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SUMMARY

In this paper, we investigate the parallel solution of rotating internal ow problems,
using the Navier-Stokes equations as proposed by Speziale and Thangam (1983) and
Speziale (1985). A Runge-Kutta time-stepping scheme was applied to the equations
and both sequential and message-passing implementations were developed, the latter
using MPI , and were tested on a 4-processor SGI Origin200 distributed, global shared
memory parallel computer and on a 32-processor IBM 9076 SP/2 distributed memory
parallel computer. The results show that our approach to parallelize the sequential
implementation requires little e�ort whilst providing good results even for medium-sized
problems.
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Introduction

Speziale and Thangam [19] and Speziale [18] have developed a formulation for the problem
of rotating internal ows, i.e. determining the behaviour of \pressure-driven laminar ows in
straight ducts, subjected to a steady spanwise rotation" (see [18]). The governing equations
are the Navier-Stokes equations and the continuity equation in a rotating framework, which
can be written as follows
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2 R.D. DA CUNHA, A.L. DE BORTOLI

r � ~v = 0 (2)

where ~v is the velocity vector, P is the modi�ed pressure which includes both the gravitational
and centrifugal force potentials, 
 is the steady spanwise rotation, � is the density of the uid
and � is the kinematic viscosity of the uid. The axial pressure gradient @P=@z = �G is
constant.

For a nonzero rotation rate, the velocity vector is of the form ~v = u(x; y)~i+v(x; y)~j+w(x; y)~k,
w being the axial velocity and u and v representing the secondary ow. As the rotation is
around ~j, it is of the form 
 = 
~j; since the ow properties are independent of z, equations
(1) and (2) may be written in component form as
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Due to the simpli�ed form of the mass conservation equation (6), it follows that a secondary
ow stream function  exists such that the velocity components are
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The function  is the solution to Poisson's equation r
2 = @v=@x � @u=@y = �, where � is

the axial component of the velocity vector and is expressed by
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Introducing the velocity and length scalesW0 and D, the equations to be solved numerically
are written as follows:
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u = �
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; v =
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where Re and Ro are the Reynolds and Rossbi numbers, C is the dimensionless pressure
gradient, and the following relationships hold:

Re =W0D=�; Ro = 
D=W0; C = GD=�W 2
0 : (13)

The initial condition for w, i.e. a non-rotating ow, satis�es the equation

r
2w = �

G

��
(14)

The reader is referred to [18] for more details.
The set of equations (9)-(12) are to be computed numerically and a rectangular grid of

M �N points, M > N are placed over a duct with length D and height H (H > D), with
spacings hx = D=(M + 1) and hy = H=(N + 1); therefore we may refer to the variables of
interest in those equations for an speci�c time-step t as discrete points on the grid with indices
i; j along the vertical and horizontal directions respectively.
Boundary conditions are u = 0; v = 0; w = 0 and  = 0 on the walls of the duct; also, by

taking a Taylor's expansion of (11), boundary conditions on the axial vorticity at time-step t
are obtained and written as
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In this work, we have used a modi�ed explicit Runge-Kutta time-stepping integration
scheme, approximating time and spatial derivatives by forward and central �nite-di�erences
respectively. Other authors (see [15, 17, 13]) have used di�erent approaches for uid dynamics
simulations, mainly �nite-element discretizations and implicit time-stepping integration
schemes, and the parallelization is expressed via domain-decomposition.

Description of the explicit method

The computation is divided in two main parts. Initially, we solve Equation (14) for w with an
iterative method, writing the Laplacian in central �nite-di�erences and obtaining the value of
w at the (i; j) cell from
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where Æ = (2h2
x
+2h2

y
)�1, i = 1; 2; : : : ; N; j = 1; 2; : : : ;M; k = 0; 1; : : : ; kmax, and we proceed

with the iterations until

jjwk+1 � wk jj1 < �w (18)
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4 R.D. DA CUNHA, A.L. DE BORTOLI

where �w is suÆciently small.
The second part is the solution of equations (9)-(12) which is made using a modi�ed explicit

Runge-Kutta time-stepping scheme [11, 6, 5]. We proceed from time-step t to t+1 as follows:
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where ht is the time-step length, k = 1; 2; : : : ;K (K is the order of the Runge-Kutta scheme)
and �(K) = f�kg

K

k=1 is the set of weights for the integration, with �(3) = f1=2; 1=2; 1g,
�(4) = f1=4; 1=3; 1=2; 1g and �(5) = f1=4; 1=6; 3=8; 1=2; 1g (see [6]). All derivatives appearing
in equations (20)-(23) are replaced by central �nite-di�erences.
To stabilize the computation, the time-step ht is chosen such that at each iteration it satis�es

the condition

ht � (2�(h�2
x

+ h�2
y
) + jju jj1=hx + jj v jj1=hy)

�1 (25)

