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Abstract We have designed and implemented a light-weight process (thread) li-

brary called “Lesser Bear” for SMP computers. Lesser Bear has high portability

and thread-level parallelism. Creating UNIX processes as virtual processors and a

memory-mapped file as a huge shared-memory space enables Lesser Bear to execute

threads in parallel.

Lesser Bear requires exclusive operation between peer virtual processors, and

treats a shared-memory space as a critical section for synchronization of threads.

Therefore, thread functions of the previous Lesser Bear are serialized.

In this paper, we present a scheduling mechanism to execute thread functions

in parallel. In the design of the proposed mechanism, we divide the entire shared-

memory space into partial spaces for virtual processors, and prepare two queues

(Protect Queue and Waiver Queue) for each partial space. We adopt an algorithm

in which lock operations are not necessary for enqueueing. This algorithm allows us

to propose a scheduling mechanism that can reduce the scheduling overhead. The

mechanism is applied to Lesser Bear and evaluated by experimental results.

Keywords: thread library, SMP computer, parallelism, scheduler design
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1 Introduction

Recently, multiprocessor systems have become popular, as illustrated by the widespread

use of PC-based multiprocessors. Therefore, many UNIX-compatible operating sys-

tems support symmetric multiprocessor (SMP) computers. Systems that effectively

utilize the feature of SMP computers are required. In particular, a light-weight pro-

cess, sometimes called a thread, is attracting much attention for its use as a basic

processing unit. In order to effectively utilize SMP computers, we have developed a

thread library, called “Lesser Bear”. Lesser Bear has following features:

• thread-level parallelism; and

• high portability.

Thread libraries are utilized for parallel applications because thread management

(e.g. switching between peer threads, creation, etc.) is less expensive than that of

the UNIX process. But if there are fine-grain threads in an application, thread man-

agement takes place frequently, and this overhead influences the turnaround time of

the application. For example, in fork-join type applications, thread synchronization

takes place frequently. Therefore, the more fine-grain the threads are, the more

frequently thread management will occur.

Lesser Bear creates some UNIX processes inside the application as virtual proces-

sors in order to execute each thread in parallel. Therefore, the previous Lesser Bear

design required an exclusive function between multiple virtual processors for thread

scheduling. In a fine-grain application, in which context switching occurs frequently,

the context switching for each virtual processor is serialized inside. Consequently,

the previous design prevented the thread scheduler from running in parallel.

In this paper we propose the design and implementation of a scheduling mecha-

nism. This mechanism has the following features:
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• scheduling threads in parallel inside of Lesser Bear; and

• Low-overhead scheduling.

For scheduling threads in parallel, the thread scheduler needs to run on each

virtual processor.

In the previous design, Lesser Bear stored all the thread-contexts in a huge

shared-memory space which every virtual processor could access uniformly. In this

paper, we divide the huge shared-memory space equally for every virtual processor

and provide two queues (“Protect Queue” and “Waiver Queue”) for each divided

space. Each virtual processor manages a provided space. Protect Queue is handled

without lock operation because only an assigned virtual processor, referred to as

an owner, enqueues into the Protect Queue and dequeues from it. In the Waiver

Queue, only the owner enqueues into that queue but any virtual processor can

dequeue from it. Consequently, the enqueue method for the Waiver Queue requires

no lock operation. Since the implemented scheduling mechanism requires no lock

operation in enqueueing, Lesser Bear is able to reduce the scheduling overhead.

In this paper, we evaluate the implemented scheduling mechanism on an SMP

computer with 8 CPUs. Experimental results show that we achieve scheduling

threads in parallel with low-overhead.

The reminder of the paper is organized as follows. Section 2 presents related

works and overview of Lesser Bear. Section 3 presents the proposed scheduling

mechanism for improving Lesser Bear. Section 4 presents the experimental results

of improved Lesser Bear. The final section concludes the paper.

2 Former Threads Libraries

This section discusses works related to the thread library and Lesser Bear’s features.
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2.1 Related Work

In general, threads can be implemented as:

• an implementation that requires some modifications in a kernel (e.g. Scheduler

Activations [1]); or

• a library implementation (e.g. PTL [2]).

