with their local heaps. Objects are noted by
empty circles while proxies are grayed out.

However, when a local object is passed for the �rst time, as an argument to a remote
node, it becomes global. A remote node may now invoke methods on this object and
access the data of this object; the remote node will create a proxy for the object. The
local address of the master object and the local address of the proxy are not necessary
related to one another. In order for the nodes to communicate about objects, objects
which are used by more than one node are given global addresses.

A global address is an identi�er of a global object which is unique over the cluster.
It is generated the �rst time the object is passed as an argument to a remote operation
by combining the node ID (a number) and a unique node counter which is incremented
each time its value is used. Every time an object is passed between two nodes in the
cluster, we pass a two-tuple containing the global address of the object (GAO) and the
global address of its class (GAC). At the target node, these two global addresses are
resolved as shown in Figure 10. In this �gure, translate (GA) returns a reference to
a local object (either a master or a proxy) with the same global address GA, if found;
this translation is supported by a hash table.

As seen in Figure 10, using a two-tuple of the form (GAO, GAC), we can determine
the class of the proxy and construct a new proxy, without additional messages, as
would be expected if we sent only the global address of the object. However, when
the same remote object is passed as an argument to the same node more than once,
the two-tuple form incurs a slightly higher overhead due to locating and packaging
the global address of the class object, which is not needed. We still don't have enough
experience to evaluate that tradeo� in real applications.

As stated above, each node independently manages its portion of the distributed
heap using its local garbage collection (GC). Distributed garbage collection is a well
known complex problem which we are not addressing in this research. We did however
enhance the GC to free proxies while avoiding the collection of master objects with
global addresses (i.e., they may have a proxy on another node). This is done even if
no local objects refer to them since they may still be referenced on other nodes.

20

resolve (GAO, GAC) returns <object reference>:

{

local_object_ref = translate (GAO);

if (local_object_ref == null)

{ // no such master object or proxy is found.

class_local_object_ref = translate(GAC);

if (class_local_ref==NULL)

{ // class object is not found

class_local_ref=<create a proxy to the master class object>;

}

// create a proxy for the object with a GAO global address.

return new_proxy(class_local_ref,GAO);

}

return local_ref;

}

Figure 10. Resolution of a Global Address

5. STATUS

Currently we have a prototype which runs pure Java applications on a cluster of IBM
Intellistation stations running Windows NT, connected via a Myrinet fast switch.
Our communication is via MPI [5] which we use for portability, implemented over
HPVM [1]. The prototype provides a single system image of a Java Virtual Machine
to applications, distributing the application's threads and objects over the cluster.
The prototype supports all of the core classes with pure Java implementation and a
portion of the core classes with native implementations. The prototype is based upon
Sun's Java 1.2 implementation for Windows NT.

We have run an unmodi�ed version of the Portable Business Object Benchmark
(pBOB) on the cluster VM for java. pBOB (an earlier version of Spec JBB2000 [19])
is a kernel of business logic, inspired by the TPC-C benchmark speci�cation. In
accordance with the TPC's fair use policy, we note that pBOB deviates from
the TPC-C speci�cation and is not comparable to any oÆcial TPC result. pBOB
creates warehouses representing customers, stock, orders, etc., upon which multiple
threads apply transactions. The idea is to increase the throughput of their threads
(representing clients) by running these threads in parallel on multiple nodes.

We chose pBOB as it is a large (10Kloc), self-contained, pure Java application which
only depends on the Java core APIs. Running pBOB on a four-node cluster virtual
machine, we achieved 3.2 increase in speed as compared to running pBOB on one
node, using the interpreter (not JIT) in both runs. See [18] for more details.

One item we have intentionally not addressed is supporting a Just-In-Time (JIT)
compiler. The reason we have implemented the cluster VM for Java without JIT
support is due to limited resources. We do not believe there are any inherent reasons
why the cluster VM can not be integrated with a JIT compiler, and we would like to
add JIT support after our code stabilizes.

a distributed implementation of a virtual machine for java 21

6. RELATED WORK

Java on distributed machines has been extensively studied since Java was announced.
From a programmer's point of view, tools and infrastructure supporting Java
applications on a cluster range from completely explicit solutions to implicit solutions
similar to ours.