Now the iterations in t proceed until

jj�(w)jj1 + jj�(�)jj1 + jj�( )jj1 + jj�(u)jj1 + jj�(v)jj1 < � (26)

where �(f) denotes f t+1 � f t and � is suÆciently small. In case this tolerance has not been
achieved, the boundary conditions on the axial vorticity � are updated, using (15) and (16),
and another iteration is performed. The algorithm used is outlined below:

Algorithm 1. Rotating ow algorithm

1. initialize constants, boundary conditions, etc.
for k = 1; 2; : : : ; kmax

2. compute (17)
3. if jjwk+1 � wk jj1 < �w

then break;
endfor
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for t = 0; 1; : : : ; tmax
for k = 1; 2; : : : ;K

4. compute (20)-(23)
endfor

5. if jj�(w)jj1 + jj�(�)jj1 + jj�( )jj1 + jj�(u)jj1 + jj�(v)jj1 < �
then break;

6. update boundary conditions on � using equations (15)-(16)
7. correct ht using equation (25)

endfor

8. output the results.

A review of related work on parallelizing Navier-Stokes computations

As the solution of the Navier-Stokes equations is a computing-intensive task, requiring large
amounts of memory and presenting very long run times, several authors have worked on its
parallelization. In what follows we will attempt to give a brief overview of past related work.

Emerson [7] reports on the parallelization of a 2-D Navier-Stokes solver, using a �nite-
volume discretization. The code used an early message-passing library, FORTNET, and domain
decomposition was used to partition the data, the subdomains being then assigned to the
processors. The best results were obtained on an Intel iPSC/860 hypercube, with a speed-up
of 2.5 on 4 processors.

Roose and Van Driessche [16] report on several approaches to used distributed-memory
parallel computers on CFD computations. For explicit time integration, similar to ours, they
mention that one can reduce the communication overhead of a Runge-Kutta solver if the
update of the overlapping regions (i.e., those data residing on neighbouring processors that
are needed for the local computations) are updated only after a complete time-integration step
is performed, rather than at each Runge-Kutta k-step. This may lead to a worse convergence
and perhaps divergence, depending on the problem. We have not followed this approach, as will
be seen in the sequel, as we have found that a larger number of iterations would be required,
increasing the overall run time.

Satofuka et al. [17] give results for a parallel Navier-Stokes solver on transputer arrays and
a workstation network. Their solver is based on the method of lines and the parallel algorithm
is implemented using PVM. Speed-ups of up to 3 over 4 processors were attained.

Vatsa and Faulkner [20] have recently ported the parallel version of the TLNS3D solver,
which uses MPI , to an Ethernet-connected cluster of 36 dual-processor Pentium Pro personal
computers. They have used both synchronous and asynchronous communication and report
that the latter is \preferred as the number of compute nodes is increased". The results obtained
are good, with a speed-up of 17 over 25 nodes for a 289�65�49 grid; though this is lower than
that obtained on a SGI Origin2000 (23 over 25 processors), they argue that the considerably
lower cost of the cluster of PCs far outweigh the gains in run time.

Lundin [14] solves the time-dependent ow of a rotating incompressible uid using
the velocity-vorticity formulation of the Navier-Stokes equations in cylindrical coordinates,
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6 R.D. DA CUNHA, A.L. DE BORTOLI

obtaining an overdetermined set of linear equations at each time-integration step. The
corresponding least-squares problem is solved with a preconditioned conjugate-gradients
method. The parallel implementation uses MPI and data is exchanged in \ready-mode"
with persistent communications, to reduce the latency. This approach is equivalent to using
asynchronous communication, though one has to assure that the process will be awaiting the
data when the transfer is issued. Speed-ups of approximately 9 on a 16-processor IBM SP/2
(67MHz \thin node" processors) and 26 on a 32-processor SGI Origin2000, for a 63� 66� 129
grid, are obtained.

Parallelization of the method

The parallelization of an explicit method such as that described previously requires a careful
analysis of the equations in use in order to ascertain the relationships between the variables
involved, since this will determine the ow of data in the code and between the many processors
collaborating in the parallel computation.

The parallel algorithm developed is based on the single-program, multiple-data, SPMD

paradigm and we consider that the number of processors available, p, is less than the number
of computational cells (M �N). No assumption is made with regard to as how the processors
are interconnected, though both point-to-point communication and reduction operators are
supposed to be available.

To partition the grid among the processors, we consider that since the domain is regular,
the only major requirement to attend is that we must partition it across the largest dimension,
thereby increasing the computation-communication ratio and leading to a potential good
parallel performance. In our case, we divide the domain across M (as M > N), obtaining
m =M=p panels of N cells, and assign to each one of p processors m�N contiguous cells; if
M is not an integer multiple of p, then one extra row of N cells is assigned to some r processors,
where r is the modulus of M=p (i.e. these processors will store panels of size (m + 1) � N).
This partitioning leads to a logical interconnection of the processors as if they were on a linear
array (a topology which can be easily embedded on other physical interconnections available
in parallel computers, like hybercubes, 2D/3D grids and others).