A kernel implementation can construct a suitable system for the architecture,

but makes the system less portable. However, a library implementation, called a

thread library, is not dependent on the architecture and operating system (OS).

A variety of thread libraries have been developed [1, 2, 3, 4, 5, 6, 7]. But existing

thread libraries suffer from one or both of the following problems:

• thread-level parallelism;

• lack of portability.

Most of the existing thread libraries have only one virtual processor. Therefore,

there is no parallelism at the thread.

On the other hand, LinuxThreads [5], Solaris threads [6] and PPL [7] have

thread-level parallelism. However, it is hard to say that they have high portability

by the following reasons:

• LinuxThreads and Solaris threads only work on Linux and SunOS 5.x, respec-

tively.

• PPL consists of about twenty percent OS dependent module [7].

4



2.2 Overview of Lesser Bear

To utilize the advantages of the thread library and SMP computer, we have designed

and implemented a thread library, called Lesser Bear [8]. Figure 1 shows a diagram

of Lesser Bear. Lesser Bear has two features; thread-level parallelism and high

portability.

Kernel Scheduler
Kernel Level

User Level

Processor Processor Processor Processor

Virtual
Processor

Virtual
Processor

Virtual
Processor

Virtual
Processor

Thread Scheduler

Shared Memory Space

Ready Queue

Thread Thread Thread Thread ThreadThreadThread

Figure 1: Our thread library model.

Most of the previous thread libraries contain one virtual processor to deal with

threads. Consequently, they have no parallelism at the thread. To satisfy thread-

level parallelism, Lesser Bear creates some UNIX processes as virtual processors.

LinuxThreads [5] and PPL [7] have multiple virtual processors and satisfy thread-

level parallelism. However, each virtual processor can not deal with arbitrary threads
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in this situation.

Moreover, a thread library requires a function that suspends and resumes a

running thread. Therefore, a thread library requires space to store all the thread-

contexts that include personal data (e.g. stack, register set). In Lesser Bear, all the

thread-contexts are stored in a shared-memory space where every virtual processor

can access uniformly. Consequently, any virtual processor can deal with any thread.

UNIX processes are assigned to CPUs and run concurrently in order to run an

application linking Lesser Bear on an SMP computer. For this reason, thread-level

parallelism is satisfied in Lesser Bear. Lesser Bear initially creates a memory space

shared with all virtual processors that is as large as possible.

We require the following features for Lesser Bear:

• portability;

• context switching by user-level interval timer;

• a standard user interface;

• a huge shared-memory space; and

• exclusive operation between peer virtual processors.

In the rest of this section, we will describe in detail the portability and a huge

shared-memory space.

2.3 Portability

In general, it is required that libraries are not dependent on the architecture and

OS. To satisfy this demand, we have implemented Lesser Bear using C language

and standard UNIX libraries. For context switching, we have adopted setjmp()

and longjmp() to achieve portability.

6



Table 1: Operating systems on which Lesser Bear works as designed.

OS types feature

SunOS 4.1.x BSD UNIX Uni-processor

SunOS 5.x SVR4 UNIX SMP

FreeBSD 2.x BSD UNIX Uni-processor

FreeBSD 3.x BSD UNIX SMP

Linux 2.0 SVR4 UNIX SMP

IRIX 6.4.1 SVR4 UNIX SMP

Lesser Bear requires an OS that can run multiple processes in parallel and pro-

vide the memory-mapped file system.

Table 1 presents operating systems that Lesser Bear can run. Lesser Bear has

only two or three lines of implemented source codes, which depend on the jmp buf

structure of OS. By using this feature, we expect that Lesser Bear will also run

easily on other architectures.

2.4 Huge Shared Memory Space

For each virtual processor dealing with any thread, Lesser Bear creates a huge

shared-memory space (the order of 1 Gbyte). All data structures (e.g. thread-

contexts, Ready Queue) are stored in this space. A thread-context includes personal

data (e.g. stack pointer, register environment). To store a large amount of thread-

contexts, a huge shared-memory space is necessary. In Lesser Bear, a huge shared-

memory space is implemented by a memory-mapped file.