Explicit approaches [10, 9] assume an architecture of multiple JVMs while handling
remote objects and threads at the level of the Java language and external frameworks.
Most of these frameworks have very little relevance to cluster VM. Above all, unlike
the cluster VM for Java , they do not hide the complexity of distributing the Java
application from the application programmer. From a technical perspective, they don't
support transparent remote class objects. For example, proxy classes in Voyager or
JAVA/RMI are created manually by the programmer. In addition, Voyager programs
are always mapped to speci�c network con�gurations de�ned in advance (e.g., every
node runs a daemon with a speci�c port). With DO! [3], special framework classes
are used to restructure the Java program, to cluster objects and subsequently improve
object locality.

Another work, in this category of multiple JVMs, with some relevance to cluster VM
is JavaParty [8]. It focuses on transparent support of remote objects in Java. The only
extension to pure Java is the use of an explicit remote attribute to distinguish classes of
remote objects. In JavaParty, remote objects are created on nodes selected implicitly
based on load, bandwidth, or other criteria. JavaParty also allows programmers
to provide their own placement strategy. In addition, it supports monitoring of
objects' interactions during program execution and when appropriate, schedules object
migration to enhance locality. To summarize, JavaParty does not completely hide the
underlying network from the programmer; in other words the application has to be
aware of the cluster, which is not the case in the cluster VM for Java.

A �nal work in this category is ProActive [17] where programmers can create an
object on a remote node by invoking a utility method on a run time support class,
providing the type of the object, the parameters to its constructor, and the node on
which the object should be created. After creating the remote object, programmers can
treat it as a normal object; however, if programmers use Java's run-time introspection
they will see the type of the proxy. As with the other approaches based upon a run-time
library, ProActive does not support a single system image.

In contrast to the aforementioned frameworks, Java/DSM [13] is an implicit
approach, at the level of infrastructure. It is a modi�ed JVM whose heap is
implemented in a distributed shared memory. Objects are allocated from the shared
(DSM) region. Conceptually, Java/DSM supports SSI; its implementation, however,
is incomplete. It supports most of the Java API but it does not support thread
migration and a thread's location is not transparent. In addition, it does not support
wait() and notify() between threads on di�erent processors, although it does
support synchronized methods. Compared to the cluster VM for java, using DSM
technology (shipping pages of memory between nodes), it does not take advantage of
Java semantics to gain better performance; on the contrary, it can potentially cause
false sharing which degrades performance.

Another project which builds upon a cluster-enabled infrastructure is Hyperion [21];
this is probably the work most related to our cluster VM for Java. This can be
categorized as an implementation of a JVM on top of an object-based distributed

22

shared memory. In some respects Hyperion uses a hybrid design, containing both
elements of a cluster-enabled JVM and of a JVM on top of a cluster-enabled
infrastructure. Hyperion takes a JIT-like approach, compiling Java bytecodes into C
and then compiling the C code into machine code prior to execution.13 Hyperion has
several features in common with the cluster VM. The heap is distributed and there
is a master copy of an object on the node where the object is created.14 Objects are
created on the node where new is executed, except for Java threads which are created
on a node chosen by the system based upon a load balancing function. But there
are several signi�cant di�erences between the cluster VM and Hyperion. In Hyperion,
each node is statically assigned a portion of the address space which it can use to
create new objects, unlike the cluster VM where each node is free to manage its heap
independently. More importantly, Hyperion uses an object shipping model, in which a
copy of a remote object is brought to the accessing node. The accessing node uses this
local cached copy which is written back to the server at Java synchronization points
as required by Java's memory semantics (see Chapter 17 of [20]). This homogeneous
approach should be contrasted with the cluster VM that uses smart proxies which
allows e.g., di�erent kinds of proxies for objects of the same class.
Compared with these works, the work on cluster VM for Java has its own uniqueness

in terms of (1) full traditional Java implementation, that is single system image and
(2) a novel object model supporting replications and caching of objects towards high
performance.