While other strategies could be followed to achieve load-balance between the processors, this
one makes the communication pattern regular, as each processor has to exchange at most two
rows of N cells with its two neighbours (or a single row if it is at one of the ends of the linear
array).

It should be stressed that though the partitioning by panels is very simple, it can be used
on a variety of other problems, including those involving complex geometries, if the problem
is recast using generalized coordinates and type C- and O-grids (see [9, V.2,Ch.12] and [8]).

Analysing the ow of data between equations (20)-(23), we note that there is a feedback
mechanism in the overall Runge-Kutta scheme, as once a variable in the k-th step is produced,
it is used in the computation of the next variable in sequence. This mechanism implies the
need of data exchange between the processors inside the Runge-Kutta scheme, in order to
compute the �nite-di�erences approximations to the derivatives.
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A PARALLELIZATION TECHNIQUE APPLIED TO ... ROTATING FLOWS ... 7

Thus, once every processor has computed wk in their assigned portion of cells using (20),
they swap their left- and right-most columns of cells of wk (say, w:;1 and w:;m, where the colon
indicates a whole column) and also of �k�1 with their left and right neighbours (this is done
in a single message of length 2N instead of two messages of length N to reduce the e�ect of
message-passing latencies in the performance of the algorithm). Every processor is then able
to compute �k in their cells; afterwards, they exchange �k in the same way in order to solve
Poisson's equation for  k and once this is completed,  k is exchanged in order to compute
the velocities uk and vk. Therefore in every step of the Runge-Kutta scheme there are three
data-exchanges between neighbouring processors.
Also, note that the initial condition for w is the solution of Equation (14); as it is solved in

the form (17), the computation can be organized such that one data exchange is suppressed,
since for the �rst iterations (i.e. for k = 0 at t = 0), a processor will have already received
columns w:;m and w:;1 from its left and right neighbouring processors, which has been done in
the last iteration prior to convergence using (17).
The boundary conditions on u; v; w;  and � can be computed without any communication

due to their simple form. For the update of the boundary conditions on � { equations (15) and
(16) { we use the same approach as explained in the previous paragraph, since every processor
will have stored �t+1:;m and �t+1:;1 of its left and right neighbours, from the last Runge-Kutta
iteration.
The whole algorithm is organized by dividing the computation of equations (20)-(23) into two

parts: one that refers to data stored locally in a single processor, and another which depends
on the local availability of data stored in its neighbouring processors. If now we make use of
asynchronous point-to-point communications (as present in MPI [10]), then we can compute
any one of the variables involved using the following algorithm:

Algorithm 2. Parallel computation of a variable f

1. asynchronously send variable f to its left and right neighbours
2. compute variable f with its local data, i.e. from columns 2 to m� 1
3. request the m-th column of f from processor
p� 1 (left) and store locally into column 0 of f
4. request the 1-st column of f from processor p+ 1 (right) and
store locally into column m+ 1 of f
5. compute columns 1 and m of variable f

It is then possible to almost completely hide the time spent communicating between two
processors, provided the amount of time spent in step 2 of the above algorithm is greater
than the time needed for the two point-to-point communications between a processor and
its two neighbours. A suÆciently large grid will allow this to happen; in our speci�c case,
we are interested when the ratio M=N is large, since that will maximize the amount of
local computation for a given p while keeping small (relative to the local computation) the
communication time. This approach has been successfully applied in other parallel applications
(see [2], [3], [4] and [1]).
However, there are two penalties brought about by the parallel computation of equations

(20)-(23):
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8 R.D. DA CUNHA, A.L. DE BORTOLI

1. The amount of time needed to set-up the asynchronous sends and the retrieval of data
from the local communications bu�er into the appropriate memory locations of the user's
program;

2. The computation of reductions, needed to obtain the norms used in the stopping criteria
of the iterations.

We can not hide these times within the local computation time and therefore they are the main
causes for being unable to achieve the optimal speed-up; but we may expect that by dividing
the storage of the variables among p processors, the use of processors with cache memories will
provide some interesting phenomenon for large size problems and small number of processors.
The parallel algorithm can now be described as follows. Each processor stores its m columns

of N cells, for each variable (w, �,  , u and v) in arrays of size 0:(N+1),0:(m+1), where the
two extra rows and columns serve to hold the boundary conditions values. Due to the simple
form of some of the boundary conditions speci�ed, one could argue that it is not needed to
store them; however this would lead to a speci�c piece of code be written to compute the
equations in the cells where the boundary conditions are involved.
We wrote the code to compute each of the equations (20)-(23) as a pair of loops scanning

the columns and rows of the array holding the variable values at the cells. As an example,
we will show how a sequential code to compute  k

i;j
in Equation (20) was transformed into a

parallel code according to Algorithm 2. The sequential code is as follows

DO J = 1,M

DO I = 1,N

DXPSI = PSI(I,J-1) + PSI(I,J+1)