These strategies assure that Lesser Bear has both high portability and thread-

level parallelism.
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3 Design of Scheduling Mechanism

In this section, we describe the problems of the previous Lesser Bear design, and

propose a scheduling mechanism to solve the problems.

3.1 Problems of Scheduler Serialization

In Lesser Bear, data structures (e.g. Ready Queue, thread-contexts, thread table)

are stored in a shared-memory space, and each virtual processor can execute any

thread in parallel. Therefore, the entire shared-memory space has been treated as

a critical section, and all virtual processors are required to operate separately.

When a virtual processor has entered a critical section and the entire shared-

memory space is locked, the other virtual processors are suspended [9]. Conse-

quently, thread management (e.g. context switching, scheduling) is serialized (Fig-

ure 2).

Thread

Virtual

Virtual

Executing

Locked

ThreadThread

Thread Thread Thread Thread Thread Thread

Processor 1

Processor 2

Context switching

1. For context switching of VP1,
Ready Queue is locked.

3. Even if VP2 tries to switch a context of executing thread,
VP2 can not enter the critical section, and VP2 is suspended.

tries to get a thread from the Ready Queue.
2. VP1 enters the critical section, and

Ready Queue

Figure 2: Blocking of virtual processor.

8



The more processors an SMP computer has, the more frequently this phe-

nomenon occurs. As Figure 3 shows, when a virtual processor is switching a thread-

context, other virtual processors are prevented from switching it. For this reason,

every thread management operation is serialized in the previous Lesser Bear design.

Time series

Thread schedulingExecuting a thread

Waiting to enter critical section

Virtual
Processor 1

Processor 2

Processor 3

Processor 4

Virtual

Virtual

Virtual

Context switching

Context switching

Context switching

Context switching

Figure 3: An example of blocking a virtual processor on SMP computers.

To solve the serialization problem, the following two solutions are considered

[10].

• A critical section is divided for each data structure, and each one is provided

with lock variables.

• The entire data structure is divided for each virtual processor, and each one

has a partial data structure in a local space.

For the first solution, multiple lock variables are required to manage partial crit-

ical sections, so that the structure of thread library tends to be complex. Moreover,
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because multiple lock variables are required for thread management primitives (e.g.

thread creation, context switching), deadlock occurs easily.

For the second solution, exclusive operation among all virtual processors is re-

quired to keep the shared data consistent. However, if the other virtual processors

do not affect the data stored in each local space, a lock operation is not necessary.

We adopt the second solution. In this way, all the thread-contexts are stored in

a shared memory-space. Each virtual processor has thread identifiers for executing

threads. Therefore, it is not necessary to make each local space very large. If a

virtual processor has been idle, it imports executable threads from other virtual

processors. Exclusive operation is only utilized for thread movement.

3.2 New Scheduling Mechanism

In the scheduling mechanism presented in this paper, an entire shared-memory space

is divided among virtual processors, and a local queue is prepared in each partial

space. However, we propose two queues (“Protect Queue” and “Waiver Queue”)

instead of the local queue. Each virtual processor manages its own space and is

supplied with two queues. Figure 4 shows our proposal for scheduling threads in

parallel.

Protect Queue only allows the owner to enqueue and dequeue. Therefore, the

owner does not have to use any lock operations. In switching the thread-context,

the owner of Protect Queue removes a thread from the head of the Protect Queue.

For load balancing, the capacity of each Protect Queue is always uniform between

every Protect Queue. If the Protect Queue overflows, the owner adds the thread to

the end of the Waiver Queue.

Waiver Queue allows the owner to enqueue, but it lets everyone dequeue. In

removing a thread from the Waiver Queue, lock operation among virtual processors

is necessary. Thus, virtual processors can not remove a thread simultaneously from
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Context switching

Thread Thread Thread

Protect Queue

Waiver Queue

Thread Thread Thread Thread Thread Thread
Virtual

ThreadThread
Processor

A partial shared memory space

Capacity of the Protect Queue

1. For context switching of VP, get
a thread from the Protect Queue.

2. From the Protect Queue, no one gets a
thread but the owner Virtual Processor.

3. A thread that overflows the Protect
Queue enters the Waiver Queue.

Figure 4: A new scheduler design for running itself in parallel.

the Waiver Queue.