7. CONCLUSIONS and FUTURE WORK

This paper presents an approach and implementation of a single system image for a
JVM on cluster machines. In its essence, there is an object model which distinguishes
between an application view of an object (e.g. every object is a unique data structure)
and its implementation (e.g. objects may have consistent replications), enabling us to
exploit knowledge on the usage of individual objects to improve performance (e.g.,
using object replications to increase locality of access to objects).
It should be noted that the mechanisms discussed in this paper, although tailored for

Java semantics, can be utilized and are also valid in a broader context of distributed
systems.
Having completed a prototype of a cluster VM for Java that supports SSI, our next

step is addressing the issues of de�ning and handling multiple kinds of implementations
for objects towards gaining high performance of real Java server applications. To that
end we plan to address several speci�c issues including analyzing application classes to
detect behavior patterns (e.g., read only �elds) where performance can be improved by
using new types of proxies, and incorporating them in the cluster VM. Furthermore,
we would like to use run-time pro�ling to detect behavior change in objects and switch
proxies during run-time for better performance. Another item we would like to improve
is the performance of the communication layer to reduce latency times.

acknowledgements

13It is unclear if the compilation is done on-the-y or must be done as an explicit step in building the program.
14In Hyperion they use the term local instead of master.

a distributed implementation of a virtual machine for java 23

We would like to thank Oded Cohn, Tamar Eilam, Zvi Harel, Hillel Kollodner, Assaf
Schuster and Yoram Talmor for their input to the cluster virtual machine for Java.
Special thanks to Alain Azagury who initiated this research activity.

references

1. High Performance Virtual Machine - User Documentation August, 1997
http://cch.loria.fr/documentation/optimisation/DocHpvm/hpvmdoc.html

2. Y. Aridor, M. Factor, A. Teperman, T. Eilam and A. Schuster Transparently Obtaining
Scalability for Java Applications on a Cluster to appear in JPDC Special Issue - Java on Clusters,
July 2000

3. P. Launay and J. Pazat A Framework for Parallel Programming in Java IRISA, December 1997,
1154

4. T. Lindholm and F. Yellin, The Java Virtual Machine Speci�cation Addison-Wesley, 1997
5. http://www.mcs.anl.gov/mpi
6. http://www.microsoft.com
7. G. P�ster In Search of Clusters: The Coming Battle in Lowly Parallel Computing Prentice-Hall,

1995
8. M. Philippsen and M. Zenger JavaParty: Transparent Remote Objects in Java Concurrency:

Practice and Experience 1997, vol. 11, No. 9, 1125|1242
9. http://web2.java.sun.com/products//jdk/1.1/docs/guide/rmi/index.html
10. http://www.objectspace.com/voyager/
11. http://www.viarch.org/
12. http://www.myri.com/
13. A. Yu and W. Cox. Java/DSM A Platform for Heterogeneous Computing In ACM 1997

Workshop on Java for Science and Engineering Computation June,1997
14. E. Jul and H. Levy and N. Hutchinson Fine-grained Mobility in the Emerald System In ACM

Transactions on Computer Systems 1988, Vol. 6, No. 1, 109|133
15. A. Birell and B. Nelson Implementing Remote Procedure Calls In ACM Transactions on

Computers Systems 1984, Vol. 2, No. 1, 39|59
16. A. S. Grimshaw Easy to Use Object-Oriented Parallel Programming with MENTAT In IEEE

Computer 1993, Vol. 26, No. 5. 39|51
17. D. Caromel and J. Vayssiere A Java Framework for Seamless Sequential, Multi-threaded, and

Distributed Programming In ACM 1998 Workshop on Java for High-Performance Network
Computing 1998, INRIA Sophia Antipolis, France

18. http://www.haifa.il.ibm.com/projects/systech/cjvm.html The home page URL
http://www.haifa.il.ibm.com/projects/systech/cjvm papers.html Papers on the cluster VM

19. http://www.spec.org/osg/jbb2000/
20. J. Gosling, B. Joy and G. Steele The Java Language Speci�cation Addison-Wesley, 1996 Ch. 17
21. M. MacBeth and K. McGuigan and P. Hatcher Executing Java Threads in Parallel in a

Distributed-Memory Environment IBM Center for Advanced Studies Conference, Canada,
November{December 1998

22. A. Gontmakher and A. Schuster Characterizations for Java Memory Behavior Intl. Par. Proc.
Symp. (1st Joint IPPS/SPDP), March 1998, 682|686,

23. William Pugh Fixing the Java Memory Model In ACM Java Grande Conference June 1999,
89|98