DYPSI = PSI(I-1,J) + PSI(I+1,J)

PSINEW(I,J) = APSI*ZETANEW(I,J) + BPSI*DXPSI + CPSI*DYPSI

END DO

END DO

where APSI, BPSI and CPSI are constants involving hx and hy, derived from the central
�nite-di�erences equations. Its equivalent parallel version, using MPI , is

* 1. Asynchronously send PSI to its left and

* right neighbours

CALL SNDRCV(MYID,P,PSI,NP1,MP1,900,1000,IDSND,IDRCV)

* 2. Compute PSI with its local data

DO J = 2,MYM-1

DO I = 1,N

DXPSI = PSI(I,J-1) + PSI(I,J+1)

DYPSI = PSI(I-1,J) + PSI(I+1,J)

PSINEW(I,J) = APSI*ZETANEW(I,J) + BPSI*DXPSI + CPSI*DYPSI

END DO

END DO

* 3-4. Request columns from neighbouring processors

CALL GETDATA(MYID,NPROCS,IDSND,IDRCV)

* 5. Compute columns 1 and m of PSI
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A PARALLELIZATION TECHNIQUE APPLIED TO ... ROTATING FLOWS ... 9

DO J = 1,MYM,MYM-1

DO I = 1,N

DXPSI = PSI(I,J-1) + PSI(I,J+1)

DYPSI = PSI(I-1,J) + PSI(I+1,J)

PSINEW(I,J) = APSI*ZETANEW(I,J) + BPSI*DXPSI + CPSI*DYPSI

END DO

END DO

where MYM ism and SNDRCV and GETDATA are subroutines which call the MPI routines MPI ISEND

and MPI IRECV, and MPI WAIT respectively. Note that by using the MPI ISEND and MPI IRECV

routines we have an asynchronous parallel implementation which maximizes the use of the
processors. A fully asynchronous implementation, on the other hand, is not possible, for
the underlying numerical method can not cope with the nonlinear instabilities that may be
generated by that kind of implementation. We must stress the fact that our parallel algorithm
is synchronous, only the communication is done asynchronously.

With this approach, once a sequential version of the code has been tested and certi�ed to
be producing the desired results, it is easy to obtain its parallel version, since the second pair
of DO loops is the same as the �rst, apart from the indices on J. It is less error-prone, since the
loop body remains unchanged; in fact, if the �rst pair is encapsulated in a subroutine, having
the indices on J as parameters, then if a modi�cation in the body of the loops was required,
just a single part of the code would need attention. As for the performance of such code, if
one uses a compiler which is capable of inlining a subroutine, then it will not be a�ected by
this approach.

Another possible way of writing the parallel code (which we have also done) would be to
provide three di�erent parts to handle the computation, depending on the position of each
processor: the �rst, the last, and those in the middle of the linear array. It is easy to see that
this would increase three-fold the size of the code, and make it even more diÆcult to maintain;
one could make use of subroutines which would certainly make the code more readable but,
for an eÆcient program execution, the subroutines should be inlined, thereby increasing the
object code size accordingly. As an example, with the �rst approach, the ratio of source code
sizes of the parallel to the sequential versions is 1:46 : 1, whereas for this latter approach it
was 3:28 : 1.

The other modi�cation required in the sequential code to produce the parallel version is
in the computation of the norms. This requires a reduction operation over several values (i.e.
the partial norms) stored in the processors. Due to the SPMD programming model used, the
reduced value (i.e. the 1-norm of a variable) is required to be present in every processor.
Therefore, a reduction, followed by a broadcast of the reduced value to all processors is
employed, this being implemented by the MPI routine MPI ALLREDUCE. It is a costly operation;
note that the reduction and broadcast require sending/receiving several messages between the
cooperating processors (with the associated latencies to set-up the message transfers), albeit
some of those may be done in parallel.

As such, we look at Algorithm 1 and notice that norms are required in steps 3, 5 and 7.
Now we ask ourselves: can we combine the reductions in the last two steps into a single one,
therefore reducing the latencies? If we consider that the computational cost of a reduction of
r values followed by a broadcast is 2b log2 p c(�+ r�), where � and � are the latency and the
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10 R.D. DA CUNHA, A.L. DE BORTOLI

transfer rate between two processors (directly related to each other), then it is easy to see that
if we combine the �ve reductions needed in step 5 with the two reductions in step 7, we will
be saving one latency per reduction. For the overall computation, we will have

2tmax(� b log2 p c+ 7�) < 2tmax(2� b log2 p c+ 7�) (27)

and the savings will be greater for large p, as we shall see in x.
With the above reasoning, if the sequential code corresponding to the computation of steps

5 and 7 is written as

* 5. Compute norms

DO I = 1,5

NORMS(I) = 0.0

END DO

DO J = 1,M

DO I = 1,N

NORMS(1) = MAX(NORMS(1),ABS(W(I,J)-WNEW(I,J)))

NORMS(2) = MAX(NORMS(2),ABS(ZETA(I,J)-ZETANEW(I,J)))

NORMS(3) = MAX(NORMS(3),ABS(PSI(I,J)-PSINEW(I,J)))

NORMS(4) = MAX(NORMS(4),ABS(U(I,J)-UNEW(I,J)))

NORMS(5) = MAX(NORMS(5),ABS(V(I,J)-VNEW(I,J)))

END DO

END DO

NORM = NORMS(1) + NORMS(2) + NORMS(3) + NORMS(4) + NORMS(5)

* 6. Update boundary conditions on ZETA

...