It has been reported that no lock operation is required when only one virtual

processor is permitted to enqueue and only one (not necessarily the same) virtual

processor is permitted to dequeue. [11]. Consequently, lock operation is not neces-

sary for adding a thread to the Waiver Queue (Figure 5).

Enqueueing to the queues is frequent in Lesser Bear, so that reducing overhead

in enqueueing is related to the effective utilization of the system. Note that the

synchronization among the virtual processors trying to remove threads from the

Waiver Queue is required. Since idle virtual processors dequeue from the Waiver

Queue, the overhead does not influence the performance.

We also apply a similar mechanism to the waiting queue for mutex (mutual

execution) variable operations. One virtual processor that releases a mutex variable

handles the waiting queue without lock operation. These techniques enable Lesser
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Virtual
Processor

Virtual
Processor

Virtual
Processor

Virtual
Processor

Thread Thread Thread Thread Thread
Waiver Queue

exclusive access
dequeuedequeue dequeue

enqueue

Figure 5: Operations about Waiver Queue (enqueueing and dequeueing).

Bear to reduce the lock operation.

The scheduling mechanism proposed in this paper is able to reduce the lock op-

eration more than the mechanism in the previous Lesser Bear design. Consequently,

the overhead of thread management in the scheduling threads is reduced.

4 Experimental Results

In this section, we describe the evaluation of the designed scheduling mechanism in

comparison with the previous Lesser Bear design. All experiments are conducted on

a Sun microsystems SPARC Server 1000 running version 5.5.1 of the SunOS. This

system has a single-bus shared-memory architecture and is equipped with eight

SuperSPARC processors, running at a clock rate of 40 MHz. The system has 640

MB of physical memory.
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4.1 Performance Evaluation for Scheduler

In order to evaluate the scheduling mechanism, we compare the previous Lesser Bear

design (referred to as LB1) and proposed Lesser Bear design (referred to as LB2).

We first measure the cost for thread scheduling. In this experiment, we let the

LB1 and the LB2 have one virtual processor.

Table 2: Scheduler design performance.

LB1 LB2

Costs of running scheduler (µsec) 144.4 83.2

Table 2 compares the scheduling cost of the LB1 and the LB2. For this experi-

ment,

• we utilize an application in which two threads are created; and

• one thread yields the virtual processor to the other and scheduler repeats the

context switching for a long time.

The result shows that the scheduling cost of the LB1 contains the cost of lock

operations. In this experimental environment, the cost of lock operation is 65 mi-

croseconds. The combined cost of the LB2 and the lock operation equals the cost

of the LB1.

Next, we count the number of times for thread scheduling per second in each

virtual processor. For this experiment,

• we create 128 threads running 10 minutes in the application program; and

• the time quantum of thread is 10 milliseconds.

Lesser Bear adopts a semaphore to synchronize the virtual processors. A waiting

virtual processor sleeps by a semaphore operation. Thus if there are few active
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virtual processors, some CPUs become idle. In order to effectively utilize the exper-

imental platform in this experiment, we create 16 virtual processors, twice as many

as the number of CPUs.
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Figure 6: The number of times a thread is scheduled.

In figure 6, the horizontal axis of the graph represents the number of times a

thread is scheduled per second. The vertical axis represents the virtual processor

number. Figure 6 shows that the LB2 enables the internal scheduler to run fre-

quently. This is partly because the lock operation is rarely necessary to schedule a

thread.

4.2 Performance Evaluation using Application Programs

In this section, we run an application program in order to present the advantages

of the LB2. We adopt the radix sort as an application program for this experiment.
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The radix sorting algorithm [12] treats keys as multidigit numbers, in which

each digit is an integer with a value in the range {0· · · (m − 1)}, where m is the

radix. Radix sort works by breaking keys into digits and sorting one digit at a time,

starting with the last digit. For efficiency, m often becomes the value of 2 raised to

the power nth. By distributing all keys, it is easy to execute radix sort program in

parallel, and we can expect to achieve high scalability.

For example the radix is 4, we separate a set all of the keys for each thread and

sort each thread in order to parallelize radix sort algorithm by thread programming

as follows (Figure 7):

1. Count the number of keys on each element (0, 1, 2 and 3).

2. From the result of 1, merge all elements from all threads.

3. From the result of 1, create the partial sum of all elements until the previous

thread.

4. From the above results, determine the offsets for each element.

5. Transfer the keys indicated by the offsets.

For this strategy, we require barrier synchronization for merging and transferring.

Pthread [13], which is adopted for the interface of Lesser Bear, does not support

the barrier synchronization. In this experiment, we implement the barrier synchro-

nization by utilizing mutex variables and condition variables.

At first, we compare the performance of the scheduling mechanism of the LB1

and the LB2. In an application of this experiment,

• the number of keys is 222;

• 28 threads are created; and
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fork

join

fork

join

1. Count the number of
keys on each element

2. Merge all elements
with all threads

3. Create the partial sum of
all elements until previous thread

for each element

5. Transfer the keys
indicated by offsets

6. Iterate these works on next digit

4. Determine the offsets

Figure 7: The model of parallelize radix sort program.
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• we vary the size of the radix (21, 22, · · ·, 28) and measure the turnaround time.

In Figure 8, the horizontal axis of the graph represents the size of the radix, and

the vertical axis represents execution time normalized to that of the LB1.
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Figure 8: Comparison of turnaround time between the LB1 and the LB2.

The lesser radix size is, the more fine-grain the fork-part becomes and the more

frequent barrier synchronization occurs. Therefore, thread managements (e.g. mu-

tex variable control, condition variable control) occur more frequently and the sys-

tem overhead increases.

When the radix sort program is run on the LB2, the lesser the radix size is, the

better the performance of the LB2 in comparison with the LB1. This means that

there can be a lot of thread management even when there is a small radix. The

lock operation is not necessary for thread management in the LB2, so that the LB2

performs well with a small radix. When radix is 21, the barrier synchronization is
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generated 64 times and turnaround time is reduced about 22 %.

Next, we compare Solaris threads and Lesser Bear in which the LB2 is imple-

mented.

Solaris threads is a thread library supported by SunOS 5.x as described in 2.1.

Solaris threads requires kernel support for thread managements, so that we can

not expect that it performs so well in an application in which thread management

occurs.
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Figure 9 shows a comparison with Solaris threads and the LB2. The horizon-

tal axis of the graph represents the radix size. The vertical axis represents the

turnaround time. The radix sort program is the same as that used in the previous

experiment.

When radix size is small, fork-join operations occur frequently, and the number
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of serial parts increases inside of the application. Figure 9 shows the application

features.

Figure 9 shows that the LB2 has good performance when the radix is small.

This is mainly because the thread management’s overhead, especially mutex variable

control and condition variable control, of Solaris threads is high. In Lesser Bear, the

algorithm in 3.2 is utilized for mutex variable control, and this reduces the control

overhead.

These results show that the LB2 achieves thread scheduling on each virtual

processor in parallel and reduces the thread management overhead.

5 Conclusions

In this paper, we have proposed a scheduling mechanism to schedule threads in

parallel in each virtual processor and to reduce scheduling overhead.

To accomplish thread scheduling in parallel, we divide a huge shared-memory

space among virtual processors and provide two queues (Protect Queue and Waiver

Queue) for each divided space.

Protect Queue requires no lock operation for enqueueing and dequeueing, be-

cause it does not allow anyone but the owner to enqueue and dequeue. Waiver Queue

allows only the owner to enqueue, but it lets everyone dequeue. In this paper, for

enqueueing and dequeueing, we adopt an algorithm in which no lock operation is

necessary to enqueue. The implementation of this algorithm enables Lesser Bear to

reduce the scheduling overhead.

In the experiments, we show the effectiveness of reducing overhead in thread

scheduling, and show the scheduling thread in parallel on each virtual processor.

We have adopted the radix sort program as the application program.

From the results of running the application, we have confirmed that the overhead
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of thread management in the proposed scheduling mechanism is lower than the

overheads of previous Lesser Bear and Solaris threads.
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