* 7. Time-step stabilization test

NORMS(1) = 0.0

NORMS(2) = 0.0

DO J = 1,M

DO I = 1,N

NORMS(1) = MAX(NORMS(1),ABS(UNEW(I,J)))

NORMS(2) = MAX(NORMS(2),ABS(VNEW(I,J)))

END DO

END DO

MAXHT = 2.0*NU*(INVHXSQ+INVHYSQ) + INVHX*NORMS(1) + INVHY*NORMS(2)

HT = MIN(HT,1.0/MAXHT)

then an equivalent parallel code, including the computation of the jju jj1, jj v jj1 needed in
step 7, is

* 5. Compute norms

DO I = 1,7

NORMS(I) = 0.0

END DO

DO J = 1,MYM

DO I = 1,N

NORMS(1) = MAX(NORMS(1),ABS(W(I,J)-WNEW(I,J)))

NORMS(2) = MAX(NORMS(2),ABS(ZETA(I,J)-ZETANEW(I,J)))
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NORMS(3) = MAX(NORMS(3),ABS(PSI(I,J)-PSINEW(I,J)))

NORMS(4) = MAX(NORMS(4),ABS(U(I,J)-UNEW(I,J)))

NORMS(5) = MAX(NORMS(5),ABS(V(I,J)-VNEW(I,J)))

NORMS(6) = MAX(NORMS(6),ABS(UNEW(I,J)))

NORMS(7) = MAX(NORMS(7),ABS(VNEW(I,J)))

END DO

END DO

CALL MPI_ALLREDUCE(NORMS,REDUOUT,7,MPI_REAL,MPI_MAX,MPI_COMM_WORLD,IERR)

NORM = REDUOUT(1) + REDUOUT(2) + REDUOUT(3) + REDUOUT(4) + REDUOUT(5)

* 6. Update boundary conditions on ZETA

...

* 7. Time-step stabilization test

MAXHT = 2.0*NU*(INVHXSQ+INVHYSQ) + INVHX*REDUOUT(6) + INVHY*REDUOUT(7)

HT = MIN(HT,1.0/MAXHT)

where REDUOUT is the bu�er holding the reduced NORMS values and which is present in all
processors after the call to MPI ALLREDUCE.

Output of the results

At the end of the overall computation, we save the values of the variables involved in �les
for later analysis. We consider that each processor has parallel access to the disk �lesystem
and each processor is thus able to open its own �le, all p �les being written as simultaneously
as possible. In our experiments, even for the large problems, this proved to be eÆcient and
accounted for less then 1% of the run-time. An in-house developed visualization program (see
[12]) is later used, which opens the several �les in sequence and exhibits the data in a variety
of forms (eg. colour maps, particle traces and vector �elds).

Theoretical models of computation

In this section, we will derive equations that express the computational cost for the sequential
and parallel versions of the code. In the sequel, C� is the computational cost of a � operation.
Analysing equations (15)-(26), it is possible to count the number of operations required.

In our implementation, all constant values involved in those equations have been computed
previously and stored in separate scalar variables, thus guaranteeing that no unnecessary
oating-point operations will be done.

Sequential version

For the solution of (17), we have a cost of

C0
w = kmax(3MNC�) (28)
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12 R.D. DA CUNHA, A.L. DE BORTOLI

where kmax is the number of iterations required until convergence is obtained.

For the solution of the Navier-Stokes equations, we have the following costs

Cw = KMN(8C+ + 12C�) (29)

C� = KMN(8C+ + 13C�) (30)

C = KMN(4C+ + 3C�) (31)

Cu + Cv = 2KMN(C+ + C�) (32)

Cjj:jj = 5MNC+ (33)

CB:C:on � = 2(M +N)C+ + 4(M +N)C� (34)

Cht correction = 2C+ + 2C� + 2C� + C1=x (35)

where K is the order of the Runge-Kutta integration scheme. Adding the above equations we
have

S� = (30KMN + 4M + 4N + 2)C� (36)

S+ = (22KMN + 5MN + 2M + 2N + 2)C+ (37)

CN�S = tmax(S� + S+ + 2C� + C1=x) (38)

where tmax is the number of iterations required for convergence.

Adding (28) to (38) and disregarding the terms involving divisions and inversions, the
expression for the cost of the sequential version of the code is

CS = tmax(S� + S+) + kmax(3MNC�) (39)

Parallel version

For the parallel solution of (17), we have a cost of

C0
w = kmax (max(3MN=pC�; Ccomm(n)) + Cred(1)) (40)

where

Ccomm(n) = �+ �n (41)

is the cost of sending n words between two neighbouring processors, with latency � (in seconds)
and rate of transmission � (in seconds/word), and

Cred(r) = 2b log2 p cCcomm(r) (42)

is the cost of a reduction over p processors of r values, followed by a broadcast.

Equation (40) involves a maximum of two costs due to the organization of the Algorithm 1;
for instance, if the workload in each processor is not enough to mask the communication time,
then this last dominates the whole computation (degrading the performance).
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For the parallel solution of the Navier-Stokes equations, we have the following costs

Cw = KMN=p(8C+ + 12C�) (43)

C� = max(KMN=p(8C+ + 13C�); Ccomm(2N) (44)

C = max(KMN=p(4C+ + 3C�); Ccomm(N)) (45)

Cu + Cv = max(2KMN=p(C+ + C�); Ccomm(N)) (46)

Cjj:jj = 5MN=pC+ + Cred(7) (47)

CB:C:on � = (2(M=p+N)C+ + 4(M=p+N)C�) (48)

Cht correction = 2C+ + 2C� + 2C� + C1=x (49)

where the cost for CB:C:on� was considered that of the �rst and last processors, since due to
holding the �rst and last columns of the grid respectively, they have more work to do while
computing this correction.

Now in the case when the grid is suÆciently large to o�set the point-to-point communication

between two neighbouring processors, we may disregard the Ccomm terms above and adding
the equations obtain

P� = (30KMN=p+ 4M=p+ 4N + 2)C� (50)

P+ = (22KMN=p+ 5MN=p+ 2M=p+ 2N + 2)C+ (51)

CN�S = tmax

�
P� + P+ + 2C� + C1=x + Cred(7)

�
(52)

Again, we disregard divisions and inversions in the above equation and adding C0
w to CN�S,

the asymptotical behaviour of the parallel version is given by

CP = tmax (P� + P+ + Cred(7)) + kmax (3MN=pC� + Cred(1)) (53)

Analysis of scalability

Considering the ratio CS=CP i.e. the parallel speed-up (not the optimal speed-up), the
scalability of the parallel version with respect to p, per iteration (i.e. tmax = kmax = 1),
is given by

SP =

�
S� + S+ + 3MNC�

pP� + pP+ + pCred(7) + pCred(1)

�
p (54)

and since the constant multiplying p is less than unity, the optimal scalability of p cannot be
achieved. The terms most responsible for this loss of parallel performance are those accounting
for the reductions.

The same equation shows that for a �xed p and for large M and/or N , the terms involving
MN will dominate the expression in parentheses and that its value tends to unity; therefore
for a large grid, the parallel version will provide an acceleration of almost p over the sequential
version of the code.
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14 R.D. DA CUNHA, A.L. DE BORTOLI

Figure 1. Typical results for a 64�32 mesh, Re = 279. From left to right: the contour
streamlines for the complete domain and the contours generated by each processor.

Experiments

A number of experiments were carried out on a 4-processor Silicon Graphics Origin200
distributed, global access memory parallel computer located at the Brazilian National

Supercomputing Centre (CESUP), and on a 32-processor IBM 9076 SP/2 distributed memory
parallel computer located at the Brazilian National Scienti�c Computing Laboratory (LNCC).
Our software is a FORTRAN 77 code which implements Algorithm 1 with the parallelization
expressed as in Algorithm 2. All computations were carried out in single-precision (32 bits)
and with the computer in dedicated mode.

The SGI Origin200 used is a four-processor machine in a twin-tower con�guration, each
tower equipped with two MIPS R10000, 180MHz processors with 1MB cache memory each, and

interconnected via a CrayLinkTM cable. It has an aggregate RAM memory size of 256MBytes.
The machine is a \scalable, shared-memory processor (S2MP)" and it has a hierarchical
memory, with increasing memory access time for data requested from farther processors.
It is interconnected like a hypercube, with the use of CrayLink cables and routers. For an

Origin computer with 16 and 32 processors, XpressLinkTM interconnects are added to the
interconnection network, making use of the spare ports on the routers, minimizing latency
and increasing the bandwidth. Nonetheless, the fact remains that this machine does not have
a constant latency and transfer rate between any pair of processors. The MPI library used is
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an SGI proprietary implementation, which makes use of remote shared-memory read/write
functions to provide the send/receive message-passing operations.

The IBM 9076 SP/2 has 40 processors: eight are IBM RS6000/590 (\wide node") with
1GByte RAM and the remaining thirty-two are IBM RS6000/390 (\thin node") with
256MBytes RAM (these were the processors used in their tests). The processors are
interconnected via an Omega-like network called the High-Performance Switch (HPS). The
system was running AIX 4.1.5; the code was compiled with the IBM mpxlf compiler. The MPI
implementation is MPICH 1.0.12, developed by Argonne National Laboratory and Mississippi
State University.

Typical results

With regards to the ow problem itself, typical results that were obtained are shown in Figure
1, which shows the streamlines for  . In that experiment, taken from [18, p. 272], Re = 279,
Ro = 0:833, 
 = 0:1 rad=s, G = 6�10�4 lb=ft3 and ht = 10�4 (throughout the iterations). The
tolerance for convergence for the initial condition on w was 10�5 and it was achieved in 2; 595
iterations, taking 0:0008s on two processors. Convergence of the solution of the Navier-Stokes
equations using the three-term Runge-Kutta scheme (K = 3) for a tolerance of 10�4, took
406:9987s after 202; 255 iterations. The �gures show a similar appearance to that presented in
[18, p. 272].

Scalability on the SGI Origin200

The experimental results given in Table I show the run-time (in seconds/iteration) for several
mesh sizes. It can be seen that as the mesh sizes increase, the scalability increases as well.
Also noticeable is that in two cases (1024� 64 and 1024� 128) a substantial increase of the
run-time occurs. Using the SGI perfex performance analyser, which reports among other data
the number of loads and stores per oating point instruction, we see that for the 512�64 mesh,
this value is 2:2582, whereas for the 1024� 64 mesh it jumps to 83:3133. It appears that the
increased data traÆc to/from the memory is responsible for the larger run-time exhibited in
the latter case.

Another important e�ect being shown is that of a speed-up larger than 2 for the larger
problem sizes when using two processors. Theoretically, such \superlinear" e�ect is impossible
to achieve; however, if we are using a parallel computer with a separate cache memory for each
processor, what may happen if we double the number of processors in use is that we have at
our disposal the double of cache memories while at the same time we are halving the amount
of data being accessed locally (supposing that load balance is achieved which is our case). In
this case, more data will �t in these extra cache memories when compared to using a single
processor. This reasoning was con�rmed by the data cache hit rate reported by perfex; in
Table II we show this rate for a few problem sizes. Note that when p = 2 the data cache hit
rate becomes 1 but for the 256� 64 problem size, which is small compared to the others.
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Table I. Run time (in seconds per iteration) and speed-
ups on the SGI Origin200.

M �N p = 1 p = 2 p = 3 p = 4
16� 16 0:0019 0:0018 0:0022 0:0024

1:0649 0:8836 0:7982
32� 16 0:0031 0:0026 0:0026 0:0025

1:1795 1:1997 1:2103
64� 16 0:0058 0:0038 0:0034 0:0031

1:5190 1:7272 1:9086
128 � 16 0:0116 0:0068 0:0053 0:0045

1:7152 2:1810 2:5667
256 � 16 0:0224 0:0127 0:0094 0:0081

1:7643 2:3875 2:7770
32� 32 0:0058 0:0039 0:0035 0:0033

1:4865 1:6426 1:7815
64� 32 0:0116 0:0068 0:0053 0:0047

1:7114 2:1770 2:4609
128 � 32 0:0226 0:0124 0:0093 0:0079

1:8245 2:4448 2:8567
256 � 32 0:0441 0:0236 0:0166 0:0133

1:8704 2:6489 3:3117
512 � 32 0:0889 0:0466 0:0321 0:0265

1:9090 2:7719 3:3486
64� 64 0:0224 0:0123 0:0092 0:0088

1:8199 2:4278 2:5415
128 � 64 0:0442 0:0235 0:0168 0:0132

1:8844 2:6384 3:3605
256 � 64 0:0863 0:0458 0:0317 0:0246

1:8836 2:7232 3:5041
512 � 64 0:1806 0:0900 0:0624 0:0469

2:0055 2:8940 3:8479
1024 � 64 42:5168 21:7635 14:4899 10:8587

1:9536 2:9342 3:9155
128� 128 0:0869 0:0457 0:0317 0:0245

1:9018 2:7394 3:5505
256� 128 0:1816 0:0892 0:0615 0:0468

2:0360 2:9547 3:8818
512� 128 0:3829 0:1857 0:1232 0:0958

2:0625 3:1093 3:9961
1024� 128 85:0758 43:5478 28:9583 21:8141

1:9536 2:9379 3:9000
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Table II. Data cache hit rates for some problem sizes. A
value closer to 1 represents a better cache memory usage.

p = 1 p = 2 p = 3 p = 4
256� 64 0:9696 0:9926 1:0 1:0
512� 64 0:9789 1:0 1:0 1:0
1024� 64 0:9635 1:0 1:0 1:0
256 � 128 0:9802 1:0 1:0 1:0
512 � 128 0:9753 1:0 1:0 1:0
1024 � 128 0:9635 1:0 1:0 1:0

Table III. Comparison between run times for
(a) combined and (b) separate reductions.

M �N
64� 32 128� 32 256 � 64 512� 64

p = 1 0:3170 0:6436 2:4457 5:1776
p = 2
(a) 0:1852 0:3528 1:2984 2:5817
(b) 0:2244 0:3979 1:3739 2:7304

gain(%) 21:1594 12:7980 5:8145 5:7586
p = 3
(a) 0:1456 0:2633 0:8981 1:7891
(b) 0:1843 0:3097 0:9773 1:9242

gain(%) 26:5539 17:6365 8:8164 7:5498
p = 4
(a) 0:1288 0:2253 0:6980 1:3456
(b) 0:1694 0:2802 0:7862 1:4756

gain(%) 31:5413 24:3674 12:6447 9:6674

Reducing the latency in the computation of norms

As noted in the discussion of the parallel algorithm developed, we combined the reductions
needed for the computation of the norms appearing in steps 5 and 7. Table III shows the
time (in seconds) taken by two implementations of the parallel algorithm (one with combined
reductions and the other with separate reductions, and the respective gains). As can be seen
in that table, the combined reductions are a means of increasing the speed-up for small grids,
whilst still providing a reduction in the run time with increasing p, even for a large grid.
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Table IV. Run time (in seconds per iteration) and speed-
ups on the IBM 9076 SP/2.

M �N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
128 � 32 0:0355 0:0209 0:0173 0:0155 0:0145 0:0125

1:6957 2:0526 2:2941 2:4375 2:8352
256 � 32 0:0709 0:0400 0:0291 0:0182 0:0164 0:0110

1:7727 2:4375 3:9000 4:3333 6:4274
512 � 32 0:1455 0:0745 0:0455 0:0273 0:0209 0:0126

1:9512 3:2000 5:3334 6:9565 11:5011
1024 � 32 0:2827 0:1543 0:0826 0:0433 0:0397 0:0227

1:8234 3:4231 6:5312 7:1245 12:4209
2048 � 32 0:7309 0:3950 0:2050 0:1100 0:0750 0:0378

1:8504 3:5654 6:6446 9:7454 19:3184
128 � 64 0:0691 0:0400 0:0300 0:0218 0:0191 0:0141

1:7273 2:3030 3:1667 3:6191 4:9002
256 � 64 0:1427 0:0745 0:0445 0:0291 0:0227 0:0142

1:9146 3:2041 4:9062 6:2800 10:0529
512 � 64 0:2818 0:1464 0:0818 0:0473 0:0400 0:0227

1:9255 3:4444 5:9615 7:0454 12:3971
1024 � 64 0:6555 0:3550 0:1800 0:1000 0:0700 0:0351

1:8463 3:6414 6:5545 9:3636 18:6660
2048 � 64 1:4609 0:7850 0:4000 0:2100 0:1150 0:0595

1:8610 3:6523 6:9567 12:7036 24:5403
128 � 128 0:1391 0:0745 0:0445 0:0300 0:0218 0:0138

1:8659 3:1225 4:6364 6:3750 10:0492
256 � 128 0:2782 0:1455 0:0809 0:0473 0:0318 0:0181

1:9125 3:4382 5:8846 8:7429 15:3358
512 � 128 0:5591 0:2827 0:1500 0:0836 0:0527 0:0269

1:9775 3:7273 6:6848 10:6034 20:7763
1024 � 128 1:3164 0:7000 0:3200 0:2000 0:1000 0:0524

1:8805 4:1136 6:5818 13:1636 25:1240
2048 � 128 2:9082 1:5600 0:7950 0:4000 0:2200 0:1123

1:8642 3:6581 7:2705 13:2190 25:9025

Scalability on the IBM 9076 SP/2

The same experiments were carried out on an IBM 9076 SP/2 and the run times and respective
speed-ups are given in Table IV.

It can be seen that for a moderate small grid, 256� 128, we are using eÆciently more than
half the number of processors (16) used. For a grid twice as high (M = 512), a speed-up of
approximately 20 is obtained on 32 processors. One can also notice that for a �xed value of
M , doubling N does not degrade the performance - as it could be expected, since it leads to
messages twice as long. This is explained by the fact that the amount of local data increases
in the same rate, and the communication time is still hidden by the compute time.
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Concluding remarks

We have presented a parallel algorithm for the solution of the rotating ow problem described
by the Navier-Stokes equations, using an explicit Runge-Kutta time-stepping integration
scheme.
We believe the results presented show that our approach to parallelize the computation is

good and can be used for the solution of related problems. Moreover, it can be used as a
framework for the parallelization of other techniques, as long as the possibility of breaking
down the computation in two parts - depending on local and remote stored data - exists.
We intend to further develop and apply it to other uid ow problems, including three-

dimensional domains with complex geometries, using generalized coordinates which will allow
us to use the same parallelizing technique presented here.
